
24 Two more "trees"
Computer science students often have great difficulty in explaining to their parents why
they are spending so much time studying "trees" and "strings". But I must impose upon
you again. There are a couple more trees that you need to study. They are both just
more elaborate versions of the binary tree lookup structure illustrated in Section 21.5.

The first, the "AVL" tree, is an "improved" binary tree. The code for AVL deals
with some problems that can occur with binary trees which reduce the performance of
the lookup structure. AVL trees are used for the same purpose as binary trees; they
hold collections of keyed data in main memory and provide facilities for adding data,
searching for data associated with a given key, and removing data.

The second, the "BTree" tree, is intended for data collections that are too large to fit
in main memory. You still have data records with a "key" field and other information;
it is just that you may have hundreds of thousands of them. A BTree provides a means
whereby most of the data are kept in disk files, but a fast search is still practical. The
BTree illustrated is only slightly simplified; it is pretty close to the structures that are
used to implement lookup systems for many large databases.

These two examples make minor use of "inheritance" as presented in Section 23.6.
The AVL tree is to store data items that are instances of some concrete class derived
from class KeyedItem:

class KeyedItem {
public:

virtual ~KeyedItem() { }
virtual long Key(void) const = 0;
virtual void PrintOn(ostream& out) const { }

};

A KeyedItem is just some kind of data item that has a unique long integer key
associated with it (it can also print itself if asked).

The BTree stores instances of a concrete class derived from class KeyedStorable-
Item:

24

AVL tree

BTree

840 Two more trees

class KeyedStorableItem {
public:

virtual ~KeyedStorableItem() { }
virtual long Key(void) const = 0;
virtual void PrintOn(ostream& out) const { }
virtual long DiskSize(void) const = 0;
virtual void ReadFrom(fstream& in) = 0;
virtual void WriteTo(fstream& out) const = 0;

};

These data items must be capable of transferring themselves to/from disk files using
binary transfers (read() and write() calls). On disk, the data items must all use the
same amount of space. In addition to any other data that they possess, these items must
have a unique long integer key value (disallowing duplicate keys simplifies the code).

24.1 AVL TREES

24.1.1 What's wrong with binary trees?

Take a look at a binary tree after a few "random" insertions. The following tree resulted
when keyed data items were inserted with the keys in the following order: 50, 60, 65,
80, 70, 45, 75, 90, 105, 100:

 50
 |
+------+------+
45 60
 |
 +-----+-----+
 65
 |
 +-----+-----+
 80
 |
 +-------+-------+
 70 90
 | |
 +-----+-----+ +-----+-----+
 75 105
 |
 +-----+-----+
 100

The tree is a little out of balance. Most binary trees that grow inside programs tend to
be imbalanced.

This imbalance does matter. A binary search tree is supposed to provide faster
lookup of a keyed data item than does an alternative structure like a list. It is supposed

What is wrong with binary trees? 841

to give O(lgN) performance for searches, insertions, and deletions. But when a tree gets
out of balance, performance decreases.

Fast lookup of keyed data items is a very common requirement. So the problems of
simple binary search trees become important.

24.1.2 Keeping your balance

You can change the code so that the tree gets rearranged after every insertion and
deletion. Figure 24.1 illustrates a couple of rearrangements that could be used to keep
the tree balanced as those data items were inserted.

50

60

65

root
60

root

6550

60

65

80

root
65

root

806050

70

7050

Figure 24.1 Rearranging a tree to maintain perfect balance.

Such rearrangements are possible. But a tree may take quite a lot of rearranging to
get it balanced after some data item gets inserted. In some cases, you may have to alter
almost all of the left- and right- subtree pointers. This makes the cost of rearrangement
directly proportional to the number of items in the tree, i.e. O(N) performance.

There is no point in trying to get a perfectly balanced tree if balancing cost are O(N).
Although rebalancing does keep search costs at O(lgN) you are interested in the overall
costs, and thus O(N) costs for rebalancing after insertions and deletions count against
the O(lg(N)) searches.

However, it has been shown that a tree can be kept "more or less balanced". These
more or less balanced trees have search costs that are O(lgN) and the cost of

842 Two more trees

rebalancing the tree until it is "more or less balanced" is also O(lg(N)). (The analyses
of the algorithms to demonstrate these costs is far too difficult for this introductory
treatment).

There are many different schemes for keeping a binary search tree "more or less
balanced". The best known was invented by a couple of Russians (Adelson-Velskii and
Landis) back around 1960. They defined rules to characterize a "more or less balanced
tree" and worked out the rearrangements that would be necessary if an insertion
operation or a deletion operation destroyed the existing balance. The rearrangements
are localized to the "vine" that leads from the root to the point where the change
(insertion/ deletion) has just occurred and it is this that keeps the cost of rearrangements
down to O(lg(N)). A tree that satisfies their rules is called an AVL tree.

The following definitions together characterize an AVL tree:

• Height of tree (or subtree):
The height of a binary tree is the length of the longest path from its root to a leaf.

• AVL property:
A node in a binary tree has the "AVL property" if the heights of the left and right
subtrees are either equal or differ by 1.

• AVL tree:
An AVL tree is a binary tree in which every node has the AVL property.

Figure 24.2 illustrates some trees with examples of both AVL and non-AVL trees.
You can check a tree by starting at the leaf nodes. The "left and right subtrees" of a

leaf node don't exist, or from a different perspective they are both size zero. Since they
are both size zero they are equal so a leaf node has evenly balanced subtrees.

You climb up from a leaf node to its parent node and check its "left and right
subtrees". If the node has two subtrees both with just leaves, then it is even. If it has
only one leaf below it, it is either "left long" or "right long".

As you climb further up toward the root, you would need to keep a count of the
longest path down through a link to its furthest leaf. As you reached each node, you
would have to compare these longest paths down both the left and right subtrees from
that node. If the longest paths are equal or differ by at most one, you can label the
node as "even", or "left long", or "right long". If the lengths of the paths differ by more
than one, as is the case with the some of the nodes in the second pair of trees shown in
Figure 24.2, then you have found a situation that violates the AVL requirements.

Checking the "AVL-ness" of an arbitrary tree might involve quite a lot of work. But
if you are building up the tree, you can keep track of its state by just having an indicator
on each node that says whether it is currently "even", "left long", or "right long". This
information is sufficient to let you work out what rearrangements might be needed to
maintain balance after a change like the addition or deletion of a node.

AVL tree

Keeping your balance 843

E

E = even
L = Left subtree larger
R = Right subtree larger

L

R

E

EE

E L

R

R

E

E

E
E

E

R

R

RL

L

E

E

E

EE

R

R

RR

L
L

E?

AVL

not AVL

Figure 24.2 Example trees: AVL and not quite AVL.

Adding Nodes to an AVL tree

Figure 24.3 illustrates some of the possible situations that you might encounter when
adding an extra node below an existing node. The numbers shown on the nodes

844 Two more trees

represent the keys for the data items associated with the tree node. Of course it is still
essential to have the binary search tree property: data items whose keys are less than the
key on a given node will be located in its left subtree, those whose keys are greater will
be in its right subtree. (The key values will also be used as "names" for the nodes in
subsequent discussions.)

The addition of a node can change the balance at every point on the path that leads
from the root to the parent node where the new node gets attached. The first example
shown in Figure 24.3 starts with all the existing nodes "even". The new data value must
go to the left of the node 27; it was "even" but is going to become "left long". The
value 6 has to go to the left of 19; so 19 which was "even" also becomes "left long".

The second example shown, the addition of 21, shows that additions sometimes
restore local balance. Node 19 that was "left long" now gets back to "even". Node 27
is still "left long".

The next two examples shown in Figure 24.3 illustrate additions below node 6 that
make nodes 27 and 19 both "left too long". They have lost their AVL properties. Some
rearrangements are going to be performed to keep the tree "more or less balanced".

The final example shows another case where the tree will require rebalancing.
Although this case does not need any changes in the immediate vicinity of the place
where the new node gets added, changes are necessary higher up along the path to the
root.

Adelson-Velskii and Landis explored all the possible situations that could arise
when additions were made to a tree. Then, they worked out what local rearrangements
could be made to restore "more or less balance" (i.e. the AVL property) in the
immediate vicinity of an out of balance node.

The tree has to be reorganized whenever a node becomes "left too long" or "right too
long". Obviously, there is a symmetry between the two cases and it is only necessary to
consider one; we will examine the situation where a node is "left too long".

As illustrated in Figure 24.4, there are two variations. In one, the left subtree of the
"left too long" node is itself "left long"; in the second variation, the node at the start of
the left subtree is actually "right long". Adelson-Velskii and Landis sorted out the
slightly different rearrangements of the tree structure that would be needed in these two
cases. Their proposed local rearrangements are also shown in Figure 24.4.

The problem that has got to be resolved by these rearrangements is that the left
branch of the tree below the current root (node 27) now has a height that is two greater
than the right branch. The left branch must shrink, the right branch must grow. Since
the tree must be kept ordered, the only way the right branch can grow and the left shrink
is to push the current root node down into the right branch, replacing it at the root by an
appropriate node from the left branch.

Rearrangements to
the tree

Local
rearrangements to fix

up an imbalanced
node

Keeping your balance 845

Existing
Tree

Data
added

Immediate
result

AVL
state

27

19 31

6
27

19 31

6

Nodes 27 and
19 both "left
long"

27

19 31

21
27

19 31

6

Node 27 still
"left long",
19 again
"even"

6 21

27

19 31

2
27

19 31

6

Nodes 27 and
19 both "left
too long"!
Tree must
be rearranged.6

2

27

19 31

11
27

19 31

6

Nodes 27 and
19 both "left
too long"!
Tree must
be rearranged.6

11

27

19 31

11
27

19 31

6

No problems
for 6 or 19,
but 27 is
"left too
long". Tree
must be
rearranged.

6

11

21 21

Figure 24.3 Effects of some additions to an AVL tree.

846 Two more trees

27

19 31

6 21

27

19 31

6 21

19

6 27

2 21

2

OK Left too long
(@27)

31

Balance
restored

27

19 31

6 21

27

19 31

6 21

21

19 27

6 25

OK

31

Balance
restored

25

Left too long
(@27)

Figure 24.4 Manoeuvres to rebalance a tree after a node is added.

In the first case, the left subtree starting at node 19 has a small right subtree (just
node 21). The tree can be rearranged by moving the current root node 27 down into the
right tree, rehooking the small tree with node 21 to the left of node 27 and moving node
19 up to the root. The right subtree of the overall tree has grown by one (node 27
pushed into the subtree), and the left subtree has shrunk as node 19 moves upwards
pulling its left subtree up with it. The tree is now balanced, all nodes are "even" except
node 6 which is "left long". The order of nodes is maintained. Keys less than the new
root value, 19, are down the left subtree, keys greater than 19 are in the right tree.
Nodes with keys greater than 19 and less than 27 can be found by going first down the
right tree from 19 to 27, then down the left tree below node 27.

In the second case, it is the right subtree below node 19 that is too large. This time
the rearrangements must shorten this subtree while growing the right branch of the
overall tree. Once again, node 27 gets pushed into the right subtree; this time being
replaced by its left child's (19) right child (21). Any nodes attached below node 21
must be reattached to the tree. Things in its right subtree (e.g. 25) will have values
greater than 21 and less than 27. This right subtree can be reattached as the left subtree
of node 27 once this has been moved into position. The left subtree below node 21

Keeping your balance 847

(there is none in the example shown) would have nodes whose keys were less than 21
and greater than 19. This left subtree (if any) should be reattached as the right subtree
below node 19 after node 21 is detached.

The tree is of course defined by pointer data members in the tree nodes.
Rearrangements of the tree involve switching these pointers around. The principles are
defined in the following algorithm outline. At the start, the pointer t is supposed to
hold the address of the node that has got out of balance (node 27 in the example). This
pointer t could be the "root pointer" for the entire tree; more commonly it will be either
the "left subtree" pointer or the "right subtree" pointer of some other tree node. The
value in this pointer gets changed because a subtree (if not the entire tree) is getting "re-
rooted".

tLeft = t->left_subtree // pointer to node 19
if(tLeft ->balance is "left_long")

// attach subtree starting at node 21 as left subtree of
// node 27
t->"left subtree link" =

tLeft->"right subtree link"

// attach subtree starting at node 27 as right subtree of
// node 19
tLeft->"right subtree link" = t;

nark nodes referenced by t and tLeft as both now "even"

// make node with 19 the new root
change pointer t to refer to old left node

else
// get pointer to node 21
tLeftRight = tLeft->right_subtree /

// left from 21, here NULL, gets attached to right of
// 19
tLeft->right_subtree = tLeftRight->left_subtree

// make subtree starting at 19 as the left subtree of 21
tLeftRight->left_subtree = tLeft;

// make 21's right subtree (25), the new left subtree of 27
t->left_subtree = tLeftRight->right_subtree

// make subtree starting at 27 the new right subtree of 21
tLeftRight->right_subtree= t;

// Fix up balance records on nodes
t->balance = (tLeftRight->balance == LEFT_LONG) ?

RIGHT_LONG : EVEN;
tLeft->balance = (tLeftRight->balance == RIGHT_LONG) ?

LEFT_LONG : EVEN;

First case shown in
Figure 24.4

Second case shown if
Figure 24.4

848 Two more trees

tLeftRight->balance = EVEN

// Re-root the subtree, now starts with node 21
t = tLeftRight

The addition of a new node below an existing node may make that node "left long"
or "right long" by changing the tree height. (When a node has one leaf below it, the
addition of the other possible leaf does not change the tree's height, it simply puts the
node back into even balance.) If the tree's height changes, this may necessitate
rearrangement at the next level above where a node may have become "left too long"
(or "right too long"). But it is possible that the change of height in one branch of a tree
only produces an imbalance several levels higher up. For example, in the last example
shown in Figure 24.3, the addition of node 11 did not cause problems at node 6, or at
node 19, but did cause node 27 to become unbalanced.

The mechanism used to handle an insertion must keep track of the path from root to
the point where a new node gets attached. Then after a new node is created, its data are
filled in, and it gets attached, the process must work back up the path checking each
node for imbalance, and performing the appropriate rebalancing rituals where
necessary.

The process of recording the path and then unwinding and checking the nodes is
most easily handled using a recursive routine. It starts like the recursive insertion
function shown for the simpler binary tree; the key for the new item, is compared with
that in the current node and either the left or right branch is followed in the next
recursive call. When there is no subtree, you have found the point where the new node
is to be attached, so you build the node and hook it in. The difference from the simple
recursive insertion function is that there is a lot of checking code that reexamines
"balance" when the recursive call returns.

