
17 Examples using structs
This chapter contains a few simple examples illustrating the use of structs in programs.

In future programs, you will use structs mainly when communicating with existing C
libraries. For example, you will get to write code that uses the graphics primitives on
your system. The "applications programmer interface" (API) for the graphics will be
defined by a set of C functions (in some cases based on an earlier interface defined by a
set of Pascal functions). If you a programming on Unix, you will probably be using the
Xlib graphics package, on an Apple system you would be using Quickdraw, and on an
Intel system you would use a Windows API. The functions in the API will make
extensive use of simple structs. Thus, the Xlib library functions use instances of the
following structs:

typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

and

typedef struct {
short x, y;
unsigned short width, height;
short angle1, angle2;

} XArc;

So, if you are using the Xlib library, your programs will also define and use variables
that are instances of these struct types.

For new application-specific code you will tend to use variables of class types more
often than variables of struct types.

17

Using structs with
existing libraries

Your own structs?

476 Examples using structs

The examples in this chapter are intended merely to illustrate how to declare struct
types, use instances of these types, access fields and so forth. The example programs in
section 17.3, introduce the idea of a "file of records". These programs have a single
struct in memory and a whole set of others in a disk file. The struct in memory gets
loaded with data from a requested record on disk. Record files are extremely common
in simple business data processing applications, and represent a first step towards the
more elaborate "databases" used in industry. You will learn more about "files of
records" and "databases" in later subjects. While you can continue to use C/C++ when
working with database systems, you are more likely to use specialized languages like
COBOL and SQL.

17.1 REORDERING THE CLASS LIST AGAIN

The example in section 13.2 illustrated a "sorting" algorithm that was applied to reorder
pupil records. The original used two arrays, pupils and marks:

typedef char Name[40];

Name pupils[] = {
"Armstrong, Alice S.",
…
"Zarra, Daniela"

};

int marks[] = {
57,
…
78

};

But the data in the two arrays "belong together" – Miss Armstrong's mark is 57 and she
shouldn't be separated from it.

This is a typical case where the introduction of a simple struct leads to code that
reflects the problem structure more accurately (and is also slightly clearer to read). The
struct has to package together a name and a mark:

struct PupilRec {
Name fName;
int fMark;

};

(Naming conventions again: use 'f' as the first character of the name of a data member
in all structs and classes that are defined for a program.)

With this struct declared, an initialized array of PupilRecs can be defined:

Reordering the class list 477

PupilRec JuniorYear[] = {
{ "Armstrong, Alice S.", 57 } ,
{ "Azur, Hassan M.", 64 } ,
{ "Bates, Peter", 33 } ,
…
{ "Zarra, Daniela", 81 }

};

The function MakeOrderedCopy() can be rewritten to use these PupilRec structs:

void MakeOrderedCopy(const PupilRec orig[],int num,
PupilRec reord[])

{
int mark_count[101];

for(int i = 0; i< 101; i++)
mark_count[i] = 0;

// Count number of occurrences of each mark
for(i = 0; i < num; i++) {

int mark = orig[i].fMark;
mark_count[mark]++;

}
// Make that count of number of pupils with marks less than
// or equal to given mark
for(i=1; i<101; i++)

mark_count[i] += mark_count[i-1];

for(i=num - 1; i >= 0; i--) {
int mark = orig[i].fMark;
int position = mark_count[mark];
position--; // correct to zero based array
// copy data
reord[position] = orig[i];
mark_count[mark]--;

}

}

The function takes two arrays of PupilRec structs. The orig parameter is the array
with the records in alphabetic order; it is an "input parameter" so it is specified as
const. The reord parameter is the array that is filled with the reordered copy of the
data.

An expression like:

orig[i].fMark

illustrates how to access a data member of a chosen element from an array of structures.
Note the structure assignment:

Arrays of structs as
"input" and
"output" parameters

Accessing data
member of one of
structs in the array

Assignment of structs

478 Examples using structs

reord[position] = orig[i];

The compiler "knows" the size of structs so allows struct assignment while assignment
of arrays is not allowed.

17.2 POINTS AND RECTANGLES

The following structs and functions illustrate the functionality that you will find in the
graphics libraries for your system. Many of the basic graphics functions will use points
and rectangles; for example, a line drawing function might take a "start point" and an
"end point" as its parameters, while a DrawOval() function might require a rectangle to
frame the oval.

The graphics packages typically use short integers to represent coordinate values. A
"point" will need two short integer data fields:

struct Point {
short fx;
short fy;

};

A struct to represent a rectangle can be defined in a number of alternative ways,
including:

struct Rectangle {
short ftop;
short fleft;
short fwidth;
short fheight;

};

and

struct Rectangle {
Point fcorner;
short fwidth;
short fheight;

};

Provided that struct Point has been declared before struct Rectangle, it is
perfectly reasonable for struct Rectangle to have data members that are instances
of type Point. The second declaration will be used for the rest of the examples in this
section.

The graphics libraries define numerous functions for manipulating points and
rectangles. The libraries would typically include variations of the following functions:

Points and Rectangles 479

int Point_In_Rect(const Point& pt, const Rectangle& r);
Returns "true" (1) if point pt lies with Rectangle r.

int Equal_Points(const Point& p1, const Point& p2);
Returns "true" if points p1 and p2 are the same.

void Add_Point(const Point& p1, const Point& p2, Point& res);
Changes the "output parameter" res to be the 'vector sum'

of points p1 and p2.

