
16 Enum, Struct, and Union
This chapter introduces three simple kinds of programmer defined data types.

You aren't limited to the compiler provided char, int, double data types and their
derivatives like arrays. You can define your own data types. Most of Part IV of this
text is devoted to various forms of programmer defined type. Here we introduce just
three relatively simple kinds. These are almost the same as the equivalents provided in
C; in contrast, C has no equivalent to the more sophisticated forms of programmer
defined type introduced in Part IV.

Enumerated types, treated in section 16.1, are things that you should find useful in
that they can improve the readability of your programs and they allow the compiler to
do a little extra type checking that can eliminate certain forms of error. Although
useful, enumerated types are not that major a factor in C++ programming.

Structs are the most important of the three language elements introduced here,
section 16.2. They do have wider roles, but here we are interested in their primary role
which is the grouping of related data.

Unions: treat them as a "read only" feature of C++. You will sometimes see unions
being employed in library code that you use, but it is unlikely that you will find any real
application for unions in the programs that you will be writing.

16

16.1 ENUMERATED TYPES

You often need to use simple integer constants to represent domain specific data. For
example, suppose you needed to represent the colour of an automobile. You could have
the following:

const int cRED = 0;
const int cBLUE = 1;
…

int auto_colour;

460 Enum, struct, and union

auto_colour = cBLUE;

This is quite workable. But there are no checks. Since variable auto_colour is an
integer, the following assignments are valid:

auto_colour = -1;
…
auto_colour = rand();

But of course, these statements lose the semantics; variable auto_colour doesn't any
longer represent a colour, it is just an integer.

It is nice to be able to tell the compiler:

"Variable auto_colour is supposed to represent a colour, that is one of the
defined set of choices RED, BLUE, …."

and then have the compiler check, pretty thoroughly, that auto_colour is only used in
this way throughout the code.

This is the role of enums or enumerated types. If you think how they are actually
implemented, they are just an alternative way of declaring a set of integer constants and
defining some integer variables. But they also introduce new distinct types and allow
the compiler to do type checking. It is this additional type checking that makes enums
worthwhile.

The following is a simple example of an enum declaration:

enum Colour { eRED, eBLUE, eYELLOW, eGREEN, eSILVERGREY,
eBURGUNDY };

The entries in the enumeration list are just names (of constant values). The same rules
apply as for any other C++ names: start with a letter, contain letters digits and
underscores. However, by convention, the entries in the enum list should have names
that start with 'e' and continue with a sequence of capital letters. This makes enum
values stand out in your code.

With Colour now defined, we can have variables of type Colour:

Colour auto_colour;
…
auto_colour = eBURGUNDY;

The compiler will now reject things like auto_colour = 4. Depending on the
compiler you are using you may get just "Warning – anachronism", or you may get an
error (really, you should get an error).

What about the "enumerators" eRED, eBLUE etc? What are they?

enums and type
checking

Naming convention
for enums

enumerators

Enumerated types 461

Really, they are integers of some form. The compiler may chose to represent them
using shorts, or as unsigned chars. Really, it isn't any of your business how your
compiler represents them.

The compiler chooses distinct values for each member of an enumeration.
Normally, the first member has value 0, the second is 1, and so forth. So in this
example, eRED would be a kind of integer constant 0, eSILVERGREY would be 4.

Note the effect of the type checking:

auto_colour = 4; // Wrong, rejected or at least
// warned by compiler

auto_colour = eSILVERGREY; // Fine, set auto_colour to
// (probably) the value 4

It isn't the values that matter, it is the types. The value 4 is an integer and can't be
directly assigned to a Colour variable. The constant eSILVERGREY is a Colour
enumerator and can be assigned to a Colour variable.

You can select for yourself the integer values for the different members of the
enumeration, provided of course that you keep them all distinct. You won't have cause
to do this yourself; but you should be able to read code like:

enum MagicEnum { eMERLIN = 17, eGANDALF = 103, eFRED = 202 };

Treat this as one of those "read only" features of C++. It is only in rare circumstances
that you want to define specific values for the members of the enumeration. (Defining
specific values means that you aren't really using the enum consistently; at some places
in your code you intend to treat enums as characters or integers.)

Output of enums

Enums are fine in the program, but how do you get them transferred using input and
output statements?