The algorithm is:

insert(dataitem, link)
if (the link is null)

create a new node, fill in data
set the link to point to the new node
set a flag saying that the tree has grown larger
return

currentnode is tree node referenced by link

if (the key value in the currentnode
equals the key for the dataitem)

report an error, duplicate keys are not allowed
set flag to say that the tree is unchanged
return

if (the key value in the currentnode
is smaller than the key for the dataitem)

Organizing the
overall process

Recursive driver
function

Terminate recursion
when have position to

attach new node
Notify caller that tree

has grown

Keeping your balance 849

Recursive call down
into appropriate
subtree

recursively call insert, passing the dataitem
and the left-link of currentnode

if (tree size is now reported as changed)
if current node was even,

mark it left long
leave "tree changed" flag set

if current node was right long,
mark it as even
clear "tree changed" flag

if current node was already left long
do a local rearrangement
clear "tree changed" flag

return

similar code for insertion in right subtree

Deletion of nodes

Deletions of nodes present two problems.
The first problem is identical to that encountered with the simple binary trees; it is

easy to unhook a leaf node, or excise a node that only has one subtree, but you can't
simply cut out a node that has two subtrees attached. The solution is identical to that
used for the simpler binary tree. If a tree node has two subtrees, it is kept in the tree; its
associated data are removed and replaced by data promoted from a node lower in the
tree. The promoted data will be that with the largest key value smaller than the key of
the data being removed (the "predecessor" of the deleted data). The node from which
data was promoted is then removed from the tree.

The extra problem is of course that deletions may leave a node unbalanced. After a
deletion is done, it is necessary to check back along the path to the root verifying that
nodes are still balanced and performing any local rearrangement that might be needed
for a node that has become unbalanced.

Naturally, the process is handled recursively. During the "inward" phase of
recursion, the recursive function gets down to the node that must be removed (either the
node with the deleted data, or the node from which data have been promoted). This
inward recursion has function calls for each level, the local variables in the stack frame
for each call define the various nodes traversed from the "root" to the node that is to be
removed. Once found, the node can be excised and the tree marked as having its size
changed.

As the recursion is unwound, each node on the path gets its chance to consider the
effects of the change in tree size on its balance. Sometimes, nodes will find themselves
out of balance, and then there must be local rearrangements to the tree.

Because deletion is a fairly complex process, it has to be broken down into many
separate functions. The basic driver function will be based on the following algorithm.

Fixup if tree has
grown taller

Do a local
rearrangement if
necessary

Deletion with
promotion

Fixing up balance
after a deletion

Recursive driver
function

Code structure

850 Two more trees

The driver function will be given the key for the data item that is to be removed, and the
root pointer. It involves a recursive search down through the tree. On each recursive
call the argument t will be either the left or right subtree link from one of the tree
nodes traversed.

delete(bad_key, t)
if(t is NULL)

set flags to say tree not changed
return

if(bad_key equals key in node referenced by t)
DeleteRec(t);
return

if(bad_key < t->Key()) {
Delete(bad_key,t->LeftLink())

if(fResizing == CHANGED_SIZE)
Check_balance_after_Left_Delete(t);

return

Similar code dealing with right subtree

The auxiliary DeleteRec() function can sort out simple cases like a leaf node or a
node with only one child, but will have to use other auxiliary functions to deal with
more complex situations where data have to be replaced with information "promoted"
from lower in the tree. Dealing with a node that has one child is simple, the link that
lead to the node that is to be deleted is reset to point to the child. (A leaf, no children,
doesn't have to be treated as a special case; the code handling nodes with one child also
covers the case of no children.)

DeleteRec(t)
if(t->RightLink() is NULL)

x = t
t = t->LeftLink()
fResizing = CHANGED_SIZE
delete x;

else
if(t->LeftLink() is NULL)

similar

else
Del(t,t->LeftLink())

if(fResizing == CHANGED_SIZE)
Check_balance_after_Left_Delete(t);

The auxiliary function Del() is given a pointer to the node that is being changed
and, in the initial call, a pointer to the node's left subtree. It has to find the replacement

Hit null pointer, key
wasn't present

If find key, use
auxiliary function to

do the delete

Otherwise recursively
search down in left

subtree
On unwind of
recursion, do

rebalancing

Or search down right
subtree

Replace node with
only one child by its

sole child

Use auxiliary
function to promote

data from left subtree
Left subtree may

have shrunk, fix up

Keeping your balance 851

data that are to be promoted. The data will be that associated with the largest entry in
this left subtree, i.e. the rightmost entry in the subtree. Naturally, Del() starts by
recursively searching down to find the necessary data.

Del(t, r)
if(r->RightLink() is not NULL)

Del(t,r->RightLink())
if(fResizing equals CHANGED_SIZE)

Check_balance_after_Right_Delete(r);
else {

t->Replace(r->Data())

// unlink the node from which data have been
// promoted, replacing it by its left subtree
// (if any exists)
x = r
r = r->LeftLink()

// note tree size as changed
// and get rid of discarded record
fResizing = CHANGED_SIZE;
delete x;

The main issues still to be resolved are how to check the balance at a node after
deletions in its left or right subtrees and how to fix things up if the balance is wrong.

Once again, Adelson-Velskii and Landis had to sort out all the possible situations
and work out the correct rearrangements that would both keep the entries in the tree
ordered, and the overall tree "more or less balanced".

The checking part is relatively simple, the code is something like the following
(which deals with the case where something has been removed from a node's right
subtree):

Check_balance_after_Right_Delete(t)
switch (t->Balance()) {

case LEFT_LONG:
// Right branch from current node was already
// shorter than left branch, and it has shrunk.
// Have to rebalance
Rebalance_Right_Short(t);
break;

case EVEN:
t->ResetBalance(LEFT_LONG);
fResizing = UNCHANGED;
break;

case RIGHT_LONG:
t->ResetBalance(EVEN);
break;

}

Code for the
recursive search
and the fixup as
unwind recursion

Code that handles the
promotion when data
are found

AVL rearrangements
for deletions

852 Two more trees

If the node had been "even", all that has happened is that it becomes "left long". This
can simply be noted, and there is no need to consider changes at higher levels. If it had
been "right long" it has now become "even". Its "right longedness" may have been
balancing something else's "left longedness"; so it is possible that there will still be a
need to make changes at higher levels. The real work occurs when you have a node that
was already "left long" and whose right subtree has grown shorter. In that case,
rebalancing operations are needed. There are symmetrically equivalent rebalancing
operations for a node that was "right long" and whose left subtree has grown shorter.

The actual rearrangements are illustrated in Figure 24.5 for the case where a node
was right long and whose left branch has shrunk.

27

19 35

6 28

28

27 35

19 32

OK Left tooshort
(@27)

44

Balance
restored

27

19 35

6

27

19 35

OK Balance
restored

44

32

27

19 35

28 44

32

28 44

32 58

Left tooshort
(@27)

28 44

32 58

27

19

35

28

44

32

58

Figure 24.5 Rebalancing a tree after a deletion.

The rearrangements needed depend on the shape of the right subtree of the node that
has become "left too short". If this right subtree is itself "left long" (the first example
shown in Figure 24.5), then the tree is restored by pushing the current root down into
the left branch (making that longer) and pulling a node up from the "left subtree" of the
"right subtree" to make the new root for this tree (or subtree). If the right subtree is

Keeping your balance 853

evenly balanced (second example in Figure 24.5) or right long (not shown) then slightly
different rearrangements apply.

Once again the rearrangements involve shifting pointers around and resetting the
balance records associated with the nodes.

24.1.3 An implementation

The following code provides an example implementation of the AVL tree algorithms.
The code implementing some functions has been omitted; as already noted, there are
symmetrically equivalent "left" and "right" operations so only the code of one version
need be shown.

The AVL tree is meant to be used to store pointers to any kind of object that is an
instance of a class derived from abstract class KeyedItem. The header file should
contain declarations for both KeyedItem and AVLTree. The implementation for class
AVLTree uses an auxiliary class, AVLTreeNode, whose instances represent the tree
nodes. This is essentially a private structure and is defined in the implementation file.
Since class AVLTree has data members that are AVLTreeNode* pointers, there has to be
a declaration of the form "class AVLTreeNode;" in the header file.

class KeyedItem {
public:

virtual ~KeyedItem() { }
virtual long Key(void) const = 0;
virtual void PrintOn(ostream& out) const { }

};

inline ostream& operator<<(ostream& out, const KeyedItem& d)
{ d.PrintOn(out); return out; }
inline ostream& operator<<(ostream& out, const KeyedItem* dp)
{ dp->PrintOn(out); return out; }

class AVLTreeNode;

The public interface for class AVLTree is similar to that for the simple binary tree
class. There are several private member functions that deal with issues like those
rebalancing manoeuvres.

class AVLTree
{
public:

AVLTree();
~AVLTree();

int NumItems(void) const;

int Add(KeyedItem* d);

Definition of abstract
class (base class for
classes representing
data items)

class AVLTree

854 Two more trees

KeyedItem *Find(long key);
KeyedItem *Remove(long key);

private:
void Insert1(KeyedItem* d, AVLTreeNode*& t);
void Rebalance_Left_Long(AVLTreeNode*& t);
void Rebalance_Right_Long(AVLTreeNode*& t);

void Delete1(long bad_key, AVLTreeNode*& t);
void Check_balance_after_Left_Delete(AVLTreeNode*& t);
void Check_balance_after_Right_Delete(AVLTreeNode*& t);

void Rebalance_Left_Short(AVLTreeNode*& t);
void Rebalance_Right_Short(AVLTreeNode*& t);
void DeleteRec(AVLTreeNode*& t);
void Del(AVLTreeNode*& t, AVLTreeNode*& r);

AVLTreeNode *fRoot;
int fNum;

KeyedItem *fReturnItem;
int fResizing;
int fAddOK;

};

inline int AVLTree::NumItems(void) const { return fNum; }

The principal data members are a pointer to the root of the tree and a count for the
number of entries in the tree. The other three data members are essentially "work"
variables for all those recursive routines that scramble around the tree; e.g. fResizing
is the flag used to record whether there has been a change in the size of a subtree.

The tree does not "own" the data items that are inserted. The Remove() function
returns a pointer to the data item associated with the "bad key". "Client code" that uses
this AVL implementation can delete data items when appropriate. The destructor for
the tree gets rid of all its AVLTreeNodes but leaves the data items untouched.

The implementation file starts with declarations of some integer flags and an
enumerated type used to represent node balance. Then class AVLTreeNode is defined:

const short CHANGED_SIZE = 1;
const short UNCHANGED = 0;

enum eBALANCE { LEFT_LONG, EVEN, RIGHT_LONG };

class AVLTreeNode {
public:

AVLTreeNode(KeyedItem *d);

AVLTreeNode*& LeftLink(void);

Auxiliary functions
for insertion and

consequent
rebalancing

Auxiliary functions
for deletion and

consequent
rebalancing

Data members

inline access function

Class AVLTreeNode

An implementation of class AVLTree 855

AVLTreeNode*& RightLink(void);

long Key(void) const;
eBALANCE Balance(void) const;
KeyedItem *Data(void) const;

void Replace(KeyedItem *d);
void ResetBalance(eBALANCE newsetting);

private:
eBALANCE fbalance;
KeyedItem *fData;
AVLTreeNode *fLeft;
AVLTreeNode *fRight;

};

An AVLTreeNode is something that has a balance factor, a pointer to some keyed data,
and pointers to the AVLTreeNodes at the head of left and right subtrees. It provides
three member functions that provide read access to data such as the balance factor, and
two functions for explicitly changing the data associated with the node, or changing the
balance.

In addition, there are the functions LeftLink() and RightLink(). These return
references to the nodes left and right tree links. Because these functions return
reference values, calls to these functions can appear on the left hand side of
assignments. Although a little unusual, such functions help simplify the code of class
AVLTree. Such coding techniques are somewhat sophisticated. You probably shouldn't
yet attempt to write anything using such techniques, but you should be able to read and
understand code that does.

All the member functions of class AVLTreeNode are simple; most can be defined as
"inline".

AVLTreeNode::AVLTreeNode(KeyedItem *d)
{

fbalance = EVEN;
fLeft = fRight = NULL;
fData = d;

}

inline eBALANCE AVLTreeNode::Balance(void) const
{ return fbalance; }
…
inline void AVLTreeNode::Replace(KeyedItem *d) { fData = d; }
…
inline AVLTreeNode*& AVLTreeNode::LeftLink(void)
{ return fLeft; }

The constructor for class AVLTree needs merely to set the root pointer to NULL and
the count of items to zero. The destructor is not shown. It is like the binary tree

Note functions that
return reference
values

Member functions of
AVLTreeNode

AVLTree

856 Two more trees

destructor illustrated at the end of Section 23.5.2. It does a post order traversal of the
tree deleting each AVLTreeNode as it goes.

AVLTree::AVLTree()
{

fRoot = 0;
fNum = 0;

}

The Find() function is just a standard search that chases down the left or right links
as needed. It could be implemented recursively but because of its simplicity, an
iterative version is easy:

KeyedItem* AVLTree::Find(long sought_key)
{

AVLTreeNode *t = fRoot;
for(; t != NULL;) {

if(t->Key() == sought_key) return t->Data();
else
if(t->Key() > sought_key) t = t->LeftLink();
else
t = t->RightLink();
}

return NULL;
}

The Add() and Remove() functions provide the client interface to the real working
functions. They set up initial calls to the recursive routines, passing in the root pointer
for the tree. Private data members are used rather than have the functions return their
results; again this is just so as to slightly simplify the code in a few places.

int AVLTree::Add(KeyedItem* d)
{

fAddOK = 0;
Insert1(d,fRoot);
if(fAddOK)

fNum++;
return fAddOK;

}

KeyedItem *AVLTree::Remove(long bad_key)
{

fReturnItem = NULL;
Delete1(bad_key, fRoot);
if(fReturnItem != NULL)

fNum--;
return fReturnItem;

}

Constructor

AVLTree::Find()

AVLTree::Add() and
AVLTree::Remove()

An implementation of class AVLTree 857

The main driver routine for insertion is a straightforward implementation of the
algorithm outlined earlier:

void AVLTree::Insert1(KeyedItem* d, AVLTreeNode*& t)
{

if(t == NULL) {
t = new AVLTreeNode(d);
fResizing = CHANGED_SIZE;
fAddOK = 1;
return;
}

if(d->Key() == t->Key()) {
// cout << "Duplicate entry ignored\n";
fResizing = UNCHANGED;
return;
}

if(d->Key() < t->Key()) {
Insert1(d,t->LeftLink());
if(fResizing == CHANGED_SIZE) {

switch (t->Balance()) {
case LEFT_LONG:

Rebalance_Left_Long(t);
t->ResetBalance(EVEN);
fResizing = UNCHANGED;
break;

case EVEN:
t->ResetBalance(LEFT_LONG);
break;

case RIGHT_LONG:
t->ResetBalance(EVEN);
fResizing = UNCHANGED;
break;
}

}
return;
}

Similar code for right subtree
}

Functions like Rebalance_Left_Long() have a "reference to a AVLTreeNode
pointer" as arguments. These functions may need to reset the pointer; this is why it gets
passed by reference. The pointer used as an argument might be the tree's root pointer,
fRoot, or the fLeft or fRight data member of some AVLTreeNode object.

