16 Enum, Struct, and Union

This chapter introduces three simple kinds of programmer defined data types.

You aren't limited to the compiler provided char, int, double data types and their
derivatives like arrays. You can define your own data types. Most of Part IV of this
text is devoted to various forms of programmer defined type. Here we introduce just
three relatively ssmple kinds. These are almost the same as the equivalents provided in
C; in contrast, C has no equivalent to the more sophisticated forms of programmer
defined type introduced in Part V.

Enumerated types, treated in section 16.1, are things that you should find useful in
that they can improve the readability of your programs and they allow the compiler to
do a little extra type checking that can eliminate certain forms of error. Although
useful, enumerated types are not that major afactor in C++ programming.

Structs are the most important of the three language elements introduced here,
section 16.2. They do have wider roles, but here we are interested in their primary role
which is the grouping of related data.

Unions: treat them as a'"read only" feature of C++. Y ou will sometimes see unions
being employed in library code that you use, but it is unlikely that you will find any real
application for unionsin the programs that you will be writing.

16.1 ENUMERATED TYPES

Y ou often need to use simple integer constants to represent domain specific data. For
example, suppose you needed to represent the colour of an automobile. Y ou could have
the following:

const int cRED =0
const int CcBLWE = 1;

int auto_col our;

16

460

Enum, struct, and union

enums and type
checking

Naming convention
for enums

enumerators

aut o_col our = cBLUE

This is quite workable. But there are no checks. Since variable aut o_col our i san
integer, the following assignments are valid:

auto_col our = -1;

auto_col our = rand();

But of course, these statements lose the semantics; variable aut o_col our doesn't any
longer represent a colour, it isjust an integer.
It isniceto be ableto tell the compiler:

"Variable auto_colour is supposed to represent a colour, that is one of the
defined set of choices RED, BLUE,"

and then have the compiler check, pretty thoroughly, that aut o_col our isonly usedin
this way throughout the code.

Thisis the role of enuns or enumerated types. If you think how they are actually
implemented, they are just an alternative way of declaring a set of integer constants and
defining some integer variables. But they also introduce new distinct types and allow
the compiler to do type checking. It isthis additional type checking that makes enums
worthwhile.

Thefollowing is a simple example of an enum declaration:

enum Col our { eRED, eBLUE, eYELLON eGREEN eS| LVERGREY,
eBURGUNDY };

The entries in the enumeration list are just names (of constant values). The same rules
apply as for any other C++ names: start with a letter, contain letters digits and
underscores. However, by convention, the entries in the enum list should have hames
that start with '€ and continue with a sequence of capital letters. This makes enum
values stand out in your code.

With Col our now defined, we can have variables of type Col our :

Col our auto_col our;

aut o_col our = eBURGUDY;

The compiler will now reject things like aut o_col our = 4. Depending on the
compiler you are using you may get just "Warning — anachronism", or you may get an
error (realy, you should get an error).

What about the "enumerators' eRED, eBLUE etc? What are they?

Enumerated types 461

Really, they are integers of some form. The compiler may chose to represent them
using shorts, or as unsigned chars. Really, it isn't any of your business how your
compiler represents them.

The compiler chooses distinct values for each member of an enumeration.
Normally, the first member has value 0O, the second is 1, and so forth. So in this
example, eRED would be akind of integer constant O, eSI LVERGREY would be 4.

Note the effect of the type checking:

auto_colour = 4; // Wong, rejected or at |east

/1 war ned by conpil er
aut o_col our = eS| LVERGREY; // Fine, set auto_colour to
/1 (probably) the val ue 4

It isn't the values that matter, it is the types. The value 4 is an integer and can't be
directly assigned to a Col our variable. The constant eSI LVERGREY isa Colour
enumerator and can be assigned to a Col our variable.

You can select for yourself the integer values for the different members of the
enumeration, provided of course that you keep them all distinct. You won't have cause
to do this yourself; but you should be able to read code like:

enum Magi cEnum{ eMERLIN = 17, eGANDALF = 103, eFRED = 202 };

Treat this as one of those "read only" features of C++. Itisonly in rare circumstances
that you want to define specific values for the members of the enumeration. (Defining
specific values means that you aren't really using the enum consistently; at some places
in your code you intend to treat enums as characters or integers.)

Output of enums

Enums are fine in the program, but how do you get them transferred using input and
output statements?

Well, with some difficulty!

Anenumisaform of integer. You cantry:

cout << auto_col our;

and you might get avalue like O, or 3 printed. More likely, the compiler will give you
an error message (probably something rather obscure like "ambiguous reference to
overloaded operator function"). While the specific message may not be clear, the
compiler's unhappiness is obvious. It doesn't really know how you want the enum
printed.