Well, with some difficulty!
An enum is a form of integer. You can try:

cout << auto_colour;

and you might get a value like 0, or 3 printed. More likely, the compiler will give you
an error message (probably something rather obscure like "ambiguous reference to
overloaded operator function"). While the specific message may not be clear, the
compiler's unhappiness is obvious. It doesn't really know how you want the enum
printed.

You can tell the compiler that it is OK to print the enum as an integer:

462 Enum, struct, and union

cout << int(auto_colour);

The function like form int(auto_colour) tells the compiler to convert the data value
auto_colour to an integer. The statement is then cout << integer which the
compiler knows to convert into a call to a PrintInteger() routine. (The compiler
doesn't need to generate any code to do the conversion from enum to integer. This
conversion request is simply a way for the programmer to tell the compiler that here it
is intended that the enum be regarded as just another integer).

Printing an enum as an integer is acceptable if the output is to a file that is going to
be read back later by the program. Human users aren't going to be pleased to get output
like:

Engine: 1.8 litre
Doors: 4
Colour: 5

If you are generating output that is to be read by a human user, you should convert the
enum value into an appropriate character string. The easiest way is to use a switch
statement:

switch(auto_colour) {
eRED: cout << "Red"; break;
eBLUE: cout << "Blue"; break;

…
eBURGUNDY:

cout << "Burgundy"; break;
}

Input

If your program is reading a file, then this will contain integer values for enums; for
example, the file could have the partial contents

1.8 4 5

for an entry describing a four door, burgundy coloured car with 1.8 litre engine But you
can't simply have code like:

double engine_size;
int num_doors;
Colour auto_colour;
…
input >> engine_size;
input >> num_doors ;
input >> auto_colour;

Enumerated types 463

The compiler gets stuck when it reaches input >> auto_colour;. The compiler's
translation tables let it recognize input >> engine_size as a form of "input gives to
double" (so it puts in a call to a ReadDouble() routine), and similarly input >>
num_doors can be converted to a call to ReadInt(). But the compiler's standard
translation tables say nothing about input >> Colour.

The file contains an integer; so you had better read an integer:

int temp;
input >> temp;

Now you have an integer value that you hope represents one of the members of the
enum Colour. Of course you must still set the Colour variable auto_colour. You
can't simply have an assignment:

auto_colour = temp;

because the reason we started all of this fuss was to make such assignments illegal!
Here, you have to tell the compiler to suspend its type checking mechanisms and

trust you. You can say "I know this integer value will be a valid Colour, do the
assignment." The code is

auto_colour = Colour(temp);

Input from file will use integers, but what of input from a human user?
Normally, if you are working with enumerated types like this, you will be prompting

the user to make a selection from a list of choices:

Colour GetColour()
{

cout << "Please enter preferred colour, select from "
<< endl;

cout << "1\tRed" << endl;
cout << "2\tBlue" << endl;
…
cout << "6\tBurgundy" << endl;

for(;;) {
int choice;
cin >> choice;
switch(choice) {

case 1: return eRED;
case 2: return eBLUE;

…
case 6: return eBURGUNDY;

}
cout << "There is no choice #" << choice << endl;

464 Enum, struct, and union

cout << "Please select from 1 Red, 2 Blue … "
" 6, Burgundy" << endl;

}
}

(Note, internally eRED may be 0, eBLUE may be 1 etc. But you will find users generally
prefer option lists starting with 1 rather than 0. So list the choices starting from 1 and
make any adjustments necessary when converting to internal form.)

Other uses of enums

You do get cases like Colour auto_colour where it is appropriate to use an
enumerated type; but they aren't that common (except in text books). But there is
another place where enums are very widely used.