Main driver routine
for insertion of extra
node
Item is not present,
make a node for it

Duplicates not
allowed

Insert small items in
left subtree

Rebalance if
necessary

Insert large items in
right subtree

858 Two more trees

Rebalancing the tree
after an addition

void AVLTree::Rebalance_Left_Long(AVLTreeNode*& t)
{

if((t->LeftLink())->Balance() == LEFT_LONG) {
AVLTreeNode *tptr = t->LeftLink();
t->LeftLink() = tptr->RightLink();
tptr->RightLink() = t;
t->ResetBalance(EVEN);
t = tptr;
}

else {
AVLTreeNode *tptr = t->LeftLink();
AVLTreeNode *tptr2 = tptr->RightLink();

tptr->RightLink() = tptr2->LeftLink();
tptr2->LeftLink() = tptr;
t->LeftLink() = tptr2->RightLink();
tptr2->RightLink() = t;

t->ResetBalance(
(tptr2->Balance() == LEFT_LONG) ?

RIGHT_LONG : EVEN);

tptr->ResetBalance(
(tptr2->Balance() == RIGHT_LONG) ?

LEFT_LONG : EVEN);
t = tptr2;
}

}

The code highlighted in bold shows calls to the "reference returning" function
LeftLink(). The first call is on the right hand side of an assignment so the compiler
arranges to get the value from the fLeft field of the object pointed to by t. In the
second case, the call is on the left of an assignment. The compiler gets the address of
t's fLeft data field, and then stores, in this location, the value obtained by evaluating
tptr->RightLink(). The code highlighted in italics illustrates where the function is
changing the value of the pointer passed by reference (in effect, "re-rooting" the current
subtree).

The corresponding function Rebalance_Right_Long() is similar and so is not
shown.

The main driver routine for deletion and the functions for checking balance after left
or right deletions are simple to implement from the outline algorithms given earlier.
The DeleteRec() function (which removes nodes with one or no children and arranges
for promotion of data in other cases) is:

void AVLTree::DeleteRec(AVLTreeNode*& t)
{

fReturnItem = t->Data();
if(t->RightLink() == NULL) {

Use balance of left
child to select

appropriate
rebalance manoeuvre

Deletion functions

An implementation of class AVLTree 859

AVLTreeNode *x = t;
t = t->LeftLink();
fResizing = CHANGED_SIZE;
delete x;
}

else
if(t->LeftLink() == NULL) {

AVLTreeNode *x = t;
t = t->RightLink();
fResizing = CHANGED_SIZE;
delete x;
}

else {
Del(t,t->LeftLink());
if(fResizing == CHANGED_SIZE)

Check_balance_after_Left_Delete(t);
}

}

The Del() function deals with the processes of finding the data to promote and the
replacement action:

void AVLTree::Del(AVLTreeNode*& t, AVLTreeNode*& r)
{

if(r->RightLink() != NULL) {
Del(t,r->RightLink());
if(fResizing == CHANGED_SIZE)

Check_balance_after_Right_Delete(r);
}

else {
AVLTreeNode *x;
t->Replace(r->Data());
x = r;
r = r->LeftLink();
fResizing = CHANGED_SIZE;
delete x;
}

}

There are symmetrically equivalent routines for rebalancing a node after deletions in
its left or right subtrees. This is the code for the case where the right subtree has
shrunk:

void AVLTree::Rebalance_Right_Short(AVLTreeNode*& t)
{

AVLTreeNode* tptr = t->LeftLink();

if(tptr->Balance() != RIGHT_LONG) {
t->LeftLink() = tptr->RightLink();
tptr->RightLink() = t;

Recursive search
down to replacement
data

Doing the
replacement

Code to rebalance
after a deletion

860 Two more trees

if(tptr->Balance() == EVEN) {
t->ResetBalance(LEFT_LONG);
tptr->ResetBalance(RIGHT_LONG);
fResizing = UNCHANGED;
}

else {
t->ResetBalance(EVEN);
tptr->ResetBalance(EVEN);
}

t = tptr;
}

else {
AVLTreeNode *tptr2 = tptr->RightLink();
tptr->RightLink() = tptr2->LeftLink();
tptr2->LeftLink() = tptr;
t->LeftLink() = tptr2->RightLink();
tptr2->RightLink() = t;
t->ResetBalance((tptr2->Balance() == LEFT_LONG) ?

RIGHT_LONG : EVEN);
tptr->ResetBalance((tptr2->Balance() == RIGHT_LONG) ?

LEFT_LONG : EVEN);
t = tptr2;
tptr2->ResetBalance(EVEN);
}

}

The functions not shown are all either extremely simple or are the left/right images
of functions that have been given.

24.1.4 Testing!

Just look at the AVL algorithm! It has special cases for left subtrees becoming too long
on their own left sides, and left subtrees becoming too long on their right subtrees, code
for right branches that are getting shorter, and …. It has special cases where data
elements must be promoted from other tree cells. These operations may involve
searches down branches of trees. The tree has to be quite large before there is even a
remote possibility of some these special operations being invoked.

The simpler abstract data types like the lists and the queues shown in Chapter 21
could be tested using small interactive programs that allowed the tester to exercise the
various options like getting the length or adding an element. Such an approach to
testing something like the AVL tree is certain to prove inadequate. When arbitrarily
selecting successive addition and deletion operations, the tester simply won't pick a
sequence that exercises some of the more exotic operations.

The approach to testing has to be more systematic. You should provide a little
interactive program, like those in Chapter 21, that can be used for some preliminary
tests. A second non-interactive test program would then be needed to thoroughly test

Testing class AVLTree 861

all aspects of the code. This second program would be used in conjunction with a "code
coverage tool" like that described in Chapter 14.

Both the test programs would need some data objects that could be inserted into the
tree. You would have to define a class derived from class KeyedItem, e.g. class
TextItem:

class TextItem : public KeyedItem
{
public:

TextItem(const char* info, long k);
~TextItem();
long Key(void) const;
void PrintOn(ostream& out) const;

private:
char *fText;
long fk;

};

TextItem::TextItem(const char *info, long k)
{

fk = k;
fText = new char[strlen(info) + 1];
strcpy(fText, info);

}

TextItem::~TextItem()
{

delete [] fText;
}

void TextItem::PrintOn(ostream& out) const
{

out << "[" << fText << ", " << fk << "] ";
};

long TextItem::Key(void) const { return fk; }

A TextItem object is just something that holds a long integer key and a string. The
interactive test program can get the user to enter these data; the way the data are
generated and used in the automated program is explained later.

The main function for an interactive test program, HandTest(), is shown below. It
has the usual structure with a loop offering user commands.

AVLTree gTree;

void HandTest(void)
{

KeyedItem* d;
for(;;) {

TextItem – a class of
object that can be put
into an AVLTree

862 Two more trees

char ch;
cout << "Action (a = Add, d = Delete, f = Find,"

" p = Print Tree, q = Quit) : ";
cin >> ch;

switch (ch) {

An "add" command results in the creation of an extra TextItem that gets put in the tree.
(The function AVLTree::Add() returns a success/failure indicator. A failure should
only occur if an attempt is made to insert a record with a duplicate key. If the add
operation fails, the "duplicate" record should be deleted.)

case 'a':
case 'A':

{
long key;
char buff[100];
cout << "Key : " ; cin >> key;
cout << "Name : "; cin >> buff;
d = new TextItem(buff, key);
if(gTree.Add(d) != 0)

cout << "Inserted OK" << endl;
else {

cout << "Duplicate " << endl;
delete d;
}

}
break;

A "delete" command gets the key for the TextItem to be removed then invokes the
trees remove function. Function AVLTree::Remove() returns NULL if an item with the
given key was not present. If the item was found, a pointer is returned. The item can
then be deleted.

There would also be a "find" command (not shown, is trivial to implement), a "quit"
command, and possibly a "print" command. During testing it would be useful to get the
tree displayed so it might be worth adding an extra public member function AVLTree::
PrintTree(). The algorithm required will be identical to that used for the simpler
binary tree.

case 'd':
case 'D':

{
long bad;
cout << "Enter key of record to be removed";
cin >> bad;
d = gTree.Remove(bad);
if(d == NULL)

cout << "No such record" << endl;

Get command

Adding TextItems

Deleting TextItems

Testing class AVLTree 863

else {
cout << "Removing " << *d << endl;
delete d;
}

}
break;

case 'f':
case 'F':

…
…
break;

case 'p':
case 'P':

gTree.PrintTree();
break;

case 'q':
case 'Q':

return;
default:

cout << "?" << endl;
}

}
}

Hand testing will never build up the large complex trees where less common
operations, like promotion of data, get fully tested. You need code that performs
thousands of insertion, find, and deletion operations on the tree and which checks that
each operation returns the correct result.

This is not as hard as it might seem. Basically, you need a testing function that starts
by loading some records into the tree and then "randomly" chooses to add more records,
delete records, or search for records. The function will need a couple of control
parameters. One determines the number of cycles (should be 10000 to 20000). The
other parameter, testsisze, determines the range used for keys; there is a limit,
kTESTMAX, for this parameter. The use of the testsisze parameter is explained below.

void AutoTest()
{

int testsize;
int runsize;
cout << "Enter control parameters for auto-test ";
cin >> testsize >> runsize;
assert(testsize > 1);
assert(testsize < kTESTMAX);

Initialize(testsize);
for(int i=0; i < testsize / 2; i++)

Add(testsize);

for(int j=0; j < runsize; j++) {

Mechanism for an
automated test

864 Two more trees

int r = rand() % 4;
switch(r) {

case 0: Add(testsize); break;
case 1: Find(testsize); break;
case 2:
case 3:

Remove(testsize); break;
}

}
cout << "Test complete, counters of actions: " << endl;
for(i = 0; i < 6; i++)

cout << i << ": " << gCounters[i] << endl;
}

As you can see, the loop favours removal operations. This makes it likely that at some
stage all records will be removed from the tree. There are often obscure special cases
related to collections becoming empty and then being refilled so it is an aspect that you
want to get checked.

Function AutoTest() uses the auxiliary functions, Add(), Find(), and Remove() to
do the actual operations. These must be able to check that everything works correctly.

Correct operation can be checked by keeping track of the keys that have been
allocated to TextItem records inserted in the tree. When creating a new TextItem, the
test program gives it a "random" key within the permitted range:

TextItem *MakeATextItem(int testsize)
{

int r = rand() % testsize;
return new TextItem("XXXX", r);

}

The Add() function keeps track of the keys that it has allocated and for which it has
inserted a record into the tree. (It only needs an array of "booleans" that record whether
a key has been used):

const int kTESTMAX = 5000;
short gUsed[kTESTMAX];

If the same randomly chosen key has already been used, an addition operation should
fail; otherwise it should succeed. The Add() function can check these possibilities. If
something doesn't work correctly, the program can stop after generating some statistics
on the tree (function ReportProblem(), not shown). If things seem OK, the function
can increment a count of operations tested:

const int ADD_OK = 0;
const int ADD_DUP = 1;
const int FIND_OK = 2;
const int FIND_EMPTY = 3;

Keeping track of
valid keys

Testing class AVLTree 865

const int REMOVE_OK = 4;
const int REMOVE_FAIL = 5;

long gCounters[6]; // record test operations

void Add(int testsize)
{

TextItem *t = MakeATextItem(testsize);
long k = t->Key();
if(gUsed[k] ==0) {

/* Should get a successful insert */
if(gTree.Add(t) != 0) gCounters[ADD_OK]++;
else {

cout << "Got a 'duplicate' response when"
"should have been able to add"

<< endl;
ReportProblem(k);
exit(1);
}

gUsed[k] = 1;
}

else {
/* Should get a duplicate message */
if(gTree.Add(t) == 0) {

gCounters[ADD_DUP]++;
delete t;
}

else {
cout << "Failed to notice a duplicate" << endl;
ReportProblem(k);
exit(1);
}

}
}

Of course, the gUsed[] and gCounters[] arrays have to be initialized. The
Initialize() function is called at the start of the AutoTest() function:

void Initialize(int testsize)
{

for(int i = 0; i < testsize; i++)
gUsed[i] = 0;

for(int j = 0; j < 6; j++)
gCounters[j] = 0;

}

The functions Find() and Remove() can also use the information in the gUsed[]
array. Function Find() (not shown) randomly picks a key, inspects the corresponding
gUsed[] array to determine whether or not a record should be found, then attempts the
gTree.Find() operation and verifies whether the result is as expected.

"Fresh" key, Add()
should work

Mark key in use

Already used key,
Add() should fail

866 Two more trees

Remove() is somewhat similar. However, if it successfully removes a TextItem, it
must also delete it and clear the corresponding entry in the gUsed[] array:

void Remove(int testsize)
{

long k = rand() % testsize;
KeyedItem *d = gTree.Remove(k);
if(gUsed[k] == 0) {

/* Remove operation should have failed */

if(d == NULL) gCounters[REMOVE_FAIL]++;
else {

cout << "Removed a thing that wasn't there"
<< endl;

ReportProblem(k);
exit(1);
}

}
else {

/* Remove operation should succeed */
if(d != NULL) {

gCounters[REMOVE_OK]++;
delete d;
gUsed[k] = 0;
}

else {
cout << "Failed to find and remove a data"

"item" << endl;
ReportProblem(k);
exit(1);
}

}
}

Runs can be made with different values for the testsize parameter. Large values
(3000 - 5000) result in complicated deep trees (after all, the first step involves filling the
tree with testsize/2 items). These trees have cases where data have to be promoted
from remote nodes, leading to a long sequence of balance checks following the deletion.

Small values of the testsize parameter keep the tree small, force lots of "duplicate"
checks, and make it more likely that all elements will be deleted from the tree at some
stage in the processing.

The test program can use the gCounters[] counts to provide some indication as to
whether the tests are comprehensive. But this is still not adequate. You may know that
your tree survived 10,000 operations but you still can't be certain that all its functions
have been executed.

Complex algorithms like the AVL code require testing with the code coverage tools.
The code was run on a Unix system where the tcov tool (Chapter 14) was available.

Trying to remove
item with non-

existent key

Trying to remove an
item that should be

present

Testing class AVLTree 867

Several different runs were performed and the final accumulated statistics were
analyzed using tcov. A fragment of tcov's output is as follows:

 void AVLTree::Delete1(long bad_key, AVLTreeNode*& t)
 122513 -> {
 if(t == NULL) {
 10217 -> fResizing = UNCHANGED;
 return;
 }

 112296 -> if(bad_key == t->Key()) {
 4902 -> DeleteRec(t);
 return;
 }

 107394 -> if(bad_key < t->Key()) {
 56338 -> Delete1(bad_key,t->LeftLink());
 if(fResizing == CHANGED_SIZE)
 3070 -> Check_balance_after_Left_Delete(t);
 3070 -> return;
 }

 51056 -> Delete1(bad_key,t->RightLink());
 if(fResizing == CHANGED_SIZE)
 2996 -> Check_balance_after_Right_Delete(t);
 2996 -> return;

 }
 void AVLTree::Check_balance_after_Left_Delete(
 AVLTreeNode*& t)
 4338 -> {

 switch (t->Balance()) {
 case LEFT_LONG:
 1480 -> t->ResetBalance(EVEN);
 break;
 case EVEN:
 2256 -> t->ResetBalance(RIGHT_LONG);
 fResizing = UNCHANGED;
 break;
 case RIGHT_LONG:
 602 -> Rebalance_Left_Short(t);
 break;
 }
 4338 -> }

Such results give greater confidence in the code. (The tcov record, along with the test
programs, form part of the "documentation" that you should provide if your task was to
build a complex component like an AVL tree.)

