28

28 Design and documentation:
2

The examples given in earlier chapters have in arather informal way illustrated a design
style that could be termed "object-based design”.

At the most general level, there are similarities to the "top down functional
decomposition™ approach discussed in Chapter 15. A design process involves:

e decomposition, i.e. breaking a problem into smaller subparts that can be dealt with
largely independently;

and

e iteration, a problem gets worked through many times at increasing levels of detail;
provisional decisions get made, are tested through prototyping, and subsequently
may be revised.

The most significant difference between object-based design and functional
decomposition isin theinitial focus for the decomposition process.
Top-down functional decomposition is an effective approach when the program has A focus on function
the basic form: input some data, compute some "function” of the data, output the result.
In addition, the data must be simple in form. In such cases, the "function” that must be
computed using the data serves as an obvious focus for the design process.
There are still many scientific, statistical, and business applications that have this
relatively simple form. Examples are things like "compute the neutron flux in this
reactor”, or "calculate our total wage and tax hills given these employee time sheets".
The function that must be computed for the data may be complex, but the overall
program structureis simple.
Other programs don't fit this pattern. Many are "event handlers'. They have some " Multi-functional
source of "events'. These "events' may result from a user working interactively with €vent handler
keyed commands, menu-selections, or mouse actions. In other cases, the "events' may programs

1006

Design and documentation: 2

A focuson data

come through external network connections reflecting actions by collaborating workers
or autonomous devices. In simulation programs, the "events' may be created by the
program’s own logic.

"Events" represent requests for particular actions to be performed, particular
functions to be executed. The program has many functions. The ones that are
performed, and the sequence in which they are performed depends on the events
received. The event patterns, and hence the function calls, differ in every run of the
program.

Events often involve the creation (or deletion) of data elements. These data
elements are of many different types. Their lifetimes vary. They are interrelated in
complex ways. Frequently, simple individual data elements are linked together through
pointers to build up models of more elaborate data structures.

These programs may still involve complex calculations. For example, you could
have a "Computer Aided Design" (CAD) engineering program for designing nuclear
reactors. Such a program would involve a sophisticated interactive component (alittle
like one of the better draw programs that you can get for personal computers),
components for display of three dimensional structures, and — a complex function to
calculate neutron fluxes. But the calculation is only one minor aspect of the overall
program.

It is possible to design these programs using top-down functional decomposition.
Though possible, such an approach to design is frequently problematical. There is no
obvious starting point, no top from which to decompose downwards. Y ou can identify
the different main functions, e.g. edit, 3-d model, calculate, and you can decompose
each of these. But then you end up with separate groups of functions that have to
communicate through some shared global data. It is very easy for inconsistencies to
arise where the different groups of functions embody different assumptions about the
shared data.

Object-based programming is a design approach that helps deal with these more
complex programs. The focus switches to the data.

The data will involve composites and simple data elements. For example, a CAD
program has an overall structure (the engineering component being built) that is a
composite made up from many individual parts of different types. Although there are
different kinds of individual part (pipe, bracket, rod, ...), al have data such as
dimensions, mass, material type, and al can do things like draw themselves on a screen.
The individua parts can look after their own data, the composite structure can deal with
things like organizing a display (identify those parts that would be visible, tell them to
draw themselves).

Inherently, data objects provide a basis for problem decomposition. If you can
identify a group of data values that belong together, and a set of transformations that
may be applied to those data, you have found a separable component for the overal
program. You will be able to abstract out that component out and think about in
isolation. You can design a class that describes the data owned and the things that can
be done.

Introduction 1007

Sometimes, the things that an object must do are complex (e.g. the Manager object's
application of the scheduling rules in the Supermarket example€). In such cases, you can
adopt a "top-down functional decomposition approach” because you are in the same
situation as before — there is one clearly defined function to perform and the data are
relatively simple (the data needed will all be represented as data members of the object
performing the action).

You can code and test a class that defines any one type of data and the related
functionality. Then you can return to the whole problem. But now the problem has
been simplified because some details are now packaged away into the already built
component.

When you return to the whole problem, you try to characterize the workings
program in terms of interactions amongst example objects. e.g. "the structure will ask
each part in its components list to draw itself".

If you design using top-down functional decomposition, you tend to see each
problem as unique. If take an object based approach, you are more likely to see
commonalities.

Asjust noted, most object-based programs seem to have "composite" structures that
group separate components. The mechanisms for "grouping” are independent of the
specific application. Consequently, you can almost always find opportunities for
reusing standard components like lists, dynamic arrays, priority queues. Y ou don't need
to create a special purpose storage structure; you reuse a standard class.

An object-based approach to design has two major benefits: i) a cleaner, more
effective decomposition of a complex problem, and ii) the opportunity to reuse
components.

The use of abstract classes and inheritance, "object oriented design", brings further
benefits. These have been hinted at in the Supermarket example, and in the discussion
above regarding the CAD program and the parts that it manipulates. These design
benefits are explored alittle morein Part V.

28.1 OBJECT-BASED DESIGN

In Chapter 15, on "top-down functional decomposition”, it was suggested that you
could begin with a phrase or one sentence summary that defines the program. That
doesn't help too much for something like the Supermarket, the InfoStore, or even the
RefCards example. One sentence summaries don't say much.

"The RefCards program allows a user to keep a collection of reference cards." What
are "reference cards'? Does the user do anything apart from "keep" them ("keeping"
doesn't sound very interesting)? Explanations as to what the program really does
usualy fill severa pages.

So, where do you begin?

Y ou begin by trying to answer the questions:

Opportunity for reuse

Beginning

1008

Design and documentation: 2

I dentifying
prototypical objects

Scenarios-1

Products of the first
step

¢ What are the objects?
e What do they own?
¢ What do they do?

You start by thinking about prototypical objects, not the classes and certainly not
abstract class hierarchies.

Some ideas for the prototypical objects can come from a detailed reading of the full
specification of the program (the "underline the nouns"' approach). As previously
noted, there are problems with too literally underlining the nouns; you may end
modelling the world in too much detail. But it is a starting point for getting ideas asto
things that might be among the more important objects — thus, you can pick up the need
for Cust oner s and Checkout s from the description of the Supermarket problem.

Usually, you will find that the program has a few objects that seem to be in for the
duration, e.g. the User I nt er act i on and Car dCol | ect i on objects in the RefCards
program, or the Shop, Manager , and Door objects in the Supermarket example. In
addition there are other objects that may be transient (e.g. the Cust omers). An
important aspect of the design will be keeping track of when objects get created and
destroyed.

Once you have formed at least some idea as to the objects that might be present in
the executing program, it is worthwhile focussing on "events' that the program deals
with and the objects that are involved. This process helps clarify what each kind of
object owns and does, and also begins to establish the patterns of communication
amongst classes.

Y ou make up scenarios for each of the important "events' handled by the program.
They should include the scenarios that show how objects get created and destroyed.

Y ou must then compare the scenarios to check that you are treating the objectsin a
consistent manner. At the same time, you make up lists of what objects are asked to do
and what data values you think that they should own.

Once you have seen the ways that your putative objects behave in these scenarios
you compose your initial class descriptions. These will include:

e classname, e.g. Shop

e dataowned: e.g. "severa histograms, some Lists to store Checkouts, atimer value,

¢ responsibilities: "adds a checkout (requested by Manager), notes when a checkout
becomes idle (Checkout), finds a Checkout for a Customer (Customer), reports the

time (various client classes), ..."

e uses. (summary of requests made to instances of other classes), e.g. "Run() (all
Activity subclasses), Checkout::AddCustomer(), ..."

Object based design 1009

The responsibilities of the classes are all the things that you have seen being asked of
prototypical instances in the scenarios that you have composed. It is often worthwhile
noting the classes of client objects that use the functions of a class. In addition, you
should note all the requests made to instances of other classes.

The pattern of requests made to and by an instance of a class identify its
collaborators. If two objects are to collaborate, they have to have pointers to one
another (e.g. the Shop had a Manager * pointer, and the collaborating Manager had a
Shop* pointer). These pointers must get set before they need to be used.

Setting up the pointers linking collaborators hasn't been a problem in the examples
presented so far. In more complex programs, the establishment of collaboration links
can become an issue. Problems tend to be associated with situations where instances of
one class can be created in different ways (e.g. read from afile or interactive command
from a user). In one situation, it may be obvious that a link should be set to a
collaborator. In the other situation, it may not be so obvious, and the link setting step
may be forgotten. Forgetting links results in problems where a program seems to work
intermittently.

