Shift Theorem Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Shift Theorem

The shift theorem says that a delay of $ \Delta$ samples in the time domain corresponds to a multiplication by $ z^{-\Delta}$ in the frequency domain:

$\displaystyle {\cal Z}_z\{$SHIFT$\displaystyle _\Delta\{x\}\} = z^{-\Delta} X(z), \quad \Delta\ge 0
$

or, using more common notation,

$\displaystyle \zbox {x(n-\Delta) \leftrightarrow z^{-\Delta} X(z), \quad \Delta\ge 0.}
$

Thus, $ x(\cdot - \Delta)$, which is the waveform $ x(\cdot)$ delayed by $ \Delta$ samples, has the z transform $ z^{-\Delta}X(z)$.



Proof:

\begin{eqnarray*}
{\cal Z}_z\{\mbox{{\sc Shift}}_\Delta\{x\}\} &\isdef & \sum_{n...
... } \sum_{m=0}^{\infty}x(m) z^{-m} \\
&\isdef & z^{-\Delta} X(z)
\end{eqnarray*}

where we used the causality assumption $ x(m)=0$ for $ m<0$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]