Output from code
coverage tool

868 Two more trees

Code coverage by
hand

If you can't get access to something like tcov, you have to achieve something
similar. This means adding conditionally compiled code. You will have to define a
global array to hold the counters:

#ifdef TCOVING
int __my__counters[1000];
#endif
…

and you will have to edit every function, and every branch statement within a function,
to increment a counter:

void AVL::Insert(
{
#ifdef TCOVING

__my__counters[17]++;
#endif

Finally, you have to provide a function that prints contents of the table when the
program terminates.

Unfortunately, this process is very clumsy. It is easy to make mistakes such as
forgetting to associate a counter with some branch, or to have two bits of code that use
the same counter (this is quite common if the main code is still being finalized at the
same time as being tested). The printouts of counts aren't directly related to the source
listings, the programmer has to read the two outputs together.

Further, the entire process of hand editing is itself error prone. Careless editing can
easily cut a controlled statement from the if() condition that controls it!

The best solution is to use a code coverage tool on some other platform while
pressing your IDE supplier for such a tool in the next version of the software. (The
supplier should oblige, code coverage tools are as easy, or easier, to add to a compiler
than the time profilers which are commonly available.)

A final warning, even if tcov (or equivalent) says that you've tested all the branches
in your code, you still can't be certain that it is correct. You really should try that
exercise at the end of Chapter 21 where "live" listcells were "deleted" from a list and
the program still ran "correctly" (or at least it ran long enough to convince any typical
tester that it was working correctly).

Memory problems (leaks, incorrect deletions, other use of "deleted" data) are the
reason for having an automated program that performs tens of thousands operations. If
the tests are lengthy enough you have some chance of forcing memory bugs to manifest
themselves (by crashing the program several minutes into a test run). Unfortunately,
some memory related bugs are "history dependent" and will only show up with specific
sequences of operations; such bugs are exceptionally difficult to find.

Testing can establish that your code has bugs; testing can not prove that a program is
bug free. Despite that, it is better if code is extensively tested rather than left untested.

Don't really trust it
even if tcov says its

tested

Testing class AVLTree 869

24.2 BTREE

24.2.1 Multiway trees

You are not restricted to "binary trees", there are alternative tree structures. In fact,
there are numerous forms of "multiway tree". They all serve much the same role as an
AVL tree. They are "lookup" structures for keyed data. These trees provide Add(),
Find(), and Remove() functions. They provide a guarantee that their performance on
all operations in close to O(lg(N)) (with N the number of items stored in the tree).

These trees have more than one key in each of their tree nodes and, consequently,
more than two links down to subtrees. The data inserted into a tree are kept ordered;
data items with small keys are in "left subtrees", data with "middling" keys can be
found down in other subtrees, and data with large keys tend to be in "right subtrees".
The trees keep themselves "more or less balanced" by varying the number of data items
stored in each node. The path from root to leaf is kept the same for all leaves in the tree
(a major factor in keeping costs O(lg(N))).

Although the structures of the nodes, and the forms for the trees, are radically
different from those in the AVL tree, there are some similarities in the overall
organization of the algorithms.

An operation like an insertion is done by recursively chasing down through the tree
to the point where the extra data should go. The new item is added. Then, as the
recursion unwinds, local "fix ups" are performed on each tree node so as to make
certain that they all store "appropriate" numbers of data items and links.

What is an "appropriate" number of data items for a node? How are "fix ups" done
when nodes don't have appropriate number of items? Each different form of multiway
tree has slightly different rules with regard to these issues.

Deletions are also handled in much the same way as in AVL and binary trees. You
search, using a recursive routine, for the item that is to be removed. Items can easily be
cut out of "leaf nodes". Items that are in "internal nodes" (those with links down to
subtrees) have to be replaced by data "promoted" from a leaf node lower in the tree (the
successor, or predecessor, item with the key immediately after, or before, that of the
item being removed). If data are promoted from another node, the original copy of the
promoted data must then be cut out from its leaf node.

Once the deletion step has been done, the recursion unwinds. As in the case of
insertion, the "unwinding" process must "fix up" each of the nodes on the path back to
the root. Once again, different forms of multiway tree have slightly different "fix up"
rules.

Of course, searches are fairly simple. You can chase down through the tree
following the links. As nodes can have more than one key, there is an iterative search
through the various keys in each node reached.

870 Two more trees

2-3 Trees

You will probably get to study different multiway trees sometime later in your
computer science career. Here, only one simple version need be considered. It is
usually called a "two-three" tree because each node can hold two keys and three links
down to subtrees. It has similarities to, and can act as an introduction to the BTree
which the real focus of this section.

For simplicity, these 2-3 trees will be shown storing just integer keys. If you were
really implementing this kind of tree, the "integer key" fields used in the following
discussion would be replaced by structures that comprised an integer key and a pointer
to the real data item (as was done in the binary tree example in Chapter 21).

Figure 24.6 illustrates the form of a tree node for this simplified 2-3 tree, while
Figure 24.7 illustrates an actual tree built using these nodes. The tree node has an array
of two longs for the keys, an array of three pointers for the links to subtrees and a "flag"
indicating whether it is a "2-node" (one key, two links used), or a "3-node" (both keys
and all three links used). In leaf nodes, the link fields will be NULL.

The search algorithm is simple:

compare search key with 1st (only?) key in node
if equal

report record as found

81

Node structure:
a key

flag: "2" node
or "3" node

link to subtree whose nodes
all have keys less than 1st key,
link[0]

link to subtree whose nodes
all have keys greater than 1st
key (and less than 2nd key if
one is present), link[1]

2nd key (in a "3" node)

in a "3" node this will be a link
to a subtree whose nodes
all have keys greater than 2nd
key, link[2]

struct R23 {
 long keys[2];
 R23 *links[3];
 short flag;
};

Figure 24.6 Structure of a node for a "2-3" multiway tree.

Search

Multiway trees 871

81

44

19 52 69

101 140

93 133111 162 189

Figure 24.7 An example "2-3" tree.

else
if less

search down subtree 0
else
if greater

if this is a 2-node then search down subtree 1
else

compare search key with 2nd key in node
if equal

report record as found
else
if less

search down subtree 1
else

search down subtree 2

New keys are inserted into leaf nodes. In some cases this is easy. In the example
tree shown in Figure 24.7, insertion of the key value 33 is easy. The search for the
correct place goes left down link[0] from the node with key 81, and again left down
link[0] from the node with key 44. The next node reached is a leaf node. This one
has only one entry, 19, so there is room for the key 33. The key can be inserted and the
node's flag changed to mark it as a "3-node" (two keys, potentially three links though
currently all these links are NULL).

Insertion of the key value 71 would be more problematic. Its place is in the leaf
node with the keys 52 and 69; but this node is already fully occupied. Insertion into a
full leaf node is handled by "splitting the node". There will then be three keys, and two
leaf nodes. The least valued of the three keys goes in the "left" node resulting from the
split; the key with the largest value goes in the "right" node; while the middle valued
key gets moved up one level to the parent node. This is illustrated in Figure 24.8.

The two leaf nodes are both "2-nodes", while their parent (the node that used to hold
just key 44) now has two keys and three links and so it is now a "3-node".

The results of two additional insertions are illustrated in Figures 24.9 and 24.10.

Insertion

Splitting nodes to
make room for
another inserted key

872 Two more trees

81

44

52

101 140

9319 33 71

69

Leaf node split into two

Median key, 69,
moved up into

parent

Figure 24.8 Splitting a full leaf node to accommodate another inserted key.

First, the key 20 is inserted. This should go into the leaf currently occupied by keys
19 and 33. Since this leaf is full, it has to be split. Key 19 goes in the left part, key 33
in the right part and key 20 (the median) has to be inserted into the parent. But the
parent, the node with 44 and 69 is itself full. So, it too must be split. The left part will
hold the smallest key (the 20) and have links down to the nodes with 19 and 33. The
right part will hold the key 69 and links down to the nodes with keys 52 and 71. The
median key, 44, must be pushed into the parent, the root node with the 81. This node
has room; it gets changed from a 2-node to a 3-node. The resulting situation is shown
in Figure 24.9.

81

52

101 140

93 133111 162 18933 71

69

Leaf node split into two

19

20

44

Median key, 20,
moved up into

parent

Median key, 44,
moved up into

parent

Figure 24.9 Another insertion, another split, and its ramifications.

Insertion of the next key value, 161, causes more problems. If should go in the leaf
node where the values 162 and 189 are currently location. As this leaf is full, it must be
split. The new key 161 can go in the left part; the large key 189 can go in the new right
node; and the median key, 162, (and the link to the new right node) get passed back to
be inserted into the parent node. But this node, the one with the 101 and 140 keys is
also full. So it gets split. One part gets to hold the key 101 and links down to the node
with 93 and the node with 111 and 133. The new part gets to hold the key 162 and its

Multiway trees 873

links down to the node with 161 and the node with 189. The median value, 140, has to
go in the parent node. But this is full. So, once again a split occurs. One node takes
the 44, another takes the 140 and the median value, 81, has to be pushed up to the
parent level.

There isn't a parent. The node with keys 44 and 81 used to be the root node of the
tree. So, it is time to "grow a new root". The new root holds the 81 key. The result is
as shown in Figure 24.10.

52

101

93 133111 16133 71

69

19

20

44

189

162

81

140

New root

Figure 24.10 The tree grows a new root.

Trees in computer programs are always strange. Their branch points have "children"
and their leaves have "parents". They grow downwards, so "up" means closer to the
root not nearer to the leaves. These multiway trees add another aberrant behaviour;
they grow at the root rather than at the ends of existing branches. It is done this way to
keep those paths from root to leaf the same for all leaves; this is required as its part of
the mechanism that guarantees that searches, insertions, (and deletions) have a cost that
is proportional to O(lg(N)).

BTrees

A BTree is simply a 2-3 tree on steroids. Its nodes don't have two keys and three links;
instead its going to be something like 256 keys and 257 links. A fully populated BTree
(one where all the nodes held the maximum possible number of keys) could hold 256
keys in a one level tree, around 60000 keys in a two level tree, sixteen million keys in a
three level tree. Figure 24.11 gives an idea as to the form of a node and shape of a
BTree. The node now has a count field rather than a flag; the count defines the number
of keys in the node.

A BTree can be searched, and data can be inserted into a BTree, using algorithms
very similar to those that have just been illustrated for the 2-3 tree. You can implement
BTrees that work this way, where all the links are memory pointers, and the real data
records are accessed using pointers that are stored in the nodes along with their key
values.

Growing a new root

874 Two more trees

Count field

"Links" to subtrees

Entries ≈ a key and a
"pointer" to some other data.

Node in a BTree

level 0 ≈ #students in a hall of
residence.

level 1

≈ #people living in a small
town

level 2

≈ population of a small country

Figure 24.11 Features of a BTree.

But you don't have any really good reasons for using a memory resident BTree like
that. If all your data fit in main memory, you might as well use something more
standard like an AVL tree.

However, if you have a really large collection of keyed data records, it is likely that
they won't all fit in memory. A large company (e.g. a utility like an electricity
company) may have records on two million customers. Each of these customer records
is likely to be a thousand bytes or more (name, address, payment records, …). Now
two thousand million bytes of data requires rather more "SIM" chips than fit in the
average computer. You can't keep such data in memory instead they must be kept on
disk.

This is where the BTree becomes useful As will be explained more in the next two
sections, it allows you to keep both your primary data records, and your search tree
structure, out on disk. Only a few nodes from the tree and a single data record ever
need be in primary memory. So you can have very large data collections, provided that
you have sufficient disk space (and most PCs support disks with up to 4 gigabytes
capacity).

Exceeding memory
limits

24.2.2 A tree on a disk?

A binary file can always be treated as an array of bytes. If you know where a data
record is located (i.e. the "array index" of its first byte) you can use a "seek" operation
on a file to set the position for the next read or write operation. Then, provided you
know the size of the data record, you can use a low level read or write operation to

A tree on a disk? 875

transfer the necessary number of bytes. These operations have been illustrated
previously with the examples in Chapters 18 (the customer records example), 19 and 23
(the different InfoStore examples).

This ability to treat a file as a byte array makes it practical to map something like a
tree structure onto a disk file. We can start by considering simple binary trees that hold
solely an integer key. A memory version of such a tree would use structures like the
following:

struct binr {
long key;
binr *left_p;
binr *right_p;

};

with address pointers left_p and right_p holding the locations in memory of the first
node in the corresponding subtree. If we want something like that on a disk file, we
will need a record like the following:

struct dbinr {
long key;
daddr_t left;
daddr_t right;

};

The values in the left and right data members of a dbinr structure will be byte
locations where a node is located in the disk file. These will be referred to below as
"disk addresses", though they are more accurately termed "file offsets". The type
daddr_t ("disk address type) is an alias for long integer. It is usually defined in one of
the standard header files (stdlib, unistd or unix, or sys_types, or …). If you can't locate
the right header you can always provide the typedef yourself:

typedef long daddr_t;

Figure 24.12 illustrates how a binary tree might be represented in a disk file (the
numbers used for file offsets assume that the record size is twelve bytes which is what
most systems would allocate for a record with three long integer fields).

The first record inserted would go at the start of the file (disk address 0); in the
example shown this was the record with key 45.. Initially, the first node would have -1s
in its left and right link fields (-1 is not a valid disk address, this value serves the
same role as NULL in a memory pointer repesentation of a tree).

The second record added had key 11. Its record gets written at the end of the
existing file, so it starts at byte 12 of the file. The left link for the first node would be
changed to hold the value 12. Similarly, addition of a record with key 92 results in a
new node being created on disk (at location 24) and this disk address would then be
written into the appropriate link field of the disk record with key 45.

Storing the tree
structure in a disk file

876 Two more trees

45

11 92

84 103

71

16

1st node

2nd node

7th node

6th node

5th node

4th node

3rd node

4
5

0000

0012

0072

0024

0036

0048

0060

1st node

2nd node

3rd node

4th node

5th node

6th node

7th node

The tree

The disk file

Figure 24.12 Mapping a binary tree onto records in a disk file.

You should have no difficulty in working out how the rest of the file gets built up
and the links get set.

Such a tree on disk can be searched to determine whether it contains a record with a
given key. The code would be something like the following:

fstream treefile;
int search(long sought)
{

// Assume that treefile has already been opened successfully
dbinr arec;

A tree on a disk? 877

// "root" node will be at location 0 of file
long diskpos = 0;
for(;;) {

treefile.seekg(diskpos);
treefile.read((char*)&arec, sizeof(dbinr));
if(sought == arec.key) return 1;
if(sought < arec.key)

diskpos = arec.left;
else diskpos = arec.right;
if(diskpos == -1)

return 0;
}

}

This is just another version of an iterative search on a binary tree (similar to the search
function illustrated in Section 24.1 for searching an AVL tree). It is a relatively
expensive version; each cycle of the loop involving disk transfer operations.