Very often you need to call a routine specifying a processing option from a fixed set:

DrawString – this function needs to be given the string to be
displayed and a style which should be one of

Plain
Bold
Italic
Outline

AlignObjects – this function needs to be given an array with the
object identifiers, a count, and an alignment specification which
should be one of

LeftAligned
Centred
RightAligned

You can define integer constants:

const int cPLAIN = 0;
const int cBOLD = 1;
…

and have an integer argument in your argument list:

void DrawString(char txt[], int style);

but the compiler can't check that you only use valid styles from the set of defined
constants and so erroneous code like

DrawString("silly", 12345);

Enumerated types 465

gets through the compiler to cause problems at run time.
But, if you code using an enumerated type, you do get compile time checks:

enum TextStyles { ePLAIN, eBOLD, eITALIC, eOUTLINE };

void DrawString(char txt[], TextStyles style);

Now, calls like:

DrawString("Home run", eBOLD);

are fine, while erroneous calls like

DrawString("Say what?", 59);

are stomped on by the compiler (again, you may simply get a warning, but it is more
likely that you will get an error message about a missing function).

16.2 STRUCTS

It is rare for programs to work with simple data values, or even arrays of data values,
that are individually meaningful. Normally, you get groups of data values that belong
together.

Let's pick on those children again. This time suppose we want records of children's
heights in cm, weights in kilos, age (years and months), and gender. We expect to have
a collection of about one thousand children and need to do things like identify those
with extreme heights or extreme weights.

We can simply use arrays:

const int kMAXCHILDREN = 1000;

double heights[kMAXCHILDREN];
double weights[kMAXCHILDREN];
int years[kMAXCHILDREN];
int months[kMAXCHILDREN];
char gender[kMAXCHILDREN];
…
// read file with data, file terminated by sentinel data
// value with zero height
count = 0;
infile >> h;
while(h > 0.0) {

heights[count] = h;
infile >> weights[count] >> years[count] >>

months[count] >> gender[count];

The need for
"structs"

466 Enum, struct, and union

count++;
infile >> h;
}

…

Now heights[5], weights[5], …, gender[5] all relate to the same child. But if
we are using arrays, this relationship is at most implicit.

There is no guarantee that we can arrange that the data values that logically belong
together actually stay together. After all, there is nothing to stop one from sorting the
heights array so that these values are in ascending order, at the same time losing the
relationship between the data value in heights[5] and those in weights[5] …
gender[5].

A programming language must provide a way for the programmer to identify groups
of related data. In C++, you can use struct.

A C++ struct declaration allows you to specify a grouping of data variables:

struct Child {
double height;
double weight;
int years;
int months;
char gender;

};

After reading such a declaration, the compiler "knows what a Child is"; for the
purposes of the rest of the program, the compiler knows that a Child is a data structure
containing two doubles, two integers, and a character. The compiler works out the
basic size of such a structure (it would probably be 25 bytes); it may round this size up
to some larger size that it finds more convenient (e.g. 26 bytes or 28 bytes). It adds the
name Child to its list of type names.

This grouping of data is the primary role of a struct. In C++, structs are simply a
special case of classes and they can have perform roles other than this simple grouping
of data elements. However it is useful to make a distinction. In the examples in this
book, structs will only be used as a way of grouping related data elements.

The term "record" is quite often used instead of struct when describing programs.
The individual data elements within a struct are said to be "fields", or "data members".
The preferred C++ terminology is "data members".

A declaration doesn't create any variables, it just lets the compiler know about a new
type of data element that it should add to the standard char, long, double etc. But, once
a struct declaration has been read, you can start to define variables of the new type:

Child cute;
Child kid;
Child brat;

Have to be able to
group related data

elements
Declaring structs

"record", "field",
"data member"

Defining variables of
struct types

Definitions of some
variables of struct

type

Structs 467

and arrays of variables of this type:

Child surveyset[kMAXCHILDREN];

Each of these Child variables has its own doubles recording height and weight, its own
ints for age details, and a char gender flag.

The definition of a variable of struct type can include the data needed to initialize its
data members:

Child example = {
125.0, 32.4, 13, 2, 'f'

};

An instance of a struct can be defined along with the declaration:

struct Rectangle {
int left, top;
int width, height;

} r1, r2, r3;

This declares the form of a Rectangle and defines three instances. This style is widely
use in C programs, but it is one that you should avoid. A declaration should introduce a
new data type; you should make this step separate from any variable definitions. The
construct is actually a source of some compile-time errors. If you forget the ';' that
terminates a structure declaration, the compiler can get quite lost trying to interpret the
next few program elements as being names of variables (e.g. the input struct Rect {
… } struct Point {…} int main() { … } will make a compiler quite unhappy).