Y ou can tell the compiler that it is OK to print the enum as an integer:

462

Enum, struct, and union

cout << int(auto_col our);

The function like form i nt (aut o_col our) tellsthe compiler to convert the data value
aut o_col our to aninteger. The statement is then cout << integer whichthe
compiler knows to convert into a call to a Pri nt |1 nt eger () routine. (The compiler
doesn't need to generate any code to do the conversion from enumto integer. This
conversion request is simply away for the programmer to tell the compiler that here it
isintended that the enumbe regarded as just another integer).

Printing an enumas an integer is acceptable if the output isto afile that is going to
be read back later by the program. Human users aren't going to be pleased to get output
like:

Engi ne: 1.8 litre
Door s: 4
Col our: 5

If you are generating output that is to be read by a human user, you should convert the
enum value into an appropriate character string. The easiest way is to use a switch
Statement:

swi tch(auto_col our) {

eRED: cout << "Red"; break;
eBLUE: cout << "Blue"; break;
eBURGUNDY:

cout << "Burgundy"; break;

}

Input

If your program is reading a file, then this will contain integer values for enums; for
example, the file could have the partial contents

1.8 4 5

for an entry describing afour door, burgundy coloured car with 1.8 litre engine But you
can't simply have code like:

doubl e engi ne_si ze;
int numdoors;
Col our auto_col our;

i nput >> engi ne_si ze;
i nput >> numdoors ;
i nput >> auto_col our;

Enumerated types 463

The compiler gets stuck when it reaches i nput >> aut o_col our ;. The compiler's
translation tables let it recognize i nput >> engi ne_si ze asaform of "input givesto
double" (so it puts in a call to a ReadDoubl e() routing), and similarly i nput >>
num doors can be converted to a call to Readl nt (). But the compiler's standard
trand ation tables say nothing about i nput >> Col our .

Thefile contains an integer; so you had better read an integer:

int tenp;
i nput >> tenp;

Now you have an integer value that you hope represents one of the members of the
enum Col our. Of course you must still set the Col our variableaut o_col our. You
can't simply have an assignment:

aut o_col our = tenp;

because the reason we started all of this fuss was to make such assignmentsillegal!

Here, you have to tell the compiler to suspend its type checking mechanisms and
trust you. You can say "I know this integer value will be a valid Colour, do the
assignment." The codeis

aut o_col our = Col our (tenp);

Input from file will use integers, but what of input from a human user?
Normally, if you are working with enumerated types like this, you will be prompting
the user to make a selection from alist of choices:

Col our Get Col our ()

{
cout << "P ease enter preferred col our, select from"
<< endl;
cout << "1\tRed" << endl;
cout << "2\tBlue" << endl;
cout << "6\tBurgundy" << endl;
for(;;) {
int choice;
cin >> choi ce;
swi t ch(choi ce) {
case 1: return eRED,
case 2: return eBLUE
case 6: ret urn eBURGUNDY;

cout << "There is no choice #' << choice << endl;

464

Enum, struct, and union

cout << "Please select from1l Red, 2 Blue ..."
' 6, Burgundy" << endl;

}

(Note, internally eRED may be 0, eBLUE may be 1 etc. But you will find users generally
prefer option lists starting with 1 rather than 0. So list the choices starting from 1 and
make any adjustments necessary when converting to internal form.)

Other uses of enums

You do get cases like Col our auto_col our where it is appropriate to use an
enumerated type; but they aren't that common (except in text books). But there is
another place where enums are very widely used.

Very often you need to call aroutine specifying a processing option from a fixed set:

DrawsString — this function needs to be given the string to be
displayed and a style which should be one of

Plain

Bold

Italic

Outline

AlignObjects — this function needs to be given an array with the
object identifiers, a count, and an alignment specification which
should be one of

LeftAligned

Centred

RightAligned

Y ou can define integer constants:
const int cPLAIN = 0;
const int cBOD = 1;
and have an integer argument in your argument list:

void Drawstring(char txt[], int style);

but the compiler can't check that you only use valid styles from the set of defined
constants and so erroneous code like

Drawstring("silly", 12345);

Enumerated types 465

gets through the compiler to cause problems at run time.
But, if you code using an enumerated type, you do get compile time checks:

enum Text Styl es { ePLAIN eBOLD, el TALIC eQUTLI NE };
void Drawstring(char txt[], TextStyles style);
Now, callslike:

Drawstri ng("Hone run", eBCOLD);

are fine, while erroneous calls like
Drawstring("Say what?", 59);

are stomped on by the compiler (again, you may simply get a warning, but it is more
likely that you will get an error message about a missing function).