Point MidPoint(const Point& p1, const Point& p2);
Returns the mid point of the given points.

int ZeroRect(const Rectangle& r)
Return "true" if r's width and height are both zero.

Rectangle UnionRect(const Rectangle& r1, const Rectangle& r2);
Returns the smallest circumscribing rectangle of the given

rectangles r1 and r2.

Rectangle IntersectRect(const Rectangle& r1,
const Rectangle& r2);
Returns a rectangle that represents the intersection of the

given rectangles, or a zero rectangle if they don't
intersect.

Rectangle Points2Rect(const Point& p1, const Point& p2);
Returns a rectangle that includes both points p1 and p2

within its bounds or at least on its perimeter

These functions are slightly inconsistent in their prototypes, some return structs as
results while others have output parameters. This is deliberate. The examples are
meant to illustrate the different coding styles. Unfortunately, it is also a reflection of
most of the graphics libraries! They tend to lack consistency. If you were trying to
design a graphics library you would do better to decide on a style; functions like
Add_Point() and MidPoint() should either all have struct return types or all have
output parameters. In this case, there are reasons to favour functions that return structs.
Because points and rectangles are both small, it is acceptable for the functions to return
structs as results. Code using functions that return structs tends to be a little more
readable than code using functions with struct output parameters.

This example is like the "curses" and "menu selection" examples in Chapter 12. We
need a header file that describes the facilities of a "points and rectangles" package, and
an implementation file with the code of the standard functions. Just so as to illustrate
the approach, some of the simpler functions will be defined as "inline" and their
definitions will go in the header file.

The header file would as usual have its contents bracketed by conditional
compilation directives:

480 Examples using structs

#ifndef __MYCOORDS__
#define __MYCOORDS__

the interesting bits

#endif

As explained in section 12.1, these conditional compilation directives protect against
the possibility of erroneous multiple inclusion.

The structs would be declared first, then the function prototypes would be listed.
Any "inline" definitions would come toward the end of the file:

#ifndef __MYCOORDS__
#define __MYCOORDS__

struct Point {
short fx;
short fy;

};

struct Rectangle {
…

};

int Point_In_Rect(const Point& pt, const Rectangle& r);

…

inline int Equal_Points(const Point& p1, const Point& p2)
{

return ((p1.fx == p2.fx) && (p1.fy == p2.fy));
}

inline int ZeroRect(const Rectangle& r)
{

return ((r.fwidth == 0) && (r.fheight == 0));
}

#endif

"Inline" functions have to be defined in the header. After all, if the compiler is to
replace calls to the functions by the actual function code it must know what that code is.
When compiling a program in another file that uses these functions, the compiler only
knows the information in the #included header.

The definitions of the other functions would be in a separate mycoords.cp file:

#include "mycoords.h"

Header file
"mycoords.h"

inline functions
defined in the header

file

Points and Rectangles 481

int Point_In_Rect(const Point& pt, const Rectangle& r)
{
// Returns "true" if point pt lies with Rectangle r.

if((pt.fx < r.fcorner.fx) || (pt.fy < r.fcorner.fy))
return 0;

int dx = pt.fx - r.fcorner.fx;
int dy = pt.fy - r.fcorner.fy;

if((dx > r.fwidth) || (dy > r.fheight))
return 0;

return 1;
}

A rectangle has a Point data member which itself has int fx, fy data members.
The name of the data member that represents the x-coordinate of the rectangle's corner
is built up from the name of the rectangle variable, e.g. r1, qualified by the name of its
point data member fcorner, qualified by the name of the field, fx.

Function Add_Point() returns its result via the res argument:

void Add_Point(const Point& p1, const Point& p2, Point& res)
{
// Changes the "output parameter" res to be the 'vector sum'
// of points p1 and p2.

res.fx = p1.fx + p2.fx;
res.fy = p1.fy + p2.fy;

}

while MidPoint() returns its value via the stack (it might as well use Add_Point() in
its implementation).

Point MidPoint(const Point& p1, const Point& p2)
{
// Returns the mid point of the given points.

Point m;
Add_Point(p1, p2, m);
m.fx /= 2;
m.fy /= 2;

return m;
}

Function Points2Rect() is typical of the three Rectangle functions:

Rectangle Points2Rect(const Point& p1, const Point& p2)
{
// Returns a rectangle that includes both points p1 and p2
// within its bounds or at least on its perimeter

Note multiply
qualified names of
data members

482 Examples using structs

Rectangle r;
int left, right, top, bottom;

if(p1.fx < p2.fx) { left = p1.fx; right = p2.fx; }
else { left = p2.fx; right = p1.fx; }

if(p1.fy < p2.fy) { top = p1.fy; bottom = p2.fy; }
else { top = p2.fy; bottom = p1.fy; }

r.fcorner.fx = left;
r.fcorner.fy = top;

r.fwidth = right - left;
r.fheight = bottom - top;

return r;
}

If you were developing a small library of functions for manipulation of points and
rectangles, you would need a test program like:

#include <iostream.h>
#include "mycoords.h"

int main()
{

Point p1;
p1.fx = 1;
p1.fy = 7;