Programs have to be able to manipulate the values in the data members of a struct
variable. Consequently, languages must provide a mechanism for referring to a
particular data member of a given struct variable.

Most programming languages use the same approach. They use compound names
made up of the variable name and a qualifying data member name. For example, if you
wanted to check whether brat's height exceeded a limit, then in C++ you would write:

if(brat.height > h_limit)
…

Similarly, if you want to set cute's weight to 35.4 kilos, you would write:

cute.weight = 35.4;

Most statements and expressions will reference individual data members of a struct,
but assignment of complete structures is permitted:

Child Tallest;

Initialization of
structs

Accessing data
members of a
variable of a struct
type
Fields of a variable
identified using
compound names

Assignment of structs

468 Enum, struct, and union

Tallest.height = 0;
for(int i = 0; i < NumChildren; i++)

if(surveyset[i].height > Tallest.height)
Tallest = surveyset[i];

Compilers generally handle such assignments by generating code using a "blockmove".
A blockmove (which is often an actual instruction built into the machine hardware)
copies a block of bytes from one location to another. The compiler knows the size of
the structs so it codes a blockmove for the appropriate number of bytes.

In C++, a struct declaration introduces a new type. Once you have declared:

struct Point {
int x;
int y;

};

You can define variables of type Point:

Point p1, p2;

In C, struct (and enum) declarations don't make the struct name (or enum name) a
new type. You must explicitly tell the compiler that you want a new type name to be
available. This is done using a typedef. There are a variety of styles. Two common
styles are:

struct Point {
int x;
int y;

};

typedef struct Point Point;

or:

typedef struct _xpt {
int x;
int y;

} Point;

Similarly, enums require typedefs.

enum Colour { eRED, eBLUE, eGREEN };

typedef enum Colour Colour;

You will see such typedefs in many of the C libraries that you get to use from your C++
programs.

Struct and enum
declarations in C

libraries

typedef

Structs 469

Structs and functionsA function can have arguments of struct types. Like simple variables, structs can be
passed by value or by reference. If a struct is passed by value, it is handled like an
assignment – a blockmove is done to copy the bytes of the structure onto the stack.
Generally, because of the cost of the copying and the need to use up stack space, you
should avoid passing large structs by value. If a function uses a struct as an "input
parameter", its prototype should specify the struct as const reference, e.g.:

void PrintChildRecord(const struct& theChild)
{

cout << "Height " << theChild.height << …
…

}

Functions can have structs as their return values. The following illustrates a function
that gets an "car record" filled in:

struct car {
double engine_size;
int num_doors;
Colour auto_colour;

};

car GetAutoDetails()
{

car temp;
cout << "Select model, GL (1), GLX (2), SX (3), TX2(4) : "

;
int model;
cin >> model;
while((model < 1) || (model >4)) {

cout << "Model value must be in range 1…4" << endl;
cout << "Select model :"
cin >> model;
}

switch(model) {
case 1: temp.engine_size = 1.8; temp.num_doors = 3; break;
case 2: …

}
temp.colour = GetColour();

return temp;
}

Although this is permitted, it should not be overused. Returning a struct result doesn't
matter much with a small structure like struct car, but if your structures are large
this style becomes expensive both in terms of space and data copying operations.

Code using the GetAutoDetails() function would have to be something like:

car purchasers_choice;

Function with a
struct as a returned
value
Local variable of
return type defined

Data entered into
fields of local struct
variable

return the local struct
as the value

470 Enum, struct, and union

…
purchasers_choice = GetAutoDetails();

The instructions generated would normally be relatively clumsy. The stack frame setup
for the function would have a "return value area" sufficient in size to hold a car record;
there would be a separate area for the variable temp defined in the function. The return
statement would copy the contents of temp into the "return value area" of the stack
frame. The data would then again be copied in the assignment to purchasers_choice.

If you needed such a routine, you might be better to have a function that took a
reference argument:

void GetAutoDetails(struct car& temp)
{

cout << "Select model, GL (1), GLX (2), SX (3), TX2(4) : "
;

…
temp.colour = GetColour();
return ;

}

with calling code like:

car purchasers_choice;
…
GetAutoDetails(purchasers_choice);

16.3 UNIONS

Essentially, unions define a set of different interpretations that can be placed on the data
content area of a struct. For you, "unions" should be a "read-only" feature of C++. It
may be years before you get to write code where it might be appropriate for you to
define a new union. However, you will be using libraries of C code, and some C++
libraries, where unions are employed and so you need to be able to read and understand
code that utilizes unions.

