Logarithms of Negative and Imaginary Numbers Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Logarithms of Negative and Imaginary Numbers

By Euler's identity, $ e^{j\pi} = -1$, so that

$\displaystyle \ln(-1) = j\pi
$

from which it follows that for any $ x<0$, $ \ln(x) = j\pi + \ln(\vert x\vert)$.

Similarly, $ e^{j\pi/2} = j$, so that

$\displaystyle \ln(j) = j\frac{\pi}{2}
$

and for any imaginary number $ z = jy$, $ \ln(z) = j\pi/2 + \ln(y)$, where $ y$ is real.

Finally, from the polar representation $ z=r e^{j\theta}$ for complex numbers,

$\displaystyle \ln(z) \isdef \ln(r e^{j\theta}) = \ln(r) + j\theta
$

where $ r>0$ and $ \theta$ are real. Thus, the log of the magnitude of a complex number behaves like the log of any positive real number, while the log of its phase term $ e^{j\theta }$ extracts its phase (times $ j$).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]