16.2 STRUCTS

It is rare for programs to work with simple data values, or even arrays of data values, Theneed for
that are individually meaningful. Normally, you get groups of data values that belong STUcts’
together.

Let's pick on those children again. This time suppose we want records of children's
heightsin cm, weightsin kilos, age (years and months), and gender. We expect to have
a collection of about one thousand children and need to do things like identify those
with extreme heights or extreme weights.

We can simply use arrays.

const int kMAXCH LDREN = 1000;

doubl e hei ght s[KMAXCH LDREN ;
doubl e wei ght s| KMAXCH LDREN ;
i nt year s[KMAXCH LDREN ;

i nt nont hs[KMAXCH LDREN ;
char gender [KMAXCH LDREN ;

Il read file with data, file termnated by sentinel data
/1 value with zero hei ght
count = O;
infile > h;
while(h > 0.0) {

hei ght s[count] = h;

infile >> weights[count] >> years[count] >>

nont hs[count] >> gender[count];

466

Enum, struct, and union

Have to be able to
group related data
elements
Declaring structs

"record", " field",
" data member"

Defining variables of
struct types

Definitions of some
variables of struct

type

count ++;
infile > h;

}

Now hei ght s[5], wei ghts[5], ..., gender [5] all relateto the same child. But if
we are using arrays, this relationship is at most implicit.

There is no guarantee that we can arrange that the data values that logically belong
together actually stay together. After al, there is nothing to stop one from sorting the
heights array so that these values are in ascending order, at the same time losing the
relationship between the data value in hei ght s[5] and those in wei ght s[5]
gender|[5] .

A programming language must provide away for the programmer to identify groups
of related data. In C++, you can usest r uct .

A C++ struct declaration allows you to specify a grouping of data variables:

struct Child {
doubl e hei ght;
doubl e wei ght;
i nt years;
i nt nont hs;
char gender ;

b

After reading such a declaration, the compiler "knows what a Chi | d is"; for the
purposes of the rest of the program, the compiler knows that a Chi | d is adata structure
containing two doubles, two integers, and a character. The compiler works out the
basic size of such a structure (it would probably be 25 bytes); it may round this size up
to some larger size that it finds more convenient (e.g. 26 bytes or 28 bytes). It adds the
name Chi | d to itslist of type names.

This grouping of data is the primary role of a struct. In C++, structs are simply a
special case of classes and they can have perform roles other than this simple grouping
of data elements. However it is useful to make a distinction. In the examples in this
book, structs will only be used as away of grouping related data el ements.

The term "record" is quite often used instead of struct when describing programs.
The individual data elements within a struct are said to be "fields", or "data members’.
The preferred C++ terminology is "data members".

A declaration doesn't create any variables, it just lets the compiler know about a new
type of data element that it should add to the standard char, long, double etc. But, once
astruct declaration has been read, you can start to define variables of the new type:

Child cute;
Child ki d;
Child brat;

Structs 467

and arrays of variables of thistype:

Child surveyset [KMAXCH LDREN ;

Each of these Chi | d variables hasits own doubles recording height and weight, its own
ints for age details, and a char gender flag.

The definition of avariable of struct type can include the data needed to initializeits !nitialization of
data members: structs

Child exanple = {
125.0, 32.4, 13, 2, 'f'
b

An instance of a struct can be defined along with the declaration:

struct Rectangl e {
int left, top;
int wdth, height;
}orl, r2, r3;

This declares the form of a Rect angl e and defines three instances. This style iswidely
usein C programs, but it is one that you should avoid. A declaration should introduce a
new data type; you should make this step separate from any variable definitions. The
construct is actually a source of some compile-time errors. |f you forget the ';' that
terminates a structure declaration, the compiler can get quite lost trying to interpret the
next few program elements as being names of variables (e.g. theinput struct Rect {
...} struct Point {.} int main() { ...} will makeacompiler quite unhappy).