Unions are most easily understood from real examples The following examples are
based on code from Xlib. This is a C library for computers running Unix (or variations
like Mach or Linux). The Xlib library provides the code needed for a program running
on a computer to communicate with an X-terminal. X-terminals are commonly used
when you want a multi-window style of user interface to Unix.

An X-terminal is a graphics display device that incorporates a simple
microprocessor and memory. The microprocessor in the X-terminal does part of the
work of organizing the display, so reducing the computational load on the main
computer.

Unions 471

When the user does something like move the mouse, type a character, or click an
action button, the microprocessor packages this information and sends it in a message to
the controlling program running on the main computer.

In order to keep things relatively simple, all such messages consist of a 96 byte
block of data. Naturally, different actions require different data to be sent. A mouse
movement needs a report of where the mouse is now located, a keystroke action needs
to be reported in terms of the symbol entered.

Xlib-based programs use XEvent unions to represent these 96 byte blocks of data.
The declaration for this union is

typedef union _XEvent {

int type;

XAnyEvent xany;

XButtonEvent xbutton;

XMotionEvent xmotion;

XCreateWindowEvent xcreatewindow;

…

…

} XEvent;

This declaration means that an XEvent may simply contain an integer (and 92 bytes of
unspecified data), or it may contain an XAnyEvent, or it may contain an XButtonEvent,
or …. There are about thirty different messages that an Xterminal can send, so there are
thirty different alternative interpretations specified in the union declaration.

Each of these different messages has a struct declaration that specifies the data that
that kind of message will contain. Two of these structs are:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;

union declaration

Declaration of
alternative structs
that can be found in
an XEvent

472 Enum, struct, and union

Display *display;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

} XCreateWindowEvent;

As illustrated in Figure 16.1, the first part of any message is a type code. The way
that the rest of the message bytes are used depends on the kind of message.

type type type type

serial

send_event

window

root

subwindow

time

x

y

x_root

y_root

state

button

same_screen

serial

send_event

window

x

y

width

height

border

override

serial

send_event

window

root

subwindow

time

x

y

x_root

y_root

state

hint

same_screen

XCreateWindowEventXEvent

XButtonEvent XMotionEvent

Figure 16.1 XEvents – an example of a union from the Xlib library.

Unions 473

If you have an XEvent variable ev, you can access its type field using the "."
operator just like accessing a data field in a normal structure:

XEvent ev;
…
switch(ev.type) {

…
}

If you know that ev really encodes an XCreateWindowEvent and you want to work
out the area of the new window, you can use code like:

area = ev.xcreatewindow.width * eve.xcreatewindow.height;

The appropriate data fields are identified using a doubly qualified name. The variable
name is qualified by the name of the union type that is appropriate for the kind of record
known to be present (so, for an XCreateWindowEvent, you start with
ev.xcreatewindow). This name is then further qualified by the name of the data
member that should be accessed (ev.xcreatewindow.width).

A programmer writing the code to deal with such messages knows that a message
will start with a type code. The Xlib library has a series of #defined constants, e.g.
ButtonPress, DestroyNotify, MotionNotify; the value in the type field of a message will
correspond to one of these constants. This allows messages from an Xterminal to be
handled as follows:

XEvent eV;
…
/* Code that gets calls the Unix OS and
gets details of the next message from the Xterminal
copied into eV */
…
switch(ev.type) {
caseButtonPress:

/* code doing something depending on where the button was
pressed, access using xbutton variant from union */

if((ev.xbutton.x > x_low) && (ev.xbutton.x < x_high) && …

break;
case MotionNotify:

/* user has moved pointer, get details of when this
happened

and decide what to do, access using xmotion variant from
union */

thetime = ev.xmotion.time;
…

Doubly qualified
names to access data
members of variants
in union

474 Enum, struct, and union

break;

case CreateNotify:
/* We have a new window, code here that looks at where and
what size, access using xcreatewindow variant of union */
int hpos = ev.xcreatewindow.x;
…
break;

…
}

