Warning: the HTML version of this document is generated from Latex and may contain translation errors. In particular, some mathematical expressions are not translated correctly.
Previous Up Next How to Think Like a Computer Scientist Index

Appendix D

Recommendations for further reading

So where do you go from here? There are many directions to pursue, extending your knowledge of Python specifically and computer science in general.

The examples in this book have been deliberately simple, but they may not have shown off Python's most exciting capabilities. Here is a sampling of extensions to Python and suggestions for projects that use them.

  • GUI (graphical user interface) programming lets your program use a windowing environment to interact with the user and display graphics.
  • The oldest graphics package for Python is Tkinter, which is based on Jon Ousterhout's Tcl and Tk scripting languages. Tkinter comes bundled with the Python distribution.

    Another popular platform is wxPython, which is essentially a Python veneer over wxWindows, a C++ package which in turn implements windows using native interfaces on Windows and Unix (including Linux) platforms. The windows and controls under wxPython tend to have a more native look and feel than those of Tkinter and are somewhat simpler to program.

    Any type of GUI programming will lead you into event-driven programming, where the user and not the programmer determines the flow of execution. This style of programming takes some getting used to, sometimes forcing you to rethink the whole structure of a program.

  • Web programming integrates Python with the Internet. For example, you can build web client programs that open and read a remote web page (almost) as easily as you can open a file on disk. There are also Python modules that let you access remote files via ftp, and modules to let you send and receive email. Python is also widely used for web server programs to handle input forms.
  • Databases are a bit like super files where data is stored in predefined schemas, and relationships between data items let you access the data in various ways. Python has several modules to enable users to connect to various database engines, both Open Source and commercial.
  • Thread programming lets you run several threads of execution within a single program. If you have had the experience of using a web browser to scroll the beginning of a page while the browser continues to load the rest of it, then you have a feel for what threads can do.
  • When speed is paramount Python extensions may be written in a compiled language like C or C++. Such extensions form the base of many of the modules in the Python library. The mechanics of linking functions and data is somewhat complex. SWIG (Simplified Wrapper and Interface Generator) is a tool to make the process much simpler.

Python-related web sites and books

Here are the authors' recommendations for Python resources on the web:

  • The Python home page at www.python.org is the place to start your search for any Python related material. You will find help, documentation, links to other sites and SIG (Special Interest Group) mailing lists that you can join.
  • The Open Book Project www.ibiblio.com/obp contains not only this book online but also similar books for Java and C++ by Allen Downey. In addition there are Lessons in Electric Circuits by Tony R. Kuphaldt, Getting down with ..., a set of tutorials on a range of computer science topics, written and edited by high school students, Python for Fun, a set of case studies in Python by Chris Meyers, and The Linux Cookbook by Michael Stultz, with 300 pages of tips and techniques.
  • Finally if you go to Google and use the search string "python -snake -monty" you will get about 750,000 hits.

And here are some books that contain more material on the Python language:

  • Core Python Programming by Wesley Chun is a large book at about 750 pages. The first part of the book covers the basic Python language features. The second part provides an easy-paced introduction to more advanced topics including many of those mentioned above.
  • Python Essential Reference by David M. Beazley is a small book, but it is packed with information both on the language itself and the modules in the standard library. It is also very well indexed.
  • Python Pocket Reference by Mark Lutz really does fit in your pocket. Although not as extensive as Python Essential Reference it is a handy reference for the most commonly used functions and modules. Mark Lutz is also the author of Programming Python, one of the earliest (and largest) books on Python and not aimed at the beginning programmer. His later book Learning Python is smaller and more accessible.
  • Python Programming on Win32 by Mark Hammond and Andy Robinson is a "must have" for anyone seriously using Python to develop Windows applications. Among other things it covers the integration of Python and COM, builds a small application with wxPython, and even uses Python to script windows applications such as Word and Excel.

Recommended general computer science books

The following suggestions for further reading include many of the authors' favorite books. They deal with good programming practices and computer science in general.

  • The Practice of Programming by Kernighan and Pike covers not only the design and coding of algorithms and data structures, but also debugging, testing and improving the performance of programs. The examples are mostly C++ and Java, with none in Python.
  • The Elements of Java Style edited by Al Vermeulen is another small book that discusses some of the finer points of good programming, such as good use of naming conventions, comments, and even whitespace and indentation (somewhat of a nonissue in Python). The book also covers programming by contract, using assertions to catch errors by testing preconditions and postconditions, and proper programming with threads and their synchronization.
  • Programming Pearls by Jon Bentley is a classic book. It consists of case studies that originally appeared in the author's column in the Communications of the ACM. The studies deal with tradeoffs in programming and why it is often an especially bad idea to run with your first idea for a program. The book is a bit older than those above (1986), so the examples are in older languages. There are lots of problems to solve, some with solutions and others with hints. This book was very popular and was followed by a second volume.
  • The New Turing Omnibus by A.K Dewdney provides a gentle introduction to 66 topics of computer science ranging from parallel computing to computer viruses, from cat scans to genetic algorithms. All of the topics are short and entertaining. An earlier book by Dewdney The Armchair Universe is a collection from his column Computer Recreations in Scientific American. Both books are a rich source of ideas for projects.
  • Turtles, Termites and Traffic Jams by Mitchel Resnick is about the power of decentralization and how complex behavior can arise from coordinated simple activity of a multitude of agents. It introduces the language StarLogo, which allows the user to write programs for the agents. Running the program demonstrates complex aggregate behavior, which is often counterintuitive. Many of the programs in the book were developed by students in middle school and high school. Similar programs could be written in Python using simple graphics and threads.
  • Gödel, Escher and Bach by Douglas Hofstadter. Put simply, if you found magic in recursion you will also find it in this bestselling book. One of Hofstadter's themes involves "strange loops" where patterns evolve and ascend until they meet themselves again. It is Hofstadter's contention that such "strange loops" are an essential part of what separates the animate from the inanimate. He demonstrates such patterns in the music of Bach, the pictures of Escher and Gödel's incompleteness theorem.

Warning: the HTML version of this document is generated from Latex and may contain translation errors. In particular, some mathematical expressions are not translated correctly.


Previous Up Next How to Think Like a Computer Scientist Index