Programs have to be able to manipulate the values in the data members of a struct Accessing data
variable. Consequently, languages must provide a mechanism for referring to a Membersof a

. . . variable of a struct
particular data member of a given struct variable. type
Most programming languages use the same approach. They use compound names Fields of a variable
made up of the variable name and a qualifying data member name. For example, if you identified using
wanted to check whether brat's height exceeded a limit, then in C++ you would write: compound names

if(brat.height > h lint)

Similarly, if you want to set cute's weight to 35.4 kilos, you would write:
cuteweight = 35.4;

Most statements and expressions will reference individual data members of a struct, Assignment of structs
but assignment of complete structuresis permitted:

Child Tallest;

468 Enum, struct, and union

Tal | est. height = 0;
for(int i =0; i < NunChildren; i++)
i f(surveyset[i].height > Tallest. height)
Tal l est = surveyset[i];

Compilers generally handle such assignments by generating code using a"blockmove".
A blockmove (which is often an actual instruction built into the machine hardware)
copies a block of bytes from one location to another. The compiler knows the size of
the structs so it codes a blockmove for the appropriate number of bytes.

Struct and enum In C++, astruct declaration introduces a new type. Once you have declared:
declarationsin C
libraries struct Point {
int Xx;
int y;
b

Y ou can define variables of type Poi nt :
Poi nt pl1, p2;

In C, struct (and enun) declarations don't makethe st r uct name (or enumname) a
new type. You must explicitly tell the compiler that you want a new type name to be
available. Thisisdoneusing atypedef. There are avariety of styles. Two common
styles are:

typedef
struct Point {
int x;
inty;
b

typedef struct Point Point;
or:
typedef struct _xpt {
int x;
int y;
} Point;
Similarly, enums require typedefs.
enum Col our { eRED, eBLUE, eGREEN };

t ypedef enum Col our Col our;

Y ou will see such typedefsin many of the C libraries that you get to use from your C++
programs.

Structs 469

A function can have arguments of struct types. Like simple variables, structs can be Structsand functions
passed by value or by reference. If a struct is passed by value, it is handled like an
assignment — a blockmove is done to copy the bytes of the structure onto the stack.
Generally, because of the cost of the copying and the need to use up stack space, you
should avoid passing large structs by value. If a function uses a struct as an "input
parameter”, its prototype should specify the struct as const reference, e.g.:

voi d Print Chi | dRecord(const struct& theChil d)

{
cout << "Height " << theChild.height << ...

}

Functions can have structs as their return values. The following illustrates a function
that gets an "car record” filled in:

struct car {
doubl e engi ne_si ze;
int num door s;
Col our auto_col our;

b
car GetAutoDetail s() Function with a
{ struct asa returned
car tenp; value
cout << "Select model, & (1), GX (2), SX (3), TX2(4) : " Local variable of
; return type defined
int nodel ;
cin >> nodel ;
while((nmodel < 1) || (rodel >4)) {
cout << "Model value nust be in range 1.4" << endl;
cout << "Select model :"
cin >> nodel ;
swi t ch(nodel) { Data entered into
case 1: tenp. engi ne_size = 1.8; tenp.numdoors = 3; break; fields of local struct
case 2. ... variable
}
tenp. col our = Get Col our();
return tenp; return the local struct
} asthevalue

Although this is permitted, it should not be overused. Returning a struct result doesn't
matter much with a small structure like st ruct car, but if your structures are large
this style becomes expensive both in terms of space and data copying operations.

Code using the Get Aut oDet ai | s() function would have to be something like:

car purchasers_choi ce;

470

Enum, struct, and union

b.l'Jrchaser s_choi ce = Get AutoDetai l s();

The instructions generated would normally be relatively clumsy. The stack frame setup
for the function would have a "return value ared" sufficient in size to hold acar record;
there would be a separate area for the variable t enp defined in the function. The return
statement would copy the contents of t enp into the "return value area" of the stack
frame. The datawould then again be copied in the assignment to pur chaser s_choi ce.

If you needed such a routine, you might be better to have a function that took a
reference argument:

voi d Get AutoDetail s(struct caré& tenp)

{
cout << "Select nodel, A (1), AX (2), SX (3), T™X2(4) : "
{énp. col our = Get Col our ();
return ;

}

with calling code like:

car purchasers_choi ce;

Get Aut oDet ai | s(pur chasers_choi ce) ;

16.3 UNIONS

Essentially, unions define a set of different interpretations that can be placed on the data
content area of a struct. For you, "unions' should be a "read-only" feature of C++. It
may be years before you get to write code where it might be appropriate for you to
define a new union. However, you will be using libraries of C code, and some C++
libraries, where unions are employed and so you need to be able to read and understand
code that utilizes unions.

Unions are most easily understood from real examples The following examples are
based on code from Xlib. ThisisaC library for computers running Unix (or variations
like Mach or Linux). The Xlib library provides the code needed for a program running
on a computer to communicate with an X-terminal. X-terminals are commonly used
when you want a multi-window style of user interface to Unix.

An X-terminal is a graphics display device that incorporates a simple
microprocessor and memory. The microprocessor in the X-terminal does part of the
work of organizing the display, so reducing the computational load on the main
computer.

Unions 471

When the user does something like move the mouse, type a character, or click an
action button, the microprocessor packages this information and sends it in a message to
the controlling program running on the main computer.

In order to keep things relatively simple, all such messages consist of a 96 byte
block of data. Naturally, different actions require different data to be sent. A mouse
movement needs a report of where the mouse is now located, a keystroke action needs
to be reported in terms of the symbol entered.

Xlib-based programs use XEvent unions to represent these 96 byte blocks of data.
The declaration for thisunion is

typedef union XEvent { union declaration
int type;
XAnyEvent xany;
XBut t onEvent xbut t on;
XMot i onEvent xnot i on;

XOr eat eW ndowEvent xcr eat ewi ndow,

} XBvent;

This declaration means that an XEvent may simply contain an integer (and 92 bytes of
unspecified data), or it may contain an XAnyEvent , or it may contain an XBut t onEvent ,
or Thereare about thirty different messages that an Xterminal can send, so there are
thirty different alternative interpretations specified in the union declaration.

Each of these different messages has a struct declaration that specifies the data that
that kind of message will contain. Two of these structs are:

typedef struct { Declaration of
int type; alternative structs
unsi gned | ong seri al ; that can befound in
Bool send_event; an XEvent

D spl ay *di spl ay;
W ndow wi ndow;
W ndow r oot ;
W ndow subwi ndow;
Time tine;
int x, v;
int x_root, y root;
unsi gned int state;
unsi gned int button;
Bool same_screen;

} XButtonEvent;

typedef struct {
int type;
unsi gned | ong seri al ;
Bool send_event;

472

Enum, struct, and union

Di splay *displ ay;
W ndow wi ndow;

int x, vy;

int wdth, height;

i nt border_width;

Bool override_redirect;
} XO eat eW ndowEvent ;

Asillustrated in Figure 16.1, the first part of any message is atype code. The way
that the rest of the message bytes are used depends on the kind of message.

XEvent XCOr eat eW ndowEvent
type type type type
seri al seri al seri al
send_event send_event send_event
Wi ndow Wi ndow Wi ndow
r oot X r oot
subwi ndow y subwi ndow
time wi dt h time
X hei ght X
y bor der y
X_root override X_root
y_root y_root
[state | [state |
button hi nt

bane_Screen

FaNe_SCr eel|

Figure 16.1

XBut t onEvent

XMbt i onEvent

XEvents — an example of a union from the Xlib library.

Unions 473

If you have an XEvent variable ev, you can access its type field using the ".
operator just like accessing adatafield in anormal structure:

XEvent ev;
sw tch(ev.type) {

}

If you know that ev really encodes an X CreateWindowEvent and you want to work
out the area of the new window, you can use code like:

area = ev. xcreat ewi ndow. wi dth * eve. xcreat ewi ndow. hei ght ;

The appropriate data fields are identified using a doubly qualified name. The variable
nameis qualified by the name of the union type that is appropriate for the kind of record
known to be present (so, for an XCreateW ndowEvent, you start with
ev. xcr eat ewi ndow). This name is then further qualified by the name of the data
member that should be accessed (ev. xcr eat ewi ndow. wi dt h).

A programmer writing the code to deal with such messages knows that a message
will start with a type code. The Xlib library has a series of #defined constants, e.g.
ButtonPress, DestroyNotify, MotionNotify; the value in the type field of a message will
correspond to one of these constants. This allows messages from an Xterminal to be
handled as follows:

XEvent eV,

/* Code that gets calls the Unix G5 and
gets details of the next message fromthe Xterm nal
copied into eV */

swi tch(ev.type) {

caseBut t onPr ess:
/* code doi ng sonet hi ng dependi ng on where the button was
pressed, access using xbutton variant fromunion */

if((ev.xbutton.x > x_low) && (ev.xbutton.x < x_high) & ...

br eak;
case MdtionNotify:
/* user has noved pointer, get details of when this
happened
and deci de what to do, access using xmotion variant from
uni on */

thetime = ev.xnotion.tine;

Doubly qualified
names to access data
members of variants
inunion

474 Enum, struct, and union

br eak;

case OreateNotify:
/* \"¢ have a new wi ndow, code here that | ooks at where and
what size, access using xcreatew ndow variant of union */
i nt hpos = ev. xcreat ewi ndow. x;

br eak;

