
29 The Power of Inheritance
and Polymorphism
This chapter is another that presents just a single example program illustrating how
to apply features of the C++ language. In this case, the focus is on class inheritance
and the use of polymorphism. The application program is a simple game.

In the days before "Doom", "Marathon", and "Dark Forces", people had to be
content with more limited games! The basic game ideas were actually rather
similar. The player had to "explore a maze", "find items", and avoid being
eliminated by the "monsters" that inhabited the maze. However, details of graphics
and modes of interaction were more limited than the modern games. A maze would
be represented as an array of characters on the screen (walls represented by '#'
marks, staircases between levels by characters like '<' and so forth). Single
character commands allowed the player to move the maze-explorer around within
the boundaries of the maze. "Rogue" and "Moria" are typical examples of such
games; you may find that you have copies on old floppies somewhere.

You aren't quite ready to put Lucas Arts out of business by writing a
replacement for "Dark Forces", but if you have got this far you can write your own
version of Moria.

The example code given here is simplified with lots of scope for elaboration. It
employs a single level maze (or "dungeon"). A map of the dungeon is always
displayed, in full, on the screen. The screen size limits the size of the map; having
the complete map displayed simplifies play. (Possible elaborations include
showing only those parts of the map already explored and "scrolling" maps that are
too large to fit on a screen.) The map and other data are displayed using the same
system features as used in the "cursor graphics" examples from Chapter 12.

The map, details of the items to be found, and the monsters that are to be
avoided (or destroyed) are taken from text file input. Again, this is a simplification.
Games like Moria usually generate new maps for every game played.

The playing mechanism is limited. The user is prompted for a command. After
a user command has been processed, all the "monsters" get a chance to "run". A
"Monster:: Run()" function captures the essence of "monsterdom" i.e. a desire to
eliminate the human player.

Naturally, such a game program requires numerous obvious objects – the
"monsters", the "items" that must be collected, the "player" object, the dungeon

29

Example program

Objects everywhere

Inheritance and Polymorphism 1016

object itself. In addition there will have to be various forms of "window" object
used to display other information. Since there will be many "monsters" and many
"items", standard collection classes will be needed.

There are two separate class hierarchies as well as a number of independent
classes. One limited class hierarchy defines "windows". There is a basic "window"
class for display of data with a couple of specializations such as a window used to
output numeric data (e.g. player's "health") and a window to get input. (These
"window" classes are further elaborated in the next chapter.)

There is also a hierarchy of "things found in the dungeon". Some, like the
"items" that must be collected, are passive, they sit waiting until an action is
performed on them. Others, like the player and the monsters, are active. At each
cycle of the game, they perform some action.

Naturally, there are many different kinds of monster. Each different kind
(subclass) employs a slightly different strategy when trying to achieve their
common objective of "eliminating the player". This is where the polymorphism
comes in. The "dungeon" object will work with a collection of monsters. When it
is the monsters' turn, the code has a loop that lets each monster "run" (Monster *m;
…; m->Run();). The pointer m is polymorphic – pointing to different forms of
monster at different times. Each different form has its own interpretation of Run().

Windows hierarchy

"Dungeon Items"
hierarchy

Polymorphic pointers

29.1 THE "DUNGEON" GAME

The "dungeon" game program is to:

• Read game details from a text file. These details are to include the map layout,
the initial positions and other data defining collectable items, the monsters, and
the player.

• Provide a display similar to that shown in Figure 29.1. This display is to
include the main map window (showing fixed features like walls, position of
collectable items, and current positions of active items) and other windows that
show the player's status.

• Run the game. The game terminates either by the player object acquiring all
collectable items or by its "health" falling to zero.

• Operate a "run cycle" where the user enters a movement command (or "magic
action" command – see below), the command is executed, and then all other
active items get a chance to run.

• Arrange that the player object acquire a collectable item by moving over the
point where the item is located. Acquisition of a collectable item will change
one or more of the player object's "health", "wealth", or "manna" attributes.
Once taken by the player object, collectable items are to be deleted from the
game.