Normally, you would have data records as well as keys. You would use two files;
one file stores the tree structure, the other file would store the data records (a bit like the
index file and the articles file in the InfoStore example). If all the data records are the
same size, there are no difficulties. The record structure for a tree node would be
changed to something like:

struct dbinr {
long key;
daddr_t dataloc; // extra link to datafile
daddr_t left;
daddr_t right;

};

With the extra field being the location of the data associated with the given key; this
would be an offset into the second data file.

The search routine to get the data record associated with a given key would be:

fstream treefile;
fstream datafile
int search(long sought, datarec& d)
{

// Assume both files have already been opened successfully
dbinr arec;
long diskpos = 0;
for(;;) {

treefile.seekg(diskpos);
treefile.read((char*)&arec, sizeof(dbinr));
if(sought == arec.key) {

datafile.seekg(arec.dataloc);
datafile.read((char*)&d, sizeof(datarec));
return 1;
}

Store data in a
separate file

878 Two more trees

if(sought < arec.key)
diskpos = arec.left;

else diskpos = arec.right;
if(diskpos == -1)

return 0;
}

}

The records are stored separately from the tree structure because you don't want to read
each record as you move from tree node to tree node. You only want to read a data
record, which after all might be quite large, when you have found the correct one.

It should be obvious that there are no great technical problems in mapping binary
trees (or more elaborate things like AVL trees) onto disk files. But it isn't something
that you would really want to do.

The iterative loops in the search, and the recursive call sequences involved in the
insertion and deletion operations require many tree nodes to be read from the "tree file".
As illustrated in Figure 24.13, the tree nodes are going to be stored in disk blocks that
may be scattered across the disk. Each seek and read operation may involve relatively
lengthy disk operations (e.g. as much as 0.02 seconds for the operating system to read
in the disk block containing the next tree node).

If the trees are deep, then many of the operations will involve reading multiple
blocks. After all, a binary tree that has a million keys in it will be twenty levels deep.
Consequently each search operation on a disk based binary tree may require as many as
twenty disk seeks to find the required tree node (and then one more seek to find the
corresponding data).

A BTree with a million keys is going to be only three levels deep if its nodes have
≈250 keys. Searching such a tree will involve three seeks to get just three tree nodes,
and then the extra seek to find the data. Three disk operations is much better than
twenty. BTrees are just as easy to map onto disks as are other trees. But because of
their shallow depths, their use doesn't incur so much of a penalty.

The structure for a BTree tree node, and the form of the BTree index file, are
illustrated in Figure 24.14. The example node has space for only a few keys where a
real BTree has hundreds. Small sized nodes are necessary in order to illustrate
algorithms and when testing the implementation. Many of the more complex tree
rearrangements occur only when a node becomes full or empty. You would have to
insert several million items if you wanted to fill most of the nodes in a three level tree
with 250 keys per node; that would make testing difficult. Testing is a lot easier if the
nodes have only a few keys.

The node has a count specifying the number of key/location pairs that are filled, an
array of these key/location pairs, and an array of links. The links array is one larger
than the keys array and a BTree node either has no links (a leaf node) or has one more
link than it has keys. The entries in the links array are again disk addresses; they are the
addresses of the BTree nodes that represent subtrees hung below the current BTree
node. A BTree node has the following data members:

A tree on a disk? 879

Tree node of a few continguous bytes

File consisting of thousands of tree node records

Size of one disk
"block"

Disk

Figure 24.13 Mapping a file onto disk blocks.

BTree node

Count

"Links" to other
BTree nodes

Key/location records

Key
Location of data record
(in separate data file)

BTree file

"Housekeeping"
data

BTree nodes

Figure 24.14 BTree nodes and the BTree file.

880 Two more trees

int n_data;
KLRec data[MAX]; /* 0..n_data-1 are filled */
daddr_t links[MAX+1]; /* 0..n_data are filled */

where KLRec is defined as "struct KLRec { long fKey; daddr_t fLocation;
};". (For simplicity, most of the later diagrams will omit the link to the data record and
show solely the values of the keys in those key/location fields. Similarly, the disk
addresses of subtrees, that would be in the link fields, are usually not shown.)

The BTree file consists mainly of BTree node records, but there is small amount of
"housekeeping information" that has to be kept at the start of the file. In this slightly
simplified implementation, the only housekeeping data used is a link (disk address) to
the BTree node that represents the current root for the tree, and a count for the number
of items.

"Client programmers" using a BTree will see it as basically something that owns an
index file (the one with the BTree nodes) and a data file, and which provides Add(),
Find(), and Remove() operations that efficiently transfer data records (instances of
classes derived from KeyedStorableItem) to/from the data file. (For convenience, an
"add" operation specifying an existing key should be treated as an "update"; the existing
data record with the given key is overwritten by the new data.)

class BTree
{
public:

BTree(const char* filename);
~BTree();

int NumItems(void) const;

void Add(KeyedStorableItem& d);
int Find(long key, KeyedStorableItem& rec);
void Remove(long key);

private:
…

fstream fTreeFile;
fstream fDataFile;

};

This implementation is simplified. Data items once written to disk will always
occupy space. Deletion of a data item simply removes its key/location entry from the
index file. Similarly, BTree nodes that become empty and get discarded also continue
to occupy space on disk; once again, they are simply unlinked from the index structure.

A real implementation would employ some extra "housekeeping data" to keep track
of deleted records and discarded BTree nodes. If there are "deleted records", the next
request for a new record can be satisfied by reusing existing allocated space rather than
by extending the data file. The implementation of this recycling scheme involves

class BTree

A tree on a disk? 881

keeping two lists, one of deleted data records and the other of discarded BTree nodes.
The links of these lists are stored in the "deleted" data records of the corresponding disk
files (i.e. a "list on a disk"). The starting points of the two "free lists" are included with
the other "housekeeping information" at the start of the index file.

24.2.3 BTree: search, insertion, and deletion operations

All the more elaborate trees have rules that define how their nodes should be organized.
You may find minor variations in different text books for the rules relating to BTrees.
The rules basically specify:

• A BTree is a tree with nodes that have the data members previously illustrated:

int n_data; // number of keys in current node
KLRec data[MAX]; // key-location pairs for data
daddr_t links[MAX+1]; // links to subtrees

• If a node x is an internal node, it will hold x.n_data keys and (x.n_data + 1)
links to subtrees. Every internal node contains one more link than it has keys.

• If a node is a leaf, all its link fields are "NULL". (i.e. the -1 value for "no disk
address", NO_DADDR).

• The keys within a node are kept ordered: x.data.fKey[0] < x.data.fKey[1] <
….

• The keys in a node separate the ranges of keys stored in subtrees. So x.link[0]
links to the start of a subtree containing records whose keys will all be less than
x.data.fKey[0]; x.link[1] points to a subtree containing records whose keys
(k) are in the range x.data.fKey[0] < k < x.data.fKey[1]. The final link,
x.link[x.n_data], connects to a subtree with records having keys greater than
x.data.fKey[x.n_data].

• Every leaf is at the same depth.

• There are lower and upper bounds on the number of keys in a node. Apart from the
root node, every node must contain at least MAX/2 keys and at most MAX keys.

The root node may contain fewer than MAX/2 keys.

• If an insertion or a remove operation results in a node that violates these conditions,
the tree must be reorganized to make all nodes again satisfy these conditions.

Rules defining a
BTree

882 Two more trees

Find

Searching the tree for a record with a given key is relatively simple. It involves just a
slight generalization of the algorithm suggested earlier for searching a 2-3 tree.

You start by loading the root node of the tree (reading it from the index file into
memory). Next you must search in the current node for the key. You stop when you
find the key, or when you find a key greater than the value sought. If the key was
found, the associated location information identifies where the data record can be found
in the data file. The data record can then be loaded and the Find routine can return a
success indicator.

If the key is not matched, the search should continue in a subtree (provided that there
is a subtree). The search for the key will have stopped with an index set so that it either
identifies the position of the matching key or the link that should be used to get to the
BTree node at the start of the required subtree.

The driver routine is iterative. It keeps searching until either the key is found, or a
"null" link (i.e. a -1 disk address) is encountered in a link field.

Some of the work is done the BTree::Find() function itself. But it is worth
making a class BTreeNode to look after details of links and counts etc. A BTreeNode ,
once loaded from disk, can be asked to check itself for the key.

BTree::Find(long key, KeyedStorableItem& rec)
initialize disk-address to hold address of root node

(from "housekeeping information" in index file)

while(disk-address is valid) {
load a BTreeNode, current, from the specified

disk-address
ask current node to search itself for "key"
if (key was found)

get associated data location, loc
GetDataRecord(rec,loc);
return success

otherwise use identified link
 disk-address = current.links[index];
}

report key not present

The BTreeNode object would have to find the required key, returning a success or
failure indicator. It would also have to set an index value identifying the position of the
key (or of the link down to the subtree where the required key might be located). Since
the keys in a node are ordered, you should use binary search. For simplicity, a linear
search is shown in the following implementation. The loop checks successive keys,
incrementing index each time, until either the key is found or all keys have been
checked. (You should work through the code and convince yourself that, if the key is
not present, the final value of index will identify the link to the correct subtree).

Get and check a
BTreeNode from disk

If find key, get data
from data file

Otherwise, use link
with disk address of

subtree

Searching inside a
node

Operations on BTrees 883

int BTreeNode::SearchInNode (long keysought, int& index)
{

for (index = 0; index < n_data; index++)
if (data[index].fKey == keysought)

return 1;
else if (data[index].fKey > keysought)

return 0;
return 0;

}

Add

The algorithm is essentially the same as that illustrated for the 2-3 tree:

recursively...

chase down through links until find position where
record should go

if find a record with same key, replace old data record
else "insert" new record into node

if record fits, return success
else

split the node
have MAX+1 records (MAX already

in full node, and the extra
record being inserted)

leave MAX/2 with lowest keys in
existing node

put MAX/2 with highest keys in
new node

return the median (middle value)
as unwind recursion:

check if given a median record to insert, if get
one then insert (with again possible split...)

This is another case where a substantial number of auxiliary functions are needed to
handle the various different aspects of the work. The implementation given in the next
section uses the following functions for class BTree:

BTree::Add(KeyedStorableItem& d); // Interface

BTree::DoAdd(…); // Main recursion

BTree::Split(…); // Splitting nodes
BTree::SplitInsertLeft(…); // auxiliary splitting
BTree::SplitInsertMiddle(…); // functions
BTree::SplitInsertRight(…)

884 Two more trees

as well as functions in the auxiliary BTreeNode class:

BTreeNode::SearchInNode(…) // Check for key
BTreeNode::InsertInNode(…) // Simple insertion
BTreeNode::NotFull() // Check if full

The Add() function is the client interface. It sets up the initial call to the main
DoAdd() recursive function. It also has to deal with the special case of growing a new
root for the tree (as illustrated for the 2-3 tree in Figure 24.10):

Add
invoke DoAdd()

passing it as arguments the new data record, and
the disk address of the current root of the tree

test "work flag" returned by DoAdd(),
if work flag is set create new root as follows

BTreeNode new_root;
fill in number of keys as 1,
insert (median) KLRec returned by DoAdd()
insert two links, link[0] to link to current root

link[1] to link to disk address that
DoAdd() reports for newly created node

Save the new root node to the index file
Update the "root" info. in the housekeeping part of

the index file

The recursive function DoAdd() is the most complex. It has three aspects. There is
an inward recursion aspect; this chases down subtree links through the tree. When the
recursion process is complete and the correct point for the record has been found in the
tree, the data get saved to disk. The final aspect is organizing the "fix up" operations as
recursion is unwind.

Each recursive call to DoAdd() will load another BTreeNode into the stack BTree-
Nodes are going to be a few hundred to a few thousand bytes in size. Since the
maximum limit of the recursion is defined by the depth of the tree (which won't be
large), this stacking up of the BTreeNodes will not use excessive memory. When the
insertion point is found, the BTreeNodes in the stack are those that define the path back
to the root. These are the nodes that may need to be "fixed up" if a node was full and
had to be split.

Inwards recursion aims to get to the point in the tree where the new data should go.
Since there are now many subtrees below each tree node, one aspect of the inward
recursion process is a search through the current node to find the appropriate link to
follow for a given key value.

The inwards recursive phase terminates on either of two conditions. There is the
special case of finding an existing record with the key. In this case, the data are

Add()

Recursive DoAdd()
function

Several BTreeNodes
on the stack

Inward recursion to
find place for record

Terminating
recursion, by

replacing a data
record

Operations on BTrees 885

replaced in the data file and a flag is set to indicate that no work is necessary as the
recursion unwinds.

The other terminating condition is that the recursive call has been made with a "null"
disk address passed as an argument. This means that recursion has reached the bottom
of the tree. The new data record should be added to the data file. Its disk address and its
key get placed in a KLRec. This is returned to the preceding level of recursion for
processing.

The final aspect of DoAdd() is the mechanism for unwinding recursion. This starts
by checking a "work flag" returned by the recursive call. If the flag is not set, function
DoAdd() can simply return; but if the flag is set then a KLRec and link value have to be
inserted into the BTreeNode in the current stack frame and the updated node must be
written back to disk.

Most of the remaining complexities relate to insertions into a BTreeNode. These
operations are outlined after the complete DoAdd() algorithm.

Naturally, like all recursive routines, the termination conditions for DoAdd() come
first. So the actual structure of the function involves the termination tests, then the
setting up of a further recursive call, and finally, after the recursive call, the fix-up code.
The algorithm for DoAdd() is as follows:

DoAdd(arguments include record to be inserted and disk address
of next node from index file, …)

Check "disk address" argument passed in call

if (disk address is NO_DADDR) {
Save new record to data file
Update housekeeping info (number of records etc)
Return details of key for new data record and

its location in data file, and set flag
to indicate fix up required

return;
}

Load a BTreeNode from the index file
into current stack frame

Ask current node to search for given key
if(found) {

Find location in data file for record with
this key

Replace with new data
Set flag to say fix up not required
return;
}

// If key not found, 'index' variable will have been set
// so as to identify link to subtree
DoAdd(newData, current.links[index],

…);

Terminating
recursion by inserting
a new record

Unwinding recursion
and fixing up records

Termination
conditions
Check whether "off
end of tree"

Load another tree
node into memory

Check for key

If find key, terminate
by replacing data

Recursive call

886 Two more trees

if (fix up flag not set)
return;

if (current Btree node is not full)

Insert details of key/disk location into
current node

else {
Split the current node,
Get some key/location records transferred

to a new tree node and add this to
index file

Get a "median record" to be passed by for
insertion by caller

Set flag to indicate caller must do fix up.
}

Have changed current BTreeNode by adding to it, or
by splitting it, so write it to disk

Insertion of an extra key into a partially filled BTreeNode is the simplest case, see
Figure 24.15. The BTreeNode can be given details of the new key (more strictly, a
KLRec, key/location pair, defining the data item), and the position where this is to go in
the node's array of KLRecs. Existing entries with keys that are greater in value should
be moved to the right in the array to make room; the new KLRec entry can be inserted
and the count of entries incremented. Every time a BTreeNode is changed, it has to be
written back to the index file.

4 19 33 78 93 -1 -1 -1 -1 -1

45

5 19 33 78 93 -1 -1 -1 -1 -1 -145

Simple insert into a "leaf node":

Figure 24.15 Simple insertion into a partially filled node.