Rectangle r1;
r1.fcorner.fx = -3;
r1.fcorner.fy = -1;
r1.fwidth = 17;
r1.fheight = 25;

if(Point_In_Rect(p1, r1))
cout << "Point p1 in rect" << endl;

else cout << "p1 seems to be lost" << endl;

Point p2;
p2.fx = 11;
p2.fy = 9;
Point p3;
Add_Point(p1, p2, p3);

cout << "I added the points, getting p3 at ";
cout << p3.fx << ", " << p3.fy << endl;

Point p4;
p4.fx = 12;

Points and Rectangles 483

p4.fy = 16;

if(Equal_Points(p3, p4))
cout << "which is where I expected to be" << endl;

else cout << "which I find surprising!" << endl;

…
…

Rectangle r4 = UnionRect(r2, r3);
cout << "I made rectangle r4 to have a corner at ";
cout << r4.fcorner.fx << ", " << r4.fcorner.fy << endl;
cout << "and width of " << r4.fwidth <<

", height " << r4.fheight << endl;

Rectangle r5 = IntersectRect(r4, r1);
cout << "I made rectangle r5 to have a corner at ";
cout << r5.fcorner.fx << ", " << r5.fcorner.fy << endl;
cout << "and width of " << r5.fwidth <<

", height " << r5.fheight << endl;

return 0;
}

The test program would have calls to all the defined functions and would be organized
to check the results against expected values as shown.

You may get compilation errors relating to struct Point. Some IDEs
automatically include the system header files that define the graphics functions, and
these may already define some other struct Point. Either find how to suppress this
automatic inclusion of headers, or change the name of the structure to Pt.

17.3 FILE OF RECORDS

Rather than writing their own program, anyone who really wants to keep files of
business records would be better off using the "database" component of one of the
standard "integrated office packages". But someone has to write the "integrated office
package" of the future, maybe you. So you had better learn how to manipulate simple
files of records.

The idea of a file of records was briefly previewed in section 9.6 and is again
illustrated in Figure 17.1.

A file record will be exactly the same size as a memory based struct. Complete
structs can be written to, and read from, files. The i/o transfer involves simply copying
bytes (there is no translation between internal binary forms of data and textual strings).
The operating system is responsible for fitting the records into the blocks on disk and
keeping track of the end of the file.

484 Examples using structs

"Record structured" file:

Customer-1 Customer-2 Customer-3

End of file

Get (and/or) Put
pointer

Figure 17.1 A file of "customer records"

Files of record can be processed sequentially. The file can be opened and records
read one by one until the end of file marker is reached. This is appropriate when you
want to all records processed. For example, at the end of the month you might want to
run through the complete file identifying customers who owed money so that letters
requesting payment could be generated and dispatched.

Files of records may also be processed using "random access". Random access does
not mean that any data found at random will suffice (this incorrect explanation was
proposed by a student in an examination). The "randomness" lies in the sequence in
which records get taken from file and used. For example, if you had a file with 100
customer records, you might access them in the "random" order 25, 18, 49, 64, 3, ….

File systems allow "random access" because you can move the "get" (read) or "put"
(write) pointer that the operating system associates with a file before you do the next
read or write operation. You can read any chosen record from the file by moving the
get pointer to the start of that record. This is easy provided you know the record
number (imagine that the file is like an array of records, you need the index number into
this array). You simply have to multiply the record number by the size of the record,
this gives the byte position where the "get pointer" has to be located.

You have to be able to identify the record that you want. You could do something
like assign a unique identifying number (in the range 0…?) to each customer and
require that this is specified in all correspondence, or you could make use of an
auxiliary table (array) of names and numbers.

You would want to use "random access" if you were doing something like taking
new orders as customers came to, or phoned the office. When a customer calls, you
want to be able to access their record immediately, you don't want to read all the
preceding records in the file. (Of course reading the entire file wouldn't matter if you
have only 100 records; but possibly you have ambitions and wish to grow to millions.)

Sequential access

Random access

File of records 485

New iostream and
fstream features

Working with record files and random access requires the use of some additional
facilities from the iostream and fstream libraries.

First, the file that holds the data records will be an "input-output" file. If you need to
do something like make up an order for a customer, you need to read (input) the
customer's record, change it, then save the changed record by writing it back to file
(output). Previously we have used ifstream objects (for inputs from file) and
ofstream objects (for outputs to file), now we need an fstream object (for
bidirectional i/o). We will need an fstream variable:

fstream gDataFile;

which will have to be connected to a file by an open() request:

gDataFile.open(gFileName, ios::in | ios::out);

The open request would specify ios::in (input) and ios::out (output); in some
environments, the call to open() might also have to specify ios::binary. As this file
is used for output, the operating system should create the file if it does not already exist.