• Employ a scheme where single character commands identify directional
movements or "magic actions" of the player.

Introduction 1017

+--+
|w # w # # g # # $ * = # |
| ###### # # ##### # ######## # ####### ###### |
| # # ######## # # # #### # # # # $ # # # # |
| # #### # # w # # # # p # # # # # # # # # # |
| # # # # # $ # # # # # # # ##########w### # # |
| # # ## # # ###### ##### # # # # #### # # # # |
| # # # # # # # ## # # # # ##### #|
| # # # # # # ######### # # # ## ############ ##### # # |
| # # # # # # # # # # # # # # # #### |
| # # ## # # ### ###### # ######### # # # # # |
| # # # # # # ##### # ####### # # # # # ## |
| # ######## # # # # # # # # # = # # # # |
|#### # # # # # # # g # # # # # # |
| ###### # #### # # ####### # # # # # |
| # d # # ################# # # # # # |
| $ # $ # # # g # # # # # |
| $ # # h # # # # ## |
| # #### # # ######## |
+--+
 |Health 37| |Manna 6| |Wealth 30|
 +-----------------+ +-----------------+ +-----------------+
 |Direction 4 |
 +-----------------+ Player

object

"Monsters" Collectable
Items

Main window
(map display)

Number window

Edit window

Figure 29.1 "Dungeon" game's display.

• Handle attacks by monster objects on the player. A monster object adjacent to
the player will inflict damage proportional to its strength. This amount of
damage is deducted from the player object's health rating. Some monster
objects have the option of using a projectile weapon when not immediately
adjacent to the player.

• Handle attacks by the player on a monster object. A movement command that
would place the player object on a point occupied by a monster is to be
interpreted as an attack on that monster. The player inflicts a fixed amount of
damage. Such an attack reduces the monster's health attribute. If a monster
object's health attribute falls to zero, it is to be deleted from the game.

• Handle movements. The player and most types of monster are limited in their
scope for movement and cannot pass through walls or outside of the map area.
More than one monster may be located on the same point of the map; monsters
are allowed to occupy the same points as collectable items. When several
dungeon items are located at the same point, only one is shown on the map.

The player's health and manna ratings increase slowly as moves are made.

Inheritance and Polymorphism 1018

• Support "magic action" commands. Magic action commands weaken or
destroy monsters at a distance from the player; like movement commands, they
are directional.

A magic action command inflicts a predefined amount of damage on any
monster located on the neighbouring square in the specified direction, half that
amount of damage on any monster two squares away along the specified
directional axis, a quarter that amount on a monster three squares away etc.
Magic does not project through walls.

Use of a magic action command consumes "manna" points. If the player
object has insufficient manna points, the player suffers damage equal to twice
the deficit. So, if a command requires 8 manna points and the player object's
manna is 3, the manna is reduced to zero and the player object's health is
reduced by 10 after executing the command.

• Provide the following basic behaviours for monster objects.

A monster object will attack the player object if it is on an adjacent point.

If not immediately adjacent to the player object, some monsters "look" for the
player and, if they can "see" the player, they may advance toward it or launch a
projectile.

If they are not able to detect the player object, a monster object will perform its
"normal movement" function. This might involve random movement, no
movement, or some more purposive behaviour.

Monster objects do not attempt to acquire collectable items.

Monster objects do not interact with other monster objects.

29.2 DESIGN

29.2.1 Preliminaries

This "preliminaries" section explores a few aspects of the program that seem pretty
much fixed by the specification. The objective is to fill out some details and get a
few pointers to things that should be considered more thoroughly.

For example the specification implies the existence of "class Dungeon", "class
Player", "class Monster", a class for "collectable items" and so forth. We might as
well jot down a few initial ideas about these classes, making a first attempt to
answer the perennial questions "What does class X do? What do instances of class
X own?". Only the most important responsibilities will get identified at this stage;
more detailed consideration of specific aspects of the program will result in further
responsibilities being added. Detailed analysis later on will also show that some of
the classes are interrelated, forming parts of a class hierarchy.

