Rational Exponents Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Rational Exponents

A rational number is a real number that can be expressed as a ratio of two finite integers:

$\displaystyle x = \frac{L}{M}, \quad L\in{\bf Z},\quad M\in{\bf Z}
$

Applying property (2) of exponents, we have

$\displaystyle a^x = a^{L/M} = \left(a^{\frac{1}{M}}\right)^L.
$

Thus, the only thing new is $ a^{1/M}$. Since

$\displaystyle \left(a^{\frac{1}{M}}\right)^M = a^{\frac{M}{M}} = a
$

we see that $ a^{1/M}$ is the $ M$th root of $ a$. This is sometimes written

$\displaystyle \zbox {a^{\frac{1}{M}} \isdef \sqrt[M]{a}.}
$

The $ M$th root of a real (or complex) number is not unique. As we all know, square roots give two values (e.g., $ \sqrt{4}=\pm2$). In the general case of $ M$th roots, there are $ M$ distinct values, in general. After proving Euler's identity, it will be easy to find them all (see §3.11). As an example, $ \sqrt[4]{1}=1$, $ -1$, $ j$, and $ -j$, since $ 1^4=(-1)^4=j^4=(-j)^4=1$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]