Next, we need to use the functions that move the "get" and "put" pointers.
(Conceptually, these are separate pointers that can reference different positions in the
file; in most implementations, they are locked together and will always refer to the same
position.) The get pointer associated with an input stream can be moved using the
seekg() function; similarly, the put pointer can be moved using the seekp() function.
These functions take as arguments a byte offset and a reference point. The reference
point is defined using an enumerated type defined in the iostream library; it can be
ios::beg (start of file), ios::cur (current position), or ios::end (end of the file).
So, for example, the call:

gDataFile.seekg(600, ios::beg);

would position the get pointer 600 bytes after the beginning of the file; while the call:

gDataFile.seekp(0, ios::end);

would position the put pointer at the end of the file.
The libraries also have functions that can be used to ask the positions of these

pointers; these are the tellp() and tellg() functions. You can find the size of a file,
and hence the number of records in a record file, using the following code:

gDataFile.seekg(0, ios::end);
long pos = gDataFile.tellg();
gNumRecs = pos / sizeof(Customer);

fstream

Positioning the
get/put pointers

Finding your current
position in a file

486 Examples using structs

The call to seekg() moves the get pointer to the end of the file; the call to tellg()
returns the byte position where the pointer is located, and so gives the length of the file
(i.e. the number of bytes in the file). The number of records in the file can be obtained
by dividing the file length by the record size.

Data bytes can be copied between memory and file using the read and write
functions:

read(void *data, int size);
write(const void *data, size_t size);

(The prototypes for these functions may be slightly different in other versions of the
iostream library. The type size_t is simply a typedef equivalent for unsigned int.)
These functions need to be told the location in memory where the data are to be placed
(or copied from) and the number of bytes that must be transferred.

The first argument is a void*. In the case of write(), the data bytes are copied
from memory to the disk so the memory data are unchanged, so the argument is a const
void*. These void* parameters are the first example that we've seen of pointers.
(Actually, the string library uses pointers as arguments to some functions, but we
disguised them by changing the function interfaces so that they seemed to specify
arrays).

A pointer variable is a variable that contains the memory address of some other data
element. Pointers are defined as derived types based on built in or programmer defined
struct (and class) types:

int *iptr;
double *dptr;
Rectangle *rptr;

and, as a slightly special case:

void *ptr_to_somedata;

These definitions make iptr a variable that can hold the address of some integer data
item, dptr a variable that holds the address of a double, and rptr a variable that holds
the address where a Rectangle struct is located.

The variable, ptr_to_somedata, is a void*. This means that it can hold the
address of a data item of any kind. (Here void is not being used to mean empty, it is
more that it is "unknown" or at least "unspecified").

As any C programmer who has read this far will have noted, we have been carefully
avoiding pointers. Pointers are all right when you get to know them, but they can be
cruel to beginners. From now on, almost all your compile time and run-time errors are
going to relate to the use of pointers.

But in these calls to the read() and write() functions, there are no real problems.
All that these functions require is the memory address of the data that are involved in

Read and write
transfers

Memory address
"Pointers"

File of records 487

the transfer. In this example, that is going to mean the address of some variable of a
struct type Customer.

In C and C++, you can get the address of any variable by using the & "address-of"
operator. Try running the following program (addresses are by convention displayed in
hexadecimal rather than as decimal numbers):

float pi = 3.142;

int array[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int main()
{

int data = 101;
void *ptr;

ptr = &data;
cout << "data is at " << hex << ptr << endl;

ptr = π
cout << "pi is at " << hex << ptr << endl;

ptr = &(array[2]);
cout << "array[2] is at " << hex << ptr << endl;

ptr = &(array[3]);
cout << "array[3] is at " << hex << ptr << endl;
return 0;

}

You should be able to relate the addresses that you get to the models that you now have
for how programs and data are arranged in memory. (If you find it hard to interpret the
hexadecimal numbers, switch back to decimal outputs.)

The & operator is used to get the addresses that must be passed to the read() and
write() functions. If we have a variable:

Customer c;

we can get it loaded with data from a disk file using the call:

gDataFile.read(&c, sizeof(Customer));

or we can save its contents to disk by the call:

gDataFile.write(&c, sizeof(Customer));

(Some compilers and versions of the iostream library may require "(char*)" before the
& in these calls. The & operator and related matters are discussed in Chapter 20.)

The & "address-of"
operator

488 Examples using structs

Specification

Write a program that will help a salesperson keep track of customer records.
The program is to:

1 Maintain a file with records of customers. These records are to include the
customer name, address, postcode, phone number, amount owed, and details of any
items on order.

2 Support the following options:
• list all customers
• list all customers who currently owe money
• show the record of a named customer
• create a record for a new customer
• fill in an order for a customer (or clear the

record for goods delivered and paid for)
• quit.

3 Have a list of all products stocked, along with their costs, and should provide a
simple way for the salesperson to select a product by name when making up a
customer order.

The program is not to load the entire contents of the data file into memory. Records are
to be fetched from the disk file when needed. The file will contain at most a few
hundred records so sophisticated structures are not required.

Design

The overall structure of the program will be something like:

Open the file and do any related initializations
Interact with the salesperson, processing commands until

the Quit command is entered
Close the file

These steps obviously get expanded into three main functions.
The "Close File" function will probably be trivial, maybe nothing more than actually

closing the file. Apart from actually opening the file (terminating execution if it won't
open) the "Open File" function will probably have to do additional work, like
determining how many records exist. During design of the main processing loop, we
may identify data that should be obtained as the file is opened. So, function "open file"
should be left for later consideration.