Design preliminaries 1019

Other issues that should get taken up at this preliminary stage are things like the
input files and the form of the main program. Again, they are pretty much defined
by the specification, but it is possible to elaborate a little.

main()

We can start with the easy parts – like the main() function! This is obviously
going to have the basic form "create the principal object, tell it to run":

int main()
{

Dungeon *d;
d = new Dungeon;

Prompt user for name of file and read in name
…

d->Load(aName);

int status = d->Run();
Terminate(status);

return 0;
}

The principal object is the "Dungeon" object itself. This has to load data from a file
and run the game. When the game ends, a message of congratulations or commis-
erations should be printed. The Dungeon::Run() function can return a win/lose
flag that can be used to select an appropriate message that is then output by some
simple Terminate() function.

First idea for files

The files are to be text files, created using some standard editor. They had better
specify the size of the map. It would be simplest if the map itself were represented
by the '#' and ' ' characters that will get displayed. If the map is too large, the top-
left portion should be used.

Following the map, the file should contain the data necessary to define the
player, the collectable items, and the monsters. The program should check that
these data define exactly one player object and at least one collectable item. The
program can simply terminate if data are invalid. (It would help if an error message
printed before termination could include some details from the line of input where
something invalid was found.)

Collectable items and other objects can be represented in the file using a
character code to identify type, followed by whatever number of integers are
needed to initialize an object of the specified type. A sentinel character, e.g. 'q', can
mark the end of the file.

A plausible form for an input file would be:

Inheritance and Polymorphism 1020

width and height (e.g 70 20)
several (20) lines of (70) characters, e.g.
##################### … … ###########
… … #
… … #######
dungeon items
h 30 18 … human (i.e. player), coords, other data
w 2 2 10 … wandering monster, coords, …
…
$ 26 6 0 30 0 collectable item, coords, values
q end mark

Any additional details can be resolved once the objects have been better
characterized.

class Dungeon

Consideration of the main() function identified two behaviours required of the
Dungeon object: loading a file, and running the game.

The Dungeon::Load() function will be something along the following lines:

Dungeon::Load
Open file with name given
Load map
Load other data

Dungeon:: load map
read size
loop reading lines of characters that define

the rows of the map

Dungeon:: load other data
read type character
while character != 'q'

create object of appropriate type
tell it to read its own data
if it is a monster, add to monster collection
if it is a collectable, add to collectable

items collection
if player, note it (make sure no existing player)

check that the data defined some items to collect

The Dungeon::Run() function could have the following general form:

Dungeon::Run()
Finalize setting up of displays
Draw initial state

while(player "alive")
player "run"

Design preliminaries 1021

if(all collectables now taken)
break;

for each Monster m in monster collection
m->Run();

return (player "alive");

The displays must be set up. Obviously, the Dungeon object owns some window
objects. (Some might belong to the Player object; this can be resolved later.) The
Dungeon object will get primary responsibility for any work needed to set up
display structures.

The main loop has two ways of terminating – "death" of player, and all
collectable objects taken. The game was won if the player is alive at the end.

The Dungeon object owns the collection of monsters, the collection of
collectable items, and the player object. Collections could use class List or class
DynamicArray.

The Player object will need to access information held by the Dungeon object.
For example, the Player object will need to know whether a particular square is
accessible (i.e. not part of a wall), and whether that square is occupied by a
collectable item or a monster. When the Player takes a collectable item, or kills a
monster, the Dungeon should be notified so that it can update its records. Similarly,
the monsters will be interested in the current position of the Player and so will
need access to this information.

Consequently, in addition to Load() and Run(), class Dungeon will need many
other member functions in its public interface – functions like "Accessible()", and
"Remove Monster()". The full set of member functions will get sorted out steadily
as different aspects of the game are considered in detail.

Most "dungeon items" will need to interact with the Dungeon object in some
way or other. It would be best if they all have a Dungeon* data member that gets
initialized as they are constructed.

class Player

The Player object's main responsibility will be getting and interpreting a command
entered by the user.