Check "work flag"
on return from

recursion

Do fix up operations:

Simple insertion

Or splitting of node

Insertion into a
partially filled

BTreeNode

Operations on BTrees 887

If the insertion is into an "internal" BTreeNode, then there will be an extra link that
has to be inserted in addition to the KLRec. This extra link is the disk address of an
extra BTreeNode that results from a "split" operation at a lower level..

The BTreeNode can have a single member function that deals with insertions of a
KLRec and associated extra link (the extra link argument will be -1 in the case of
insertion into a leaf node):

void BTreeNode::InsertInNode(KLRec& info, daddr_t diskpos,
int index)

{
for (int i = n_data - 1; i >= index; i--) {

data[i+1] = data [i];
links[i+2] = links[i+1];
}

data[index] = info;
links[index+1] = diskpos;
n_data++;

}

If a BTreeNode already has MAX keys, then it has to be split, just like a full 2-3 node
would get split. There will be a total of MAX+1 keys (the MAX keys already in the node
and the extra one). Half (those with the lowest values) are left in the existing node; half
(those with the greatest values) are copied into a newly created BTreeNode, and one, the
median value, gets moved up into the parent BTreeNode.

The basic principles are as illustrated in Figure 24.16. This shows an insertion into a
full leaf node (all its subtree links are -1). An extra BTreeNode is created (shown as
"node02"). Half the data are copied across. Both nodes are marked as half empty.
Then, both would be written to disk (the new BTreeNode, "node02", going at the end of
the index file, the original BTreeNode, "node01", being overwritten on disk with the
updated information). The median key, and the disk address for the new "node02"
would then have to be inserted into the BTreeNode that is the parent of node01 (and
now of node02 as well).

There are really three slightly different versions of this split process. In the first, the
extra key has a low value and it gets inserted into the left (original) node. In the second,
the new key is the median value; it gets moved to the parent. Finally, there is the
situation where the new key is large and it belongs in the right (new) node. The
reshuffling processes that move data around are slightly different for the three cases and
so are best handled by separate auxiliary functions.

The overall BTree::Split() function has to be organized along the following
lines:

Split
given: a BTreeNode to be split "node_to_split"

an extra KLRec key/data-location pair
an extra link (disk address of a BTreeNode that

is to become a subtree of "node_to_split"

Move existing entries
right to make room

Insert key/location
pair and link to
subtree

Insertion into a full
BTreeNode – splitting
the node

888 Two more trees

6 32 47 56 64 -1 -1 -1 -1 -1

41

-1 -1

5 19 3378 93 -1 -1 -1 -145

Splitting a full node:

67 73

3 32 41 47 -1 -1 -1 -1

3 64 -1 -1 -1 -167 73

56

"node02"

"node01"

"node01"

"node02"

information to be inserted
into parent node

Figure 24.16 Splitting a BTreeNode.

and an index specifying where new entry to go.
if (index > MIN)

use an auxiliary "Insert Right" function to
get new key into right node

else
if (index == MIN)

use an auxiliary "Insert Middle" function to
split the node, sharing the existing entries
between old and new parts
keeping the new key as "median"

else
use an auxiliary "Insert Left" function to

get new key into left node
return

Median value to get put into parent node
disk address of the newly created node.

The auxiliary functions have loops that shuffle KLRec records and links between the
old and new BTreeNode records. Though the code is fairly simple in structure, there are
lots of niggling little details relating to which link values end up in the link arrays of the
two nodes.

Operations on BTrees 889

The basic operations are as shown in Figure 24.17 for the case of inserting the new
data in the right hand node; the process is:

Insert in Right
given: a BTreeNode to be split "node_to_split"

an extra KLRec key/data-location pair
an extra link (disk address of a BTreeNode that

is to become a subtree of "node_to_split"
an index specifying where new entry to go

BTreeNode newNode; // BTreeNode created on stack
for (i = MAX-1, j = MIN-1; i >= index; i--, j--) {

newNode.links[j+1] = nodetosplit.links [i+1];
newNode.data [j] = nodetosplit.data [i];
}

newNode.links [j+1] = extralink;
newNode.data[j] = extradata;
for (j--; i > MIN; i--, j--) {

newNode.links[j+1] = nodetosplit.links [i+1];
newNode.data[j] = nodetosplit.data [i];
}

newNode.links[0] = nodetosplit.links[MIN+1];
newNode.n_data = nodetosplit.n_data = MIN;
return_diskpos = MakeNewDiskBNode(newNode);

return
Median value to get put into parent node

(nodetosplit.data [MIN])
disk address of the newly created node.

(return_diskpos)

The operations all take place on a temporary BTreeNode created in the stack (as a
local variable of the "insert in right" function). When this has been filled in
successfully, an auxiliary function gets it into the data file (at the end of the file) and
returns its disk address for future reference.

The KLRec with the median valued key, and the address of the extra BTreeNode, are
passed back to the calling level of the recursion. There they have to be inserted into the
parent, which may again split. The process is identical in concept to that shown in
Figures 24.8, 24.9 and 24.10 for the 2-3 trees.

As also illustrated previously for the 2-3 trees, if there is no parent node, a new root
node has to be created for the tree. This process is illustrated in Figure 24.18.

The figure shows a BTree index file that initially has a single full node containing
the keys 20, 33, 45, 56, 67, and 79 (links to data records in the datafile are not shown).
There are no subtrees; so all the BTree structure link fields are -1; and the count field is
6. The BTreeNode is assumed to be 80 bytes in size; starting at byte 4 (after a minimal
housekeeping record that contains solely the byte address of the first record).

Insertion of key 37 will force the record to split as there would now be seven keys
and these nodes have a maximum of six. The three highest keys (56, 67, and 79) are

Copy1

Insertion

Copy2

Clean up

Initially a single full
BTreeNode

890 Two more trees

shifted into a new BTreeNode (see Figure 24.18). This would start at byte 84 of the
disk file. The node would be assembled in a structure on the stack and then be written
to the disk file.

6 30 40 50 60 -1 -1 -1 -1 -1

75

-1 -170 80

6 30 40 50 60 -1 -1 -1 -1 -1 -1 -170 80

-1 -1 -1 -1 -1 -1 -180

Copy1:
 largest keys into
 right node

6 30 40 50 60 -1 -1 -1 -1 -1 -1 -170 80

-1 -1 -1 -1 -1 -1 -18075

Insertion:
 new key into
 right node

6 30 40 50 60 -1 -1 -1 -1 -1 -1 -170 80

-1 -1 -1 -1 -1 -1 -18070 75

Copy2:
 fill up remainder
 of right node

3 30 40 50 -1 -1 -1 -1

-1 -1 -1 -18070 753

Clean up:
 fix counts in
 both nodes

60 Return:
 median KLRec, and
 disk address of new node

Figure 24.17 Reorganizing a pair of BTreeNodes after a "split".

Operations on BTrees 891

Insertion of 37, splits node:

-120 33 37 -1-1-1-1-1-13

56 67 79 -1-1-1-1-1-1-13

45 484-1-1-1-1-11

Original node at
location 4 in file.

Extra "right" node at
location 84 in file.

New root node at
location 164 in file.

Link to node with
smaller keys (4)

Link to node with
larger keys (84)

20 33 37 -1-1-1-1-1-13 56 67 79 -1-1-1-1-1-1-13 45 484-1-1-1-1-11164

Final file contains three BTreeNodes:

Link to root node

6 20 33 45 56 67 79 -1-1-1-1-1-1-14

Index file with housekeeping data and one BTreeNode:

BTreeNode

Figure 24.18 Splitting leading to a new root node.

The three lowest keys (20, 33, 37) would go in the original BTreeNode starting at
byte 4 of the file. This BTreeNode would first be composed in memory and then would
overwrite the existing record on disk.

The median, with key 45, would have to go into a new root BTreeNode. It would
need links down to the original BTreeNode at 4 (link[0], all the keys less than 45) and
the BTreeNode just created at location 84 in the file (link[1], all the keys greater than
45). The new root BTreeNode would get written to the file starting at byte 164.

Finally, the housekeeping data at the front of the file would be updated to hold the
disk address of the new root node.

Remove

As already noted, records are removed in much the same way as in AVL trees. A
recursive routine hunts down through the tree to find the key for the record that is to be
removed. (If the key is not found, the routine returns some failure indication.) As it

892 Two more trees

recurses down through the tree, the routine loads BTreeNodes from the file into the
stack, as in previous examples these define the path back to the root and are the nodes
that may need to be fixed up.

If the key is found in an internal node, data must be promoted from a leaf node (the
implementation in the next section promotes the successor key – the smallest key
greater than the key to be deleted). Once the promotion has been done, the original
promoted data must be deleted. So the routine further recurses down through the tree
until it has the leaf node from where data were taken.

All actual deletions take place on leaf nodes (either because the key to be deleted
was itself in a leaf node, or because a key was taken from a leaf node to replace a key in
an internal node). A deletion reduces the number of keys in the node. The remaining
keys are rearranged to close up the space left by the key that was removed. If there are
still at least MAX/2 keys in the leaf, then essentially everything is finished. The node
can be written back to the file. Recursion can simply unwind (if an internal node was
modified by having data replaced with promoted data, then it gets written to the file
during the unwinding process).

The difficulties arise when a node gets left with less than MAX/2 keys. Such a node
violates the BTree conditions (unless it happens to be the root node); it is termed a
"deficient node". A deficient node can't do anything to "fix itself up". All it can do is
report to its parent node. This is achieved, in the recursive procedure, by a node that
detects deficiency setting a return flag; the flag is checked at the next level above as the
recursion unwinds.

If a parent node sees that a child node has become deficient, it can "fix up" that child
node by shifting data from "sibling nodes". There are a couple of different situations
that must be handled. These are illustrated in Figures 24.19 and 24.20 .

Figure 24.19 illustrates a "move" operation. The initial tree (shown in Pane 1 of
Figure 24.19) would have five nodes (only four are shown). The root has three keys
(300, 400, and 500) and four links down to subtrees. The first subtree (not shown)
would contain the keys less than 300. The second subtree, node n1, contains keys
greater than 300 and less than 400. The third subtree (in link[2]) has the keys
between 400 and 500. The final subtree has the keys greater than 500.

Node n2 has exactly MAX/2 keys. If one of its keys is removed, e.g. 440, it is left
"deficient" (Pane 2 of Figure 24.19). It cannot do anything to fix itself up. But, it can
report to its problem to its parent node (which in this case is the root node).

The root node can examine the sibling nodes (n1 and n3) on either side of the node
that has just become deficient. Node n1 has four keys (> MAX/2). The deficiency in
node n2 could be made up by "transferring a key" from n1. That would in this case
leave both nodes n1 and n2 with exactly MAX/2 keys.

But of course, you can't simply transfer a key across between nodes because the keys
also have to be in order. There has to be a key in the root node such that it is greater
than all keys in its left subtree and smaller than all keys in its right subtree.

Deficient nodes need
"fixing up"

Moving data from a
sibling node

Operations on BTrees 893

3 300 ? n1 n2 n3400 500

3 420 -1 -1 -1 -1440 480

4 333 -1 -1 -1 -1360 385

3 570 -1 -1 -1 -1690 833

388

Root
node

Left sibling (n1)

Node where key
gets removed (n2)

Right sibling (n3)

1

2
2 420 -1 -1 -1 -1480

Deficient node
 (n2)

3 300 ? n1 n2 n3500

3 420 -1 -1 -1 -1480

3 333 -1 -1 -1 -1360 385

388

Root node

 (n1)

 (n2)

3

400

3 570 -1 -1 -1 -1690 833
Right sibling (n3)

unchanged

Figure 24.19 Moving data from a sibling to restore BTree property of a "deficient"
BTreeNode.

The "transfer of a key" actually involves taking the largest key in a left sibling (or
smallest key in a right sibling) and using this to replace a key in the parent. The key
from the parent is then used to restore the deficient node to having at least the minimum
number of keys.

In the example shown (Pane 3 of Figure 24.19), the key 388 is taken from node n1
(leaving it with three keys) and moved up into the parent (root) node where it replaces
the key 400. Key 400 is moved down into node n2.

Everything has been restored. The link down "between" keys 300 and 388 (link[1]
of the root node) leads to all keys in this range (i.e. to node n1 with keys 333, 360 and
385). The link down between keys 388 and 500 leads to the "subtree" (i.e. node n2)
with keys between 388 and 500 (keys 400, 420, and 480). All nodes continue to satisfy
the BTree requirements on their minimum number of keys.

For a "move" or transfer to take place, at least one of the siblings of a deficient node
must have more than MAX/2 keys. Move operations can take a key from the left sibling
or the right sibling of a deficient node. Of course, if the deficient node is on link[0]

894 Two more trees

of its parent then it has no left sibling and a move can only occur from a right sibling. If
the deficient node is in the last subtree link of its parent, only a move from a left sibling
is possible. If a node has both left and right sibling, and both siblings have more than
MAX/2 keys, then either can be used. In such cases, it is best to move a key from the
sibling that has the most keys.

Sometimes, both siblings have just the minimum MAX/2 keys. In such situations,
"move" operations cannot be used. Instead, there is another way of "fixing up" the
node. This alternative way combines all the existing keys in the deficient node and one
of its siblings into a single node and ceases to use one of the BTreeNodes in the file.
Figure 24.20 illustrates a combine operation.

3 300 ? n1 n2 n3400 500

3 420 -1 -1 -1 -1440 480

3 333 -1 -1 -1 -1360 385

3 570 -1 -1 -1 -1690 833

Root node

Left sibling (n1)

Node where key
gets removed (n2)

Right sibling (n3)

1

2
2 300 ? n1 n3500

6 333 -1 -1 -1 -1360 385

Root node

 (n1)

 (n2)
discarded

3 570 -1 -1 -1 -1690 833Right sibling (n3)

420 480400

Figure 24.20 Combining BTreeNodes after removing a key.

Since a BTreeNode has to be removed, there will be one fewer link down from the
parent. Since all the links in a BTreeNode must either be NULL or links down to
subtrees, this means that the keys in the parent node have to be squeezed up a bit.
There will be exactly MAX/2 keys from a sibling, MAX/2 - 1 keys from the node that
became deficient. These are combined along with one key from the parent to produce a
full BTreeNode.

Combine operations

Operations on BTrees 895

In the example shown in Figure 24.20, the initial state has each of the three nodes
n1, n2, and n3 with three keys. Removal of key 440 from n2 leaves it deficient. The
parent can not shift a key from either n1 or n3 for that would leave the donor deficient.
So, instead, key 400 from the parent, and the remaining keys 420 and 480 are shifted
into n1, filling it up so that it has six keys. (Alternative rearrangements are possible; for
example, key 500 from the parent and the three keys from node n3 could be shifted into
n2 to fill it up and leave n3 empty. It doesn't matter which rearrangement is used.)

The BTreeNode that becomes empty, n2 in Figure 24.20, is "discarded". It is no
longer linked into the tree structure. (In a simple implementation, it becomes "dead
space" in the file; it continues to occupy part of the disk even though it isn't again used.)