The main processing loop in the routine that works with the salesperson will be
along the following lines:

First Iteration

File of records 489

"Run the shop"
quitting = false
while (not quitting)

prompt salesperson for a command
use command number entered to select

• list all customers
• list debtors

…
• deal with quit command, i.e. quitting = true

Obviously, each of the options like "list all customers" becomes a separate function.
Several of these functions will have to "get" a record from the file or "put" a record

to file, so we can expect that they will share "get record", "put record" and possibly
some other lower level functions.

The UT functions developed in Chapter 12 (selection from menu, and keyword
lookup) might be exploited. Obviously, the menu selection routine could handle the
task of getting a command entered by the salesperson. In fact, if that existing routine is
to be used there will be no further design work necessary for "Run the shop". The
sketched code is easy to implement.

So, the next major task is identifying the way the functions will handle the tasks like
listing customers and getting orders. The routines for listing all customers and listing
debtors are going to be very similar:

"list all customers"
if there are no customers

just print some slogan and return

for i = 0 , i < number of customers,. i++
get customer record i
print details of customer

"list debtors"
initialize a counter to zero

for i = 0 , i < number of customers,. i++
get customer record i
if customer owes money

print details of customer
increment counter

if counter is zero report "no debtors"

You might be tempted to fold these functions into one, using an extra boolean argument
to distinguish whether we are interested in all records or just those with debts.
However, if the program were later made more elaborate you would probably find
greater differences in the work done in these two cases (e.g. you might want the "list

Second Iteration

The "list …"
functions

490 Examples using structs

debtors" operation to generate form letters suggesting that payment would be
appreciated). Since the functions can be expected to become increasingly different, you
might as well code them as two functions from the start.

The sketched pseudo-code uses for loops to work through the file and relies on a
(global?) variable that holds the number of records. As noted in the introduction to this
section, it is easy to work out the number of records in a file like this; this would get
done when the file is opened.

The two functions could work with a local variable of a struct type "Customer".
This would get passed as a reference parameter to a "get record" function, and as a
"const reference" to a "print details" function.

The two additional auxiliary functions, "get record" and "print details", also need to
be sketched:

"get record"
convert record number to byte position
read from file into record
if i/o error

print error message and exit

"print details"
output name, address, postcode, phone number

if amount owed
print the amount

else ? (either blank, or "nothing owing")

if any items on order
print formatted list of items

The specification didn't really tie down how information was to be displayed; we can
chose the formats when doing the implementation.

The other required functions are those to add a new customer record to the file, show
the record of a customer identified by name, and place an order for a customer (the
specification is imprecise, but presumably this is again going to be a customer identified
by name).

Adding a customer should be easy. The "add customer" routine would prompt the
salesperson for the name, address, postcode, and phone number of the new customer.
These data would be filled into a struct, then the struct would be written to the end of
the existing file. The routine would have to update the global counter that records the
number of records so that the listing routines would include the new record.

"add customer"
? check any maximum limits on the number of customers

prompt for data like name, filling in a struct,

set amount owed, and items on order to zero

Auxiliary "get
record" and "print
details" functions

Functions for other
processing options

File of records 491

write the struct to the file

update number of customers

The file itself would not limit the number of records (well, not until it got to contain so
many millions of records that it couldn't fit on a disk). But limits could (and in this case
do) arise from other implementation decisions.

Writing the struct to file would be handled by a "put record" function that matches
the "get record":

"put record"
convert record number to byte position
copy data from memory struct to file
if i/o error

print error message and exit

The other two functions, "show customer" and "record order", both apparently need
to load the record for a customer identified by name. The program could work reading
each record from the file until it found the correct one. This would be somewhat costly
even for little files of a few hundred records. It would be easier if the program kept a
copy of the customer names in memory. This should be practical, the names would
require much less storage than the complete records.

It would be possible for the "open file" routine to read all existing records, copying
the customer names into an array of names. This only gets done when the program
starts up so later operations are not slowed. When new records are added to the file, the
customer name gets added to this array.

The memory array could hold small structures combining a name and a record
number; these could be kept sorted by name so allowing binary search. This would
necessitate a sort operation after the names were read from file in the "open file"
routine, and an "insert" function that would first find the correct place for a new name
and then move other existing names to higher array locations so as to make room for it.

Alternatively, the array could just contain the names; the array indexes would
correspond to the record numbers. Since the names wouldn't be in any particular order,
the array would have to be searched linearly to find a customer. Although crude, this
approach is quite acceptable in this specific context. These searches will occur when
the salesperson enters a "show customer" or "place order" command. The salesperson
will be expecting to spend many seconds reading the displayed details, or minutes
adding new orders. So a tiny delay before the data appear isn't going to matter. A
program can check many hundreds of names in less than a tenth of a second; so while a
linear search of the table of names might be "slow" in computer terms, it is not slow in
human terms and the times of human interaction are going to dominate the workings of
this program.

Further, we've got that UT_PickKeyWord() function. It searches an array of
"words", either finding the match or listing the different possible matches. This would

Getting the record for
a named customer

492 Examples using structs

actually be quite useful here. If names can be equated with the UT_Words we can use
the pick key word function to identify a name from its first few characters. Such an
"intelligent" interactive response would help the salesperson who would only have to
enter the first few characters of a name before either getting the required record or a list
of the name and similar names.

So, decisions: Customer names will be UT_Words (this limits them to less than 15
characters which could be a problem), things like addresses might as well be UT_Texts.
There will be a global array containing all the names. Functions that require the
salesperson to select a customer will use the keyword search routine (automatically
getting its ability to handle abbreviations.

These decisions lead to the following design sketches for the two remaining
processing options:

"show customer"
use keyword picker function to prompt for data (customer name)

and find its match in names array
(returns index of match)

use Get Record to get the record corresponding to index

Print Details of record got from file

and

"record order"
use keyword picker function to prompt for data (customer name)

and find its match in names array
(returns index of match)

use get record to get the record corresponding to index

reset customer record to nothing ordered, nothing owed

loop
get next order item
update amount owed

until either no more order items or maximum number ordered

put updated record back in file

The loop getting items in function "record order" is once again a candidate for
promotion to being a separate function. If it had to do all the work, function "record
order" would become too complex. Its role should be one of setting up the context in
which some other function can get the order items. So, its sketch should be revised to:

"record order"
use keyword picker function to prompt for data (customer name)

and find its match in names array

File of records 493

(returns index of match)

use get record to get the record corresponding to index

get items

put updated record back in file

This new "get items" function now has to be planned. The specification stated that
this routine should either make up an order for a customer or clear the record for goods
delivered and paid for. This might not prove ideal in practice because it means that you
can't deliver partial orders, and you can't accept supplementary orders; but it will do to
start with. It means that the "get items" routine should start by clearing any existing
record of amount owed and items ordered. Then the routine should ask the user
whether any item is to be ordered. While the reply is "yes", the routine should get
details of the item, add it to the record and its cost to the amount owed, and then again
ask whether another item is to be ordered. The Customer struct can have an array to
hold information about ordered items. Since this array will have a fixed size, the loop
asking for items would need to terminate if the array gets filled up.

The specification requires the program to have a table of goods that can be ordered
and a convenient mechanism allowing the salesperson to enter the name of a chosen
article. The key word picking function can again be pressed into service. There will
need to be a global array with the names of the goods articles, and an associated array
with their costs.

An initial sketch for "get items" is:

"get items"
change amount owing data member of record to zero

ask (YesNo() function) whether another item to be ordered

while item to be ordered and space left
use keyword picker function to prompt for

data (item name) and find its match
in goods array
(returns index of match)

copy name of item into record
update amount owed by cost of item

update count of items ordered

ask (YesNo()) whether another item needed

This has sketch has identified another function, YesNo(), that gets a yes/no input from
the user.

494 Examples using structs

Open File revisited Earlier consideration of the open file function was deferred. Now, we have a better
idea of what it must do. It should open the file (or terminate the program if the file
won't open). It should then determine the number of records. Finally, it should scan
through all records copying the customer names into an array in memory.

The array for names has a fixed size. So there will be a limit on the number of
customers. This will have to be catered for in the "add customer" function.

What is a Customer? It is about time to make some decisions regarding the data.
A Customer had better be a struct that has data members for:

1 customer name (already decided to use a UT_Word, i.e. up to about 15 characters);

2 customer address (a UT_Text, i.e. up to 60 characters);

3 postcode and phone, these could also be UT_Words;

4 amount owing (a double);

5 a count of items on order;

6 an array with the names of the items on order, need to fix a size for this.

Other fields might need to be added later. The following structs declarations should
suffice:

#ifndef __MYCUSTOMER__
#define __MYCUSTOMER__

#include "UT.h"

struct Date {
int fDay, fMonth, fYear;

};

const int kMAXITEMS = 5;

struct Customer {
UT_Word fName;
UT_Text fAddress;
UT_Word fPostcode;
UT_Word fDialcode;
UT_Word fOrders[kMAXITEMS];
int fNumOrder;
double fAmountOwing;
Date fLastOrder;

};

#endif

Third iteration
through the design

File of records 495

An extra Date struct has been declared and a Date data member has been included in
the Customer struct. This code doesn't use dates; one of the exercises at the end of the
chapter involves implementing a code to handle dates.

As a Customer uses UT_Word and UT_Text this header file has to include the UT.h
header that contains the typedef defining these character array types.

The main implementation file is going to contain a number of global arrays:

• gStock[], an array of UT_Words with names of items stocked by shop;
• gItemCosts[], an array of doubles with the costs of items;
• gCommands[], an array with the phrases that describe the commands that the

salesperson can select;
• gNames[], an array to hold customer names.

Other global (or filescope) variables will be needed for the file name, the fstream object
that gets attached to the file, and for a number of integer counters (number of records,
number of commands, number of items in stock list).

The functions have already been considered in detail and don't require further
iterations of design. Their prototypes can now be defined:

void GetRecord(Customer& rec, int cNum);

void PutRecord(Customer& rec, int cNum);

void PrintDetails(const Customer& c);

void ShowCustomer(void);

void ListAll(void);

void ListDebtors(void);

void AddCustomer(void);

int YesNo(void);

void GetItems(Customer& c);

void RecordOrder(void);

void RunTheShop(void);

void OpenTheDataFile(void);

void CloseTheDataFile(void);

int main();

Function prototypes

496 Examples using structs

Other linked files The code written specifically for this problem will have to be linked with the UT code
from Chapter 12 so as to get the key word and menu selection functions.

Quite a large number of systems header files will be needed. The programs uses
both iostream and fstream libraries for files. The exit() function will get used to
terminate the program if an i/o error occurs with the file accesses, so stdlib is also
needed. Strings representing names will have to be copied using strcpy() from the
string library. The "yes/no" function will have to check characters so may need the
ctype header that defines standard functions like tolower(). Error checking might use
assert.

Implementation

The implementation file will start with the #includes:

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>

#include "UT.h"
#include "mycustomer.h"

(If you think about it carefully, you will see that we end up #including UT.h twice; that
sort of thing happens very easily and it is why we have those #ifdef … #endif brackets
on all header files).

The declarations of globals come next. Several are initialized:

const char gFileName[] = "CustRec.XXX";
const int kMAXCUSTOMERS = 200;

fstream gDataFile;
int gNumRecs;
UT_Word gNames[kMAXCUSTOMERS];

UT_Word gStock[] = {
"Floppy disks",
…
"Marker pens",
"Laser pointer"

};

double gItemCosts[] = {
18.50, /* disks $18.50 per box */
…
6.50, /* pens */

Header files needed

File of records 497

180.0 /* laser pointer */
};

int gNStock = sizeof(gStock) / sizeof(UT_Word);

UT_Text gCommands[] = {
"Quit",
"List all customers",
"List all debtors",
"Add Customer",
"Show Customer",
"Record Order"

};

int gNCommands = sizeof(gCommands) / sizeof(UT_Text);

In many ways it would be better to introduce a new struct that packages together an
item name and its cost. Then we could have an array of these "costed item" structs
which would reduce the chance of incorrect costs being associated with items.
However, that would preclude the use of the existing keyword functions that require a
simple array of UT_Words.

The function definitions come next:

void GetRecord(Customer& rec, int cNum)
{

/* cNum is customer number (0-based) */
/* convert into offset into file */
long where = cNum * sizeof(Customer);
gDataFile.seekg(where, ios::beg);
gDataFile.read(&rec, sizeof(Customer));

if(!gDataFile.good()) {
cout << "Sorry, can't read the customer file"

<< endl;
exit(1);
}

}

void PutRecord(Customer& rec, int cNum)
{

long where = cNum * sizeof(Customer);
gDataFile.seekp(where, ios::beg);
gDataFile.write(&rec, sizeof(Customer)); //maybe

(char*)&rec

if(!gDataFile.good()) {
cout << "Sorry, can't write to the customer file"

<< endl;
exit(1);
}

498 Examples using structs

}

Terminating the program after an i/o error may seem a bit severe, but really there isn't
much else that we can do in those circumstances.

void PrintDetails(const Customer& c)
{

cout << "----" << endl;
cout << "Customer Name : " << c.fName << endl;
cout << "Address : " << c.fAddress << ", "

<< c.fPostcode << endl;
cout << "Phone : " << c.fDialcode << endl;
if(c.fAmountOwing > 0.0)

cout << "Owes : $" << c.fAmountOwing
<< endl;

else cout << "Owes nothing" << endl;
if(c.fNumOrder == 1) cout << "On order: " << c.fOrders[0]

<< endl;
else
if(c.fNumOrder >0) {

cout << "On order" << endl;
for(int j = 0; j < (c.fNumOrder-1); j++)

cout << c.fOrders[j] << ", ";
cout << "and ";
cout << c.fOrders[c.fNumOrder-1] << endl;
}

cout << "---" << endl;
}

The PrintDetails() function gets a little elaborate, but it is trying to provide a nice
listing of items with commas and the word "and" in the right places.

void ShowCustomer(void)
{

UT_Text aPrompt = "Customer Name : ";
int who = UT_PickKeyWord(aPrompt, gNames, gNumRecs);
if(who < 0)

return;
Customer c;
GetRecord(c, who);
PrintDetails(c);

}

There is one problem in using the "pick keyword" function. If the salesperson enters
something that doesn't match the start of any of the names, the error message is "there is
no keyword …". Possibly the "pick keyword" function should have been designed to
take an extra parameter that would be used for the error message.

void ListAll(void)

File of records 499

{
if(gNumRecs == 0) {

cout << "You have no customers" << endl;
return;
}

for(int i = 0; i < gNumRecs; i++) {
Customer c;
GetRecord(c, i);
PrintDetails(c);
}

}

void ListDebtors(void)
{

int count = 0;
for(int i = 0; i < gNumRecs; i++) {

Customer c;
GetRecord(c, i);
if(c.fAmountOwing > 0.0) {

PrintDetails(c);
count++;
}

}
if(count == 0) cout << "Nothing owed" << endl;

}

Function AddCustomer() checks whether the program's array of names is full and
prevents extra names being added. The input statements use getline(). This is
because addresses are going to be things like "234 High Street" which contain spaces.
If we tried to read an address with something like cin >> c.fAddress, the address
field would get "234", leaving "High …" etc to confuse the input to post code. The
routine isn't robust; you can cause lots of troubles by entering names that are too long to
fit in the specified data member.

void AddCustomer(void)
{

if(gNumRecs == kMAXCUSTOMERS) {
cout << "Sorry, you will have to edit program "

"before it can handle" << endl;
cout << " more customers." << endl;
return;
}

Customer c;
// N.B. This input routine is "unsafe"
// there are no checks successful reads etc

cout << "Name : ";
cin.getline(c.fName, UT_WRDLENGTH-1, '\n');

500 Examples using structs

cout << "Address : ";
cin.getline(c.fAddress, UT_TXTLENGTH-1, '\n');

cout << "Post code : ";
cin.getline(c.fPostcode, UT_WRDLENGTH-1, '\n');

cout << "Phone : ";
cin.getline(c.fDialcode, UT_WRDLENGTH-1, '\n');

c.fNumOrder = 0;
c.fAmountOwing = 0.0;

PutRecord(c, gNumRecs);
strcpy(gNames[gNumRecs], c.fName);

gNumRecs++;
}

int YesNo(void)
{

char ch;
cout << "Order an item? (Y or N)";
cin >> ch;
ch = tolower(ch);
return (ch == 'y');

}

void GetItems(Customer& c)
{

c.fAmountOwing = 0.0;

int count = 0;
while(YesNo() && (count <kMAXITEMS)) {

UT_Text aPrompt = "Identify Type of Goods";
int which =

UT_PickKeyWord(aPrompt, gStock, gNStock);

strcpy(c.fOrders[count], gStock[which]);
c.fAmountOwing += gItemCosts[which];
count++;
}

c.fNumOrder = count;
}

Look a bug in GetItems()! Can you spot it? It isn't serious, the program won't
crash. But it makes the user interaction clumsy.

If you can't spot the bug, run the code and try to order more than the limit of five
items. You should then observe a certain clumsiness.

The bug can be fixed by a trivial change to the code.

File of records 501

void RecordOrder(void)
{

UT_Text aPrompt = "Enter Customer Name";
int who = UT_PickKeyWord(aPrompt, gNames, gNumRecs);

Customer c;
GetRecord(c, who);

GetItems(c);

PutRecord(c, who);

}

void RunTheShop(void)
{

UT_Text aPrompt = "Command";
int quitting = 0;
while(!quitting) {

int command =
UT_MenuSelect(aPrompt,gCommands,

gNCommands, 0);

// Need to consume any trailing spaces or newlines
// after the command number
char ch;
cin.get(ch);
while(ch != '\n')

cin.get(ch);

switch(command) {
case 0: /* Quit */

quitting = 1;
break;

case 1: /* List all customers */
ListAll();
break;

case 2: /* List all debtors */
ListDebtors();
break;

case 3: /* Add Customer */
AddCustomer();
break;

case 4: /* Show Customer */
ShowCustomer();
break;

case 5: /* Record Order */
RecordOrder();
break;

}
}

502 Examples using structs

}

The RunTheShop() function has one complication. The salesperson has to enter a
number when picking the required menu option. The digits get read but any trailing
spaces and newlines will still be waiting in the input stream. These could confuse
things if the next function called needed to read a string, a character, or a complete line.
So the input stream is cleaned up by reading characters until get the '\n' at the end of the
input line.

void OpenTheDataFile(void)
{

// Open the file, allow creation if not already there
gDataFile.open(gFileName, ios::in | ios::out);

// may need also ios::binary
if(!gDataFile.good()) {

cout << "? Couldn't open the file. Sorry." << endl;
exit(1);
}

gDataFile.seekg(0, ios::end);
long pos = gDataFile.tellg();
gNumRecs = pos / sizeof(Customer);

assert(gNumRecs <= kMAXCUSTOMERS);
for(int i = 0; i < gNumRecs; i++) {

Customer c;
GetRecord(c, i);
strcpy(gNames[i], c.fName);
}

}

Logically, there is no way that the file could hold more than the maximum number of
records (the file has to be created by this program and the "add customer" function
won't let it happen).

Don't believe it. Murphy's law applies. The program can go wrong if the file is too
large, so it will go wrong. (Something will happen like a user concatenating two data
files to make one large one.) Since the program will overwrite arrays if the file is too
large, it better not even run. Hence the assert() checking the number of records.

void CloseTheDataFile(void)
{

gDataFile.close();
}

int main()
{

OpenTheDataFile();
RunTheShop();

File of records 503

CloseTheDataFile();
return 0;

}

On the whole, the program runs OK:

Command
Enter option number in range 1 to 6, or ? for help
6
Enter Customer Name
Ga
Possible matching keywords are:
Gates, B.
Garribaldi, J
Gamble,P
Gam
i.e. Gamble,P
Order an item? (Y or N)y
Identify Type of Goods
Las
i.e. Laser pointer
Order an item? (Y or N)Y
Identify Type of Goods
Tone
i.e. Toner
Order an item? (Y or N)n
Command
Enter option number in range 1 to 6, or ? for helpEnter option
number in range 1 to 6, or ? for help
3

Customer Name : Gates, B.
Address : The Palace, Seattle, 923138
Phone : 765 456 222
Owes : $186.5
On order
Laser pointer, and Marker pens

Customer Name : Gamble,P
Address : 134 High St, 89143
Phone : 1433
Owes : $220
On order
Laser pointer, and Toner

504 Examples using structs

EXERCISES

1 Fix the "bug" in GetItems() from 17.3.

2 Change the way that the Customer records program handles the names to the alternative
approach described in the text (sorted array of name-index number structures).

3 Implement code to support the Date data structure and arrange that Customer orders include a
Date.