Commands are input as single characters and define either movements or, in this
game, directional applications of destructive "magic". The characters 1…9 can be
used to define movements. If the keyboard includes a number pad, the convenient
mapping is 7 = "north west", 8 = "north", 9 = "north east", 4 = "west" and so forth
(where "north" means movement toward the top of the screen and "west" means
movement leftwards). Command 5 means "no movement" (sometimes a user may
want to delay a little, e.g. to let the player object recover from injury).

The "magic action" commands can use the keys q, w, e, a, d, z, x, and c (on a
standard QWERTY keyboard, these have the same relative layout and hence define
the same directional patterns as the keys on the numeric keypad).

The main Player::Run() function will be something like:

Movement commands

Magic action
commands

Player::Run()

Inheritance and Polymorphism 1022

Player::Run()
char ch = GetUserCommand();
if(isdigit(ch)) PerformMovementCommand(ch);
else PerformMagicCommand(ch);
UpdateState();
ShowStatus();

It will involve several auxiliary (private) member functions of class Player.
A GetUserCommand() function can arrange to read the input. Input is echoed at

the current location of the cursor. This could mess up the map display.
Consequently it will be necessary to position the cursor prior to reading a command
character. This work of cursor positioning and actual data input will involve
interactions with window object(s).

A function UpdateState() can deal with the business about a Player object's
health and manna levels increasing. A ShowStatus() function can keep the
displays current; again this will involve interactions with windows.

The Perform… functions will involve interactions with the Dungeon object, and
possibly other objects as well.

class Collectable

The collectable items could be made instances of a class Collectable. It does not
seem that there will be any differences in their behaviours, so there probably won't
be any specialized subclasses of class Collectable. At this stage, it doesn't appear
as if Collectable objects will do much at all.

They have to draw themselves when asked (presumably by the Dungeon object
when it is organizing displays); they will own a character that they use to represent
themselves. They will also need to own integer values representing the amounts by
which they change the Player object's health etc when they get taken. Some
access functions will have to exist so that the Player object can ask for the relevant
data.

A monster object moving onto the same point as a Collectable object will
hide it. When the monster object moves away, the Collectable object should be
redrawn. The Dungeon object had better arrange to get all Collectable objects
draw themselves at regular intervals; this code could be added to the while() loop
in Dungeon::Run().

class Monster

As explained in the dungeon game specification, the basic behaviour of a Monster
is to attack whenever possible, otherwise to advance toward the Player when this
is possible, otherwise to continue with some "normal action". This behaviour could
be defined in the Monster::Run() function which would involve a number of
auxiliary functions:

Monster::Run()
if(CanAttack())

Auxiliary private
member functions

used by Run()

Monster::Run()

Design preliminaries 1023

Attack();
else
if(CanDetect())

Advance();
else
NormalMove();

Different subclasses of class Monster can specialize the auxiliary functions so as to
vary the basic behaviour. Naturally, these functions will be declared as virtual.

Default definitions are possible for some member functions. The default
CanAttack() function should return true if the Player object is adjacent. The
default Attack() function would tell the Player object that it has been hit for a
specified number of points of damage. The default implementations for the other
functions could all be "do nothing" (i.e. just an empty body { } for Advance()
and NormalMove() and a return 0 for CanDetect()).

Checking adjacency will involve getting a pointer to the Player object (this can
be provided by the Dungeon object) and then asking the Player for its position. It
might be worth having some simple class to represent (x, y) point coordinates. A
Monster object could have an instance of class Pt to represent its position. The
Player could return its coordinates as an instance of class Pt. The first Pt could be
asked whether it is adjacent to the second.

Auxiliary private
member functions
used by Run()

29.2.2 WindowRep and Window classes

Previous experience with practical windowing systems has influenced the approach
developed here for handling the display. As illustrated in Figure 29.2, the display
system uses class WindowRep and class Window (and its specialized subclasses).

WindowRep

Actual communication with the screen is the responsibility of a class WindowRep
(Window Representation). Class WindowRep encapsulates all the sordid details of
how to talk to an addressable screen (using those obscure functions, introduced in
Chapter 12, like cgotoxy(x,y,stdout);). In addition, it is responsible for trying
to optimize output to the screen. When the WindowRep object gets a request to
output a character at a specific point on the screen, it only performs an output
operation if the character given is different from that already shown. In order to do
this check, the WindowRep object maintains a character array in memory that
duplicates the information currently on the screen.