The highlighting of collaborations in the early design stage can act as a reminder so
that later on, when considering how instances of classes are created, you can remember
to check that all required links are being set.

Sometimes you will get a class whose instances get asked to look after data and
perform various tasks related to their data, but which don't themselves make requests to
any other objects in the system. They act as "servers' rather than "clients" in al the
"collaborations" in which they participate.

Such classes represent completely isolable components. They should be taken out of
the main development. They can be implemented and tested in isolation. Then they
can be reintroduced as "reusable" classes with the same standing as classes from
standard libraries. The InfoStore example program provides an example; its Vocab
classwasisolablein thisway.

You will get class hierarchies in two ways. Occasionaly, the application problem
will already have a hierarchy defined. The usual example quoted is a program that must
manipulate "bank accounts’. Now "bank accounts' are objects that do various things
like accept debits and credits, report their balance, charge bank fees, and (sometimes)
pay interest. A bank may have several different kinds of account, each with rather
different rules regarding fees and interest payments. Here a hierarchy is obvious from
the start. Y ou have the abstract class "bank_account" which has pure virtual functions
"DeductCharges()" and "Addinterest()". Then there are the various specialized
subclasses ("loan_account”, "savings", "checking", "checking_interest") that implement
distinct versions of the virtual functions.

Other cases are more like the Supermarket example. There we had classes Manager ,
Door , Checkout , and Cust orer whose instances al had to behave "in the same way" so
asto make it practical for the smulation system to use asingle priority queue. Thiswas
handled by the introduction of an abstraction, class Act i vi ty, that became the base
class for the other classes. Class Acti vi ty wasn't essentia (the Shop could have used

" Collaborators"

| solable components

Class hierarchies

1010

Design and documentation: 2

Second step

Outputs from design
step

main()
Module structure

Tests

four different priority queues); but its introduction greatly simplified design. The class
hierarchy is certainly not one that you would have initially expected and doesn't reflect
any "real world" relationship. (How many common features can you identify between
"doors"' and "customers'?)

Your initial classes are little more than "fuzzy blob" outlines. Y ou have some idea
as to the data owned and responsihilities but details will not have been defined. For
example, you may have decided that "class Vocab owns the vocabulary and provides
both fast lookup of words and listings of details", or that "class Manager handles the
scheduling rules’. Y ou won't necessarily have decided the exact form of the data (hash-
table or tree), you won't have all the data members (generally extra counters and flags
get added to the data members when you get into more detail), and you certainly won't
have much idea as to how the functions work and whether they necessitate auxiliary
functions.

The next step in design is, considering the classes individually, to try to move from a
"fuzzy blob" outline to something with afirm definition. Y ou have to define the types
of all data members (and get into issues like how data members should be initialized).
Each member function has to be considered, possibly being decomposed into simpler
auxiliary private member functions.

The output of this step should be the class declarations and lists of member functions
like those illustrated in the various examples. Pseudo-code outlines should be provided
for al the more complex member functions.

Themai n() functionisusualy trivia: create the principle object, tell it to run.

These programs are generally built from many separate files. The design process
should also cover the module (file) structure and the "header dependencies'. Details
should be included with the rest of the design in the form of a diagram like that shown
in 27.6.

As always, some thought has to be given to the testing of individual components and
of the overall program.

28.2 DOCUMENTING A DESIGN

Diagrams are a much more important part of the documentation of the design of an
object-based program than they were for the "top-down functional decomposition"
programs.

Y our documentation should include:

e "fuzzy" blob diagrams showing the classes and their principle roles (e.g. Figures
22.1 and 22.9);

¢ ahierarchy diagram (if needed); this could be defined in terms of the fuzzy blob
classes (e.g. Figure 27.4) or the later design classes;

e scenariosfor al important interactions among instances of classes;

Object based design 1011

e class"design diagrams' that summarize the data and function members of a class,
(e.g. Figures 27.8 and 27.9);

e module structure;
* classdeclarations and member function summaries,

* pseudo-code outlines for complex functions.

1012 Design and documentation: 2