As shown in Figure 24.20, the parent node now only has three links down. One goes
to a node (not shown) with keys less than 300. The second is to the full node n2 with
all the keys between 300 and 500. The third link is to the node, n3, with the keys
greater than 500. This leaves the parent node with just two keys.

Since the parent provides one key, it may become "deficient". If the parent becomes
deficient, it has to report this fact to its parent during the unwinding of the recursion. A
move or combine operation would then be necessary at that level. Removal of a key
from a leaf can in some circumstances cause changes at every node on the path back to
the root.

The root node is allowed to have fewer than MAX/2 keys. If the root node is involved
in a combine operation, it ends up with fewer keys. Of course, it is possible to end up
with no keys in the current root! Figure 24.21 illustrates such an occurrence.

1 100 a b

3 30 -1 -1 -1 -160 80

Root
node

Left subtree (a)

1

2

3 120 -1 -1 -1 -1201 310Right subtree (b)

6 30 -1 -1 -1 -160 80

Root node

120 310100 -1 -1 -1

Figure 24.21 Removal of a key may lead to a change of root node.

896 Two more trees

In this case, two BTreeNodes get discarded and the tree is "re-rooted" on the node
that originally formed the top of the left subtree. The "housekeeping" information at the
start of the BTree index file would have to be updated to reflect such a changed.

Removal of a record thus involves:

• finding the leaf node with the key (if the key is in an internal node, a promotion
operation must be done and then the original copy of the promoted data must be
found in a leaf node);

• removal of the key from the leaf;
• unwinding the recursive search, performing "fix ups" on any nodes that become

deficient;
• nodes get "fixed up" by parents performing move or combine operations affecting

the deficient node, a sibling, and the parent node.

Unlike Remove() for the AVL tree which returns the address of a data record in
memory, BTree::Remove(…) simply performs the action. (The data record is in the
data file. It doesn't actually get destroyed; the reference to it in the index is removed
making it inaccessible. Again, the space it occupies becomes "dead space" on disk).

Obviously, many auxiliary functions have to be used in the implementation of
BTree::Remove(). The implementation given in the following section has the
following functions:

BTree::Remove(long key); // interface
BTree::DoRemove(…); // main recursive routine
BTree::DeleteKeyInNode(…); // removal of key from node
BTree::DeleteInLeaf(…; // special case, leaf node
BTree::Successor(…); // get data to replace key in

internal node
BTree::Restore(…); // Organize fix up of deficient

child node
BTree::MergeOrCombineRight(…); // Merge child and right sibling
BTree::MergeOrCombineLeft(…); // Merge child and left sibling
BTree::MoveRight(…); // Move key out of left node
BTree::MoveLeft(…); // Move key out of right node
BTree:Combine(…); // Combined deficient node and

sibling

In addition, the implementation relies on several functions of class BTreeNode:

BTreeNode::SearchInNode(…); // Finding key
BTreeNode::InsertAtLeft(…); // Shifting keys into node
BTreeNode::InsertAtRight(…);
BTreeNode::ShiftLeft(…); // Moving keys around
BTreeNode::Compress(…);
BTreeNode::Deficient(…); // Checking status of node
BTreeNode::MoreThanMinFilled(…);

Overall removal
process

Operations on BTrees 897

Remove() driver
function

Function Remove() provides the interface; its only argument is the key corres-
ponding to the data record that must be deleted. The function has to check that a tree
exists, someone might try to delete data before any have been entered. If there is a
BTree to search, the Remove() function should load in the root node and set up the call
to the main recursive DoRemove() function. When DoRemove() returns, a check
should be made for the special case of needing a new root node (the situation illustrated
in Figure 24.21).

Remove(key)
if(there is no tree!)

return;

Load current root_node

DoRemove(key, root_node);
if (root_node has no keys left)

set housekeeping data to record new root
else

save root_node back on disk

Function DoRemove() is a recursive function with some parallels to the DoAdd()
function already considered. It has to recursively chase down through the tree to find
the key. There has to be a check to stop recursion. As recursion unwinds, any
necessary fix up operations are performed.

At each recursive level, the BTreeNode to be worked on has already been loaded at
the previous level (e.g. Remove() loads the root node). Since the BTreeNode is already
on the stack, it can be checked for the key; if the key is present the auxiliary
DeleteKeyInNode() function is called to remove it (this will involve a further
recursive call to DoRemove() if the node is an internal node). When the deletion has
been done, function DoRemove() can return. Function DoRemove() returns a flag
indicating whether it has left a node deficient.

If the key was not found, the function has to set up a further recursive call using the
appropriate link down to a subtree. If it encounters a "null" link, this means that the
specified key was not present, in that case the function can simply return. Usually,
there will be a valid disk address in the link. The BTreeNode at this location in the
index file should be loaded onto the stack and the recursive call gets made.

The unwinding process uses the auxiliary function Restore() to fix up any
deficient nodes. Other nodes that may have been modified just get written back to the
index file.

DoRemove(long bad_key and reference to a BTreeNode on the
stack)

Get node to search for the key
if(found)

Delete bad_key from this node
update count of keys in housekeeping records

Main recursive
DoRemove()

Termination of
recursion and
handling of delete

Setting up a recursive
call

Unwinding recursion

Termination of
recursion

898 Two more trees

return indication of whether node was left deficient

Get link to subtree
if(subtree == NO_DADDR) return 0;

Load next BTreeNode onto stack

repairsneeded = DoRemove(bad_key, nextNode);

if (repairsneeded)
Restore(…);

else
SaveBTreeNode(nextNode, subtree);

return indication of whether node was left deficient

The function DeleteKeyInNode() sorts out how to delete a key. The auxiliary
function DeleteInLeaf() deals with the easy case of deletion in a leaf (leaves are easy
to recognize, all subtree links are "null"). (Deletion in a leaf is trivial; all higher valued
keys are moved one place left so overwriting the key that has to be removed. The count
field for the node is then decremented.) If the node is an internal node, the auxiliary
function Successor() is employed to get the key/location pair of next higher key (the
lowest valued key in the right subtree). Then, DoRemove() must be called recursively
to get rid of the original copy of the promoted key/location pair.

DeleteKeyInNode(node to work on and index of key to be deleted
if (subtree links are null)

DeleteInLeaf(aNode, index);
return;

Replace entry with data promoted from
Successor(right subtree);

Load node at top of right subtree

Use DoRemove to remove promoted data from right subtree

Fixup

The Restore() function has to determine whether the deficient node is the leftmost
child (in which case can only merge with right sibling), or the rightmost child (can only
merge with a left sibling), or an intermediate case with both left and right siblings. If
both siblings exist, the merge operation should use the sibling with more keys. The
checks involve loading the sibling nodes into memory.

Restore(parent node, deficient node, index of parent's link
down to deficient node)

if(index == 0)

Setting up recursive
call

Recursive call

Unwinding recursion
and fixing up

Deletion of a key

Promotion of
successor

Restore() function

Operations on BTrees 899

MergeOrCombineRight(…);
else
if(index == parent.n_data)

MergeOrCombineLeft(…);
else

Load left sibling into a temporary BTreeNode

int left_num = temp.n_data;

Load right sibling into a temporary BTreeNode

int right_num = temp.n_data;

if(left_num >= right_num)
MergeOrCombineLeft(…);

else
MergeOrCombineRight(…);

The "MergeOrCombine Left / Right" functions check the occupancy of the selected
sibling node. If it has sufficient keys, a "move" is done; otherwise the more complex
combine operation is performed. The MoveLeft() function is similar in organization.

The MoveRight() operation takes a KLRec (key/data location pair) from the parent
and the rightmost link down from the left node and inserts these into the deficient node
(the BTreeNode does the actual insertion, it moves all existing entries one place right
then inserts the extra data). Then the rightmost KLRec is moved from the left node up
into the parent.

Figures like 24.19 were simplified in that the nodes operated on were leaf nodes.
Often they will be internal nodes with links down to lower levels. Thus, to the right of
key 388 there would be a link down to a subtree with all keys greater than 388 and less
than 400. This link down would have to be moved into link[0] of the deficient node.

MoveRight(parent node, two siblings, and index position)
Get KLRec from parent at indexed position
Get last down link from left node
Get other BTreeNode to insert KLRec and link
Replace parent KLRec with rightmost data from left node
decrement count field in left node

The Combine() shifts a KLRec from the parent and remaining data from the other
node.

MergeOrCombine

MoveRight()

24.2.4 An implementation

The header file, BTree.h, would contain the declaration for the pure abstract class
KeyedStorableItem along with the main class BTree:

900 Two more trees

class KeyedStorableItem {
public:

virtual ~KeyedStorableItem() { }
virtual long Key(void) const = 0;
virtual void PrintOn(ostream& out) const { }
virtual long DiskSize(void) const = 0;
virtual void ReadFrom(fstream& in) = 0;
virtual void WriteTo(fstream& out) const = 0;

};

inline ostream& operator<<(ostream& out,
const KeyedStorableItem& d)

{ d.PrintOn(out); return out; }
inline ostream& operator<<(ostream& out,

const KeyedStorableItem* p_d)
{ p_d->PrintOn(out); return out; }

A KeyedStorableItem is essentially something that can report its key and transfer
itself to/from a disk file.

The BTree code is parameterized according to the number of keys in each node.
This number needs to be small during testing but should be enlarged for a production
version of the code.

Class BTree makes use of BTreeNode objects and KLRec objects and its functions
have pointers and references of these types. They are basically a detail of the
implementation so their definitions go in the ".cp" implementation file. The types
however must be declared in the header:

#define MIN 3
#define MAX (2 * MIN)

class BTreeNode;
struct KLRec;

Class BTree has a simple public interface. The constructor takes a string that will be
the "base name" for the index and data files (e.g. if the given name is "test", the files
used will be "test.ndx" and "test.dat").

class BTree
{
public:

BTree(const char* filename);
~BTree();

int NumItems(void) const;

void Add(KeyedStorableItem& d);
int Find(long key, KeyedStorableItem& rec);
void Remove(long key);

Public interface of
class BTree

BTree implementation 901

All the complexity exists in the private implementation part.
The implementation needs some structure to represent the "housekeeping data" In

this simple implementation, this consists of the root address and a count of items in the
collection. The declarations of the various auxiliary functions come after the
declaration of this housekeeping structure.

The first group of member functions deal with disk transfers. The BTree object can
look after reading and writing its housekeeping information and its BTreeNodes. (The
nodes could have been made responsible for reading and writing themselves, it doesn't
make much difference). KeyedStorableItem objects are responsible for their own data
transfers, but class BTree is responsible for the files. It is the BTree object that must
perform the seek operations used to position the read/write file pointers before another
object is asked to transfer itself. The implementations for most of these functions are
simple, just a seek followed by a request to some other object to read or write itself.

The Get and Save functions use existing entries in the files. The MakeNew
functions add extra entries at the end of files (an extra BTreeNode or an extra data
record as appropriate). In a more sophisticated implementation, the MakeNew
functions could be enhanced to reuse "dead space" left where data records or
BTreeNodes have been deleted.

private:

struct HK {
daddr_t fRoot;
long fNumItems;

};

/* Disk i/o group */
void GetBTreeNode(BTreeNode& bnrec, daddr_t diskpos);
void SaveBTreeNode(BTreeNode& bnrec, daddr_t diskpos);
void GetDataRecord(KeyedStorableItem& datarec,

daddr_t diskpos);
void SaveDataRecord(KeyedStorableItem& datarec,

daddr_t diskpos);
daddr_t MakeNewDiskBNode(BTreeNode& bnode);
daddr_t MakeNewDataRecord(KeyedStorableItem& data);

void SaveHK(void);
void LoadHK(void);

The next declarations will be of all the auxiliary functions needed for the Add
operation followed by all the auxiliary functions needed for the Remove operation. The
main recursive DoAdd() function has a complex argument list because it most pass
back data defining any new information that needs to be inserted into a node (the
reference arguments like return_diskpos).

Auxiliary private
member functions for
disk transfers

902 Two more trees

Auxiliary functions
for Add

void DoAdd(KeyedStorableItem& newData, daddr_t filepos,
int& return_flag, KLRec& return_KLRec,
daddr_t& return_diskpos);

void Split(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink,
int index, KLRec& return_KLRec,
daddr_t& return_diskpos);

void SplitInsertLeft(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink,
int index, KLRec& return_KLRec,
daddr_t& return_diskpos);

void SplitInsertMiddle(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink,
int index, KLRec& return_KLRec,
daddr_t& return_diskpos);

void SplitInsertRight(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink,
int index, KLRec& return_KLRec,
daddr_t& return_diskpos);

int DoRemove(long badkey, BTreeNode& cNode);
void DeleteKeyInNode(BTreeNode& aNode, int index);
KLRec Successor(daddr_t subtree);
void DeleteInLeaf(BTreeNode& leaf, int index);

void Restore(BTreeNode& parent, BTreeNode& deficient,
int index);

void MergeOrCombineRight(BTreeNode& parent,
BTreeNode& deficient, int index);

void MergeOrCombineLeft(BTreeNode& parent,
BTreeNode& deficient, int index);

void MoveRight(BTreeNode& parent, BTreeNode& left,
BTreeNode& right, int index);

void MoveLeft(BTreeNode& parent, BTreeNode& left,
BTreeNode& right, int index);

void Combine(BTreeNode& parent, BTreeNode& left,
BTreeNode& right, int index);

Once all the auxiliary functions have been declared, the data members can be
specified. A BTree object needs somewhere to store its housekeeping information in
memory, two input/output file streams, and records of the size of the files.

HK fHouseKeeping;
fstream fTreeFile;
fstream fDataFile;
long fTreefile_size;
long fDatafile_size;

};

Auxiliary functions
for Remove()

Data Members

BTree implementation 903

The implementation file would start with the full declarations for struct KLRec (given
earlier) and class BTreeNode:

class BTreeNode {
friend class BTree;

private:

int SearchInNode(long keysought, int& index);
void InsertInNode(KLRec& data, daddr_t, int);
void InsertAtLeft(KLRec& data, daddr_t downlink);
void InsertAtRight(KLRec& data, daddr_t downlink);
void ShiftLeft(void);
void Compress(int index);

int NotFull() { return (n_data==MAX) ? 0 : 1; }
int Deficient() { return (n_data<MIN) ? 1 : 0; }
int MoreThanMinFilled()

{ return (n_data>MIN) ? 1 : 0; }

int n_data;
KLRec data[MAX]; /* 0..n_data-1 are filled */
daddr_t links[MAX+1]; /* 0..n_data are filled */

};

Class BTree is made a friend of BTreeNode so that code of member functions of class
BTree can work directly with things like the n_data count or the links[] array.

Implementation of class BTreeNode

The member functions of class BTreeNode are all simple (some are just inline functions
in the class declaration). Most of the rest involve iterative loops running through the
entries. Functions InsertInNode() and Search() were both shown earlier.

The InsertAtLeft() and InsertAtRight() functions are used during move
operations when fixing up deficient nodes. The InsertAtLeft() moves existing data
over to make room, adds the new data and increments the counter. The
InsertAtRight() function (not shown) is simpler; it merely adds the extra data in the
first unused positions and then increments the counter.

void BTreeNode::InsertAtLeft(KLRec& info, daddr_t downlink)
{

for(int i = n_data - 1; i >= 0; i--) {
data[i+1] = data[i];
links[i+2] = links[i+1];
}

links[1] = links [0];
data[0] = info;
links[0] = downlink;

904 Two more trees

n_data++;
}

Function ShiftLeft() moves KLRec and link entries leftwards after the leftmost
entry has been removed. It gets used to tidy up a node after its least key has been
removed during a "move" operation required to fix up a deficient sibling. Function
Compress() is used to tidy up a parent node after one of its keys (that identified by
argument index) has been removed as part of a Combine operation.

void BTreeNode::ShiftLeft(void)
{

n_data--;
links[0] = links [1];
for(int i = 0; i < n_data; i++) {

data[i] = data[i+1];
links[i+1] = links[i+2];
}

}

void BTreeNode::Compress(int index)
{

n_data--;
for(int i = index; i < n_data; i++) {

data[i] = data[i+1];
links[i+1] = links[i+2];
}

}

Implementation of class BTree's constructor and destructor

The constructor has to make up the names for the index and data files and then open
them for both input and output. If the files can not be opened, the program should
terminate (you could make the code "throw an exception" instead, see Chapter 29).

BTree::BTree(const char* filename)
{

char buff[100];
strcpy(buff,filename);
strcat(buff,".ndx");
fTreeFile.open(buff, ios::in | ios::out);
if(!fTreeFile.good()) {

cerr << "Sorry, can't open BTree index file." << endl;
exit(1);
}

strcpy(buff,filename);
strcat(buff,".dat");
fDataFile.open(buff, ios::in | ios::out);
if(!fDataFile.good()) {

Opening the files

BTree implementation 905

cerr << "Sorry, can't open BTree data file." << endl;
exit(1);
}

If the files have zero length, then the program must be creating a new tree;
otherwise, details of current size and location of current root node must be obtained
from the index file. The housekeeping data record needs to be set appropriately:

fTreeFile.seekg(0, ios::end);
long len = fTreeFile.tellg();
if(len == 0) {

fHouseKeeping.fNumItems = 0;
fHouseKeeping.fRoot = NO_DADDR;
SaveHK();
fTreefile_size = sizeof(HK);
fDatafile_size = 0;
}

else {
LoadHK();
fTreefile_size = len;
fDataFile.seekg(0, ios::end);
fDatafile_size = fDataFile.tellg();
}

}

The destructor, not shown, should save the housekeeping details and then close the
two data files.

Implementation of class BTree's disk transfer functions

These functions are all very similar, so only a few representative examples are shown:

void BTree::SaveHK(void)
{

fTreeFile.seekp(0);
fTreeFile.write((char*)&fHouseKeeping, sizeof(HK));

}

void BTree::GetBTreeNode(BTreeNode& bnrec, daddr_t diskpos)
{

fTreeFile.seekg(diskpos);
fTreeFile.read((char*)&bnrec, sizeof(BTreeNode));

}

void BTree::GetDataRecord(KeyedStorableItem& datarec,
daddr_t diskpos)

{

Get file size

Initialize for new
BTree file

Load data
characterising
existing BTree file

906 Two more trees

fDataFile.seekg(diskpos);
datarec.ReadFrom(fDataFile);

}

daddr_t BTree::MakeNewDiskBNode(BTreeNode& bnode)
{

SaveBTreeNode(bnode, fTreefile_size);
daddr_t diskpos = fTreefile_size;
fTreefile_size += sizeof(BTreeNode);
return diskpos;

}

daddr_t BTree::MakeNewDataRecord(KeyedStorableItem& data)
{

SaveDataRecord(data,fDatafile_size);
daddr_t diskpos = fDatafile_size;
fDatafile_size += data.DiskSize();
return diskpos;

}

Implementation of class BTree::Find()

The Find() function is given a key and a reference to a KeyedStorableItem (of
course this will really be a reference to an instance of some class derived from class
KeyedStorableItem). If Find() can find the key in the index file, it arranges for the
KeyedStorableItem to load itself. Function Find() returns a 0/1 indicator (1 for
success, 0 for failure i.e. key not present).

The function is a straightforward implementation of the iterative tree walk algorithm
shown earlier:

int BTree::Find(long key, KeyedStorableItem& rec)
{

daddr_t diskpos = fHouseKeeping.fRoot;
while(diskpos != NO_DADDR) {

int index;
BTreeNode current;
GetBTreeNode(current, diskpos);
if (current.SearchInNode(key, index)) {

daddr_t loc = current.data[index].fLocation;
GetDataRecord(rec,loc);
return 1;
}

 diskpos = current.links[index];
}

return 0;
}

BTree implementation 907

Implementation of class BTree::Add() and related functions

The Add() function itself is a straightforward implementation of the algorithm given
earlier:

void BTree::Add(KeyedStorableItem& d)
{

KLRec rec_returned;
daddr_t filepos_returned;
int workflag;
DoAdd(d, fHouseKeeping.fRoot, workflag,

rec_returned, filepos_returned);
if(workflag != 0) {

BTreeNode new_root;
new_root.n_data = 1;
new_root.links[0] = fHouseKeeping.fRoot;
new_root.data[0] = rec_returned;
new_root.links [1] = filepos_returned;
fHouseKeeping.fRoot = MakeNewDiskBNode(new_root);
}

}

The recursive DoAdd() function has two input arguments and three output
arguments. The input arguments are the new KeyedStorableItem (which is passed by
reference) and the disk address of the next BTreeNode that is to be considered. The
output arguments (all naturally passed by reference) are the flag variable (whose setting
will indicate if any fix up operation is needed) together with any KLRec and disk address
that needed to be returned to the caller.

void BTree::DoAdd(KeyedStorableItem& newData, daddr_t filepos,
int& return_flag, KLRec& return_KLRec,
daddr_t& return_diskpos)

{
int index;
BTreeNode current;
long key = newData.Key();

return_flag = 0;

if (filepos == NO_DADDR) {
return_KLRec.fKey = key;
return_KLRec.fLocation = MakeNewDataRecord(newData);
return_diskpos = NO_DADDR;
return_flag = 1;
fHouseKeeping.fNumItems +=1;
return;
}

Make initial call to
DoAdd() passing root
node

Create new root if
necessary

Recursive DoAdd()

Create new data
record

908 Two more trees

Loading node and
checking for key

GetBTreeNode(current, filepos);

int found = current.SearchInNode(key, index);

if(found) {
daddr_t location = current.data[index].fLocation;
SaveDataRecord(newData, location);
return;
}

KLRec rec_coming_up;
daddr_t diskpos_coming_up;
int need_insert_or_split;

DoAdd(newData, current.links[index],
need_insert_or_split,
rec_coming_up, diskpos_coming_up);

if (need_insert_or_split == 0)
return;

if (current.NotFull())
current.InsertInNode(rec_coming_up,

diskpos_coming_up, index);
else {

Split(current,
rec_coming_up, diskpos_coming_up,
index,
return_KLRec, return_diskpos);

return_flag = 1;
}

SaveBTreeNode(current, filepos);
}

The algorithm for Split() was given earlier. Its implementation is simple as it
merely needs to sort out whether the extra data are to be inserted belong in the existing
(left) node, a new right node, or should be returned to the parent node. The different
SplitInsert functions get called as required. The algorithm for SplitInsertRight()
was given earlier. The example implementation code shown here is for the other two
cases.

void BTree::SplitInsertMiddle(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink, int index,
KLRec& return_KLRec, daddr_t& return_diskpos)

{
BTreeNode newNode;
int i,j;
for (i = MAX-1, j = MIN-1; i >= MIN; i--, j--) {

newNode.links[j+1] = nodetosplit.links[i+1];
newNode.data[j] = nodetosplit.data[i];

Replace old data with
new data

Recursive call

Insert into current
node

Or split current node

Node splitting

Move contents of top
half of node into new

node

BTree implementation 909

}

newNode.links[0] = extralink;
newNode.n_data = nodetosplit.n_data = MIN;
return_KLRec = extradata;
return_diskpos = MakeNewDiskBNode(newNode);

}

void BTree::SplitInsertLeft(BTreeNode& nodetosplit,
KLRec& extradata, daddr_t extralink, int index,
KLRec& return_KLRec, daddr_t& return_diskpos)

{
BTreeNode newNode;
int i,j;
for (i = MAX-1, j = MIN-1; i >= MIN; i--, j--) {

newNode.links[j+1] = nodetosplit.links[i+1];
newNode.data[j] = nodetosplit.data[i];
}

newNode.links [0] = nodetosplit.links [MIN];
return_KLRec = nodetosplit.data[MIN-1];

for (i--; i >= index; i--) {
nodetosplit.links[i+2] = nodetosplit.links[i+1];
nodetosplit.data[i+1] = nodetosplit.data[i];
}

Slot in the new information.
nodetosplit.links[index+1] = extralink;
nodetosplit.data[index] = extradata;
newNode.n_data = nodetosplit.n_data = MIN;
return_diskpos = MakeNewDiskBNode(newNode);

}

Implementation of class BTree::Remove() and related functions

Function Remove() itself is simple. As explained earlier, it merely needs to set up the
initial recursive call and check for the (uncommon!) case of a need to change the root
when the existing root becomes empty:

void BTree::Remove(long key)
{

if(fHouseKeeping.fRoot == NO_DADDR)
return;

BTreeNode root_node;
GetBTreeNode(root_node, fHouseKeeping.fRoot);

(void) DoRemove(key, root_node);

Save new node

Copy data across to
new node

Pick value to be
passed back
Shift values across to
make room

Save new node

910 Two more trees

if (root_node.n_data == 0)
fHouseKeeping.fRoot = root_node.links [0];

else
SaveBTreeNode(root_node, fHouseKeeping.fRoot);

}

(The housekeeping data don't have to be saved immediately. They are saved by the
destructor that closes the BTree files.)

The DoRemove() function implements the algorithm given earlier:

int BTree::DoRemove(long bad_key, BTreeNode& cNode)
{

int index;
int found = cNode.SearchInNode(bad_key, index);
if(found) {

DeleteKeyInNode(cNode,index);
fHouseKeeping.fNumItems--;
return cNode.Deficient();
}

daddr_t subtree = cNode.links[index];
if(subtree == NO_DADDR)

return 0;

BTreeNode nextNode;
int repairsneeded;
GetBTreeNode(nextNode, subtree);
repairsneeded = DoRemove(bad_key, nextNode);
if (repairsneeded)

Restore(cNode, nextNode, index);
else

SaveBTreeNode(nextNode, subtree);
return cNode.Deficient();

}

The result returned by the function indicates whether the given node has become
deficient. If it is deficient, then the caller will discover that "repairs (are) needed".

The DeleteKeyInNode() function shows the details of setting up the mechanism to
find a key to promote followed by the call back to DoRemove() to get rid of the original
copy of this key.

void BTree::DeleteKeyInNode(BTreeNode& aNode, int index)
{

if (aNode.links [index+1] == NO_DADDR) {
DeleteInLeaf(aNode, index);
return;
}

DoRemove()

Recursive call

DeleteKeyInNode()

Check for simple
case, deletion in leaf

BTree implementation 911

Promote data from
right subtree

daddr_t subtree = aNode.links[index + 1];
aNode.data[index] = Successor(subtree);

long promotedskey = aNode.data[index].fKey;
BTreeNode nxtNode;
GetBTreeNode(nxtNode, subtree);

int repairsneeded = DoRemove(promotedskey, nxtNode);
if (repairsneeded)

Restore (aNode, nxtNode, index+1);
else

SaveBTreeNode(nxtNode, subtree);
}

The DeleteKeyInLeaf() function is trivial (shift higher keys left inside node,
decrement count) and so is not shown.

The Successor() function involves an iterative search that runs down the left links
as far as possible. The function returns the KLRec (key/data location pair) for the next
key larger than that in the call to Remove().

KLRec BTree::Successor(daddr_t subtree)
{

BTreeNode aNode;
while(subtree != NO_DADDR) {

GetBTreeNode(aNode, subtree);
subtree = aNode.links[0];
}

return aNode.data[0];
}

The Restore() function (which chooses which sibling gets used to move data or
combine with the deficient node) is simple to implement from the algorithm given
earlier.

The function MergeOrCombineLeft() illustrates the implementation for one of the
two MergeOrCombine functions. The "right" function is similar.

void BTree::MergeOrCombineLeft(BTreeNode& parent,
BTreeNode& deficient, int index)

{
BTreeNode left_nbr;
daddr_t left_daddr = parent.links[index-1];

GetBTreeNode(left_nbr, left_daddr);
if(left_nbr.MoreThanMinFilled()) {

MoveRight (parent, left_nbr, deficient, index-1);
SaveBTreeNode(left_nbr, left_daddr);
SaveBTreeNode(deficient, parent.links[index]);
}

else {

Removal of original
of promoted data

Successor

Restore()

MergeOrCombine
Left()

912 Two more trees

Combine(parent, left_nbr, deficient, index-1);
SaveBTreeNode(left_nbr, left_daddr);
}

}

The explanation given in the previous section included an algorithm for Move
Right(); this is the implementation for MoveLeft():

void BTree::MoveLeft(BTreeNode& parent, BTreeNode& left,
BTreeNode& right, int index)

{
KLRec rec_from_parent = parent.data[index];
daddr_t downlink = right.links[0];
left.InsertAtRight(rec_from_parent, downlink);
parent.data[index] = right.data[0];
right.ShiftLeft();

}

Function Combine() removes all data from the node given as argument right,
shifting these values along with information from the parent down into the left node:

void BTree::Combine(BTreeNode& parent, BTreeNode& left,
BTreeNode& right, int index)

{
KLRec rec_from_parent = parent.data[index];
daddr_t downlink = right.links[0];
left.InsertAtRight(rec_from_parent, downlink);

for(int j = 0; j < right.n_data; j++)
left.InsertAtRight(right.data[j], right.links[j+1]);

parent.Compress(index);
}

MoveLeft()

Combine()

24.2.5 Testing

The problems involved in testing the BTree code, and their solution, are exactly the
same as for the AVL tree. The BTree algorithms are complex. There are many special
cases. Things like promoting a key from a leaf several levels down in the tree are only
going to occur once the tree has grown quite large. Operations like deleting the current
root node are going to be exceedingly rare. You can't rely on simple interactive testing.

Instead, you use the technique of a driver program that invokes all the basic
operations tens of thousands of times. The driver program has to be able to test the
success of each operation, and terminate the program if it detects something like a
supposedly deleted item being "successfully" found by a later search. A code coverage

BTree testing 913

tool has to be used in conjunction with the driver to make certain that every function
has been executed.

The driver needed to test the BTree can be adapted from that used for the AVL tree.
There are a few changes. For example, insertion of a "duplicate" key is not an error,
instead the old data are overwritten. Data records are not dynamically created in main
memory. Instead, the program can use a single data record in memory filling it in with
data read from the tree during a search operation, or setting its data before an insert.

EXERCISES

1 Complete the implementation and testing of the AVL class.

2 Complete the implementation and testing of the BTree class.

3 Add a mechanism for "recycling" the space occupied by "dead" BTreeNodes.

914 Two more trees

umenting a design 915