The program will have exactly one instance of class WindowRep. All "window"
objects (or other objects) that want to output (or input) a character will have to
interact with the WindowRep object. (There can only be one WindowRep object in a
program because there is only one screen and this screen has to have a unique
owner that maintains consistency etc.)

Inheritance and Polymorphism 1024

WindowRep

Window

NumberItem EditText

Owns
 array of characters
 with screen content
Does
 put character on screen
 move cursor
 get input
 delays
Singleton class;

Owns
 position relative to screen
 arrays of characters
 with background and
 current content
 dimensions, framing flag
Does
 put character in current
 (or background) image
 organize drawing (all or
 just content area)
 clear current image
 return size details etc.

Owns
 numeric value and label
Does
 set value (and change display)
 return current value

Owns
 label, text buffer,
 size limit
Does
 accept input characters
 return text buffer
 set text buffer

Figure 29.2 Class WindowRep and the Windows class hierarchy.

A class for which there can only be a single instance, an instance that must be
accessible to many other objects, an instance that may have to create auxiliary data
structures or perform some specialized hardware initialization – this is a common
pattern in programs. A special term "singleton class" has been coined to describe
this pattern. There are some standard programming "cliches" used when coding
such classes, they are followed in this implementation.

The unique WindowRep object used in a program provides the following
services:

• PutCharacter
Outputs a character at a point specified in screen coordinates.

• MoveCursor
Positions the "cursor" prior to an input operation.

• GetChar
Inputs a character, echoing it at the current cursor position

• Clear
Clears the entire screen.

• CloseDown
Closes down the windowing system and gets rid of the program's WindowRep
object

"Singleton" pattern

WindowRep and Window classes 1025

There is another specialized static (class) function, Instance(). This handles
aspects of the "singleton pattern" (programming cliche) as explained in the
implementation (Section 29.3). Essentially, the job of this function is to make
certain that there is an instance of class WindowRep that is globally available to any
other object that needs it (if necessary, creating the program's unique WindowRep
object).

Window

Window objects, instances of class Window or its subclasses, are meant to be things
that own some displayable data (an array of characters) and that can be "mapped
onto the screen". A Window object will have coordinates that specify where its
"top-left" corner is located relative to the screen. (In keeping with most cursor-
addressable screen usage, coordinate systems are 1-based rather than 0-based so the
top left corner of the screen is at coordinate (1,1).) Window objects also define a
size in terms of horizontal and vertical dimensions. Most Window objects are
"framed", their perimeters are marked out by '-', '|', and '+' characters (as in Figure
29.1). A Window may not fit entirely on the screen (the fit obviously depends on
the size and the origin). The WindowRep object resolves this by ignoring output
requests that are "off screen".

Window objects have their own character arrays for their displayable content.
Actually, they have two character arrays: a "background array" and a "current
array". When told to "draw" itself, a Window object executes a function involving a
double loop that takes characters from the "current array", works out where each
should be located in terms of screen coordinates (taking into account the position of
the Window object's top-left corner) and requests the WindowRep object to display
the character at the appropriate point.

The "background array" defines the initial contents of the window (possibly all
blank). Before a window is first shown on the screen, its current array is filled
from the background. A subsequent "clear" operation on a specific point in the
window, resets the contents of the current window to be the same as the
background at the specified point.

A specific background pattern can be loaded into a window by setting the
characters at each individual position. In the dungeon game, the Dungeon object
owns the window used to display the map; it sets the background pattern for that
window to be the same as its map layout.

The Window class has the following public functions:

• Constructor
Sets the size and position fields; creates arrays.

• Destructor
Gets rid of arrays. (The destructor is virtual because class Window is to serve
as the base class of a hierarchy. In class hierarchies, base classes must always
define virtual destructors.)

Background and
current (foreground)
window contents

What does a Window
do?

Inheritance and Polymorphism 1026

• Set, Clear
Change the character at a single point in the current (foreground) array.

• SetBkgd
Change the character at a single point in the background array.

• Access functions: X, Y, Width, Height
Return details of data members.

• PrepareContent
Initialize current array with copy of background and, if appropriate, add frame.

• ShowAll, ShowContent
Output current array via the WindowRep.

The class requires a few auxiliary member functions. For example, the coordinates
passed to functions like Set() must be validated.

A Window owns its dimension data and its arrays. These data members should
be protected; subclasses will require access to these data.

The functionality of class Window will be extended in its subclasses. However
the subclasses don't change the existing functions like ShowAll(). Consequently,
these functions are not declared as virtual.

The relationships between class Window and its subclasses, and class Monster
and its subclasses, are subtly different. The subclasses of Window add functionality
to a working class, but don't change its basic behaviours. Consequently, the
member functions of class Window are non-virtual (apart from the destructor).
Class Monster defines a general abstraction; e.g. all Monster object can execute
some "NormalMove" function, different subclasses redefine the meaning of
"NormalMove". Many of the member functions of class Monster are declared as
virtual so as to permit such redefinition. Apart from the differences with respect to
the base class member function being virtual or non-virtual, you will also see
differences in the accessibility of additional functions defined by subclasses. When
inheritance is being used to extend a base class, many of the new member functions
appear in the public interface of the subclass. When inheritance is being used to
specialize an existing base class, most of the new functions will be private
functions needed to implement changes to some existing behaviour. Both styles,
"inheritance for extension" and "inheritance for redefinition", are common.

Subclasses of class Window

This program has two subclasses for class Window: NumberItem and EditText.
Instances of class NumberItem are used to display numeric values; instances of
class EditText can be used to input commands. As illustrated in Figure 29.3, these
are displayed as framed windows that are 3 rows deep by n-columns wide. The left
part of the window will normally contain a textual label. The right part is used to
display a string representing a (signed) numeric value or as input field where input
characters get echoed (in addition to being stored in some data buffer owned by the
object).

What does a Window
own?

Provision for class
hierarchy

"Inheritance for
extension" and

"inheritance for
redefinition"

WindowRep and Window classes 1027

+------------------+
|Health 100|
+------------------+

+------------------+
|Direction |
+------------------+

Frame

Label
Number
output here

Cursor positioned so that
input characters appear here

Figure 29.3 NumberItem and EditText Windows

NumberItem

The class declaration for NumberItem is:

class NumberItem : public Window {
public:

NumberItem(int x, int y, int width, char *label,
long initval = 0);

void SetVal(long newVal);
long GetVal() { return fVal; }

private:
void SetLabel(int s, char*);
void ShowValue();
long fVal;
int fLabelWidth;

};

In addition to the character arrays and dimension data that a NumberItem object
already has because it is a kind of Window, a NumberItem owns a long integer
holding the value to be displayed (and, also, an integer to record the number of
characters used by the label so that numeric outputs don't overwrite the label).

The constructor for class NumberItem completes the normal initialization
processes of class Window. The auxiliary private member function SetLabel() is
used to copy the given label string into the background array. The inherited
PrepareContent() function loads the current array from the background and adds
the frame. Finally, using the auxiliary ShowValue() function, the initial number is
converted into characters that are added to the current image array.

Once constructed, a NumberItem can be used by the program. Usually, usage
will be restricted to just three functions – GetVal() (return fVal;), SetVal()
(changes fVal and uses ShowValue() to update the current image array), and
ShowAll() (the function, inherited from class Window, that gets the window
displayed).

What does a
NumberItem own?

What does a
NumberItem do?

Inheritance and Polymorphism 1028

EditText

The primary responsibility of an EditText object is getting character input from
the user. In the dungeon game program, individual input characters are required as
command characters. More generally, the input could be a multicharacter word or a
complete text phrase.

An EditText object should be asked to get an input. It should be responsible
for getting characters from the WindowRep object (while moving the cursor around
to try to get the echoed characters to appear at a suitable point on the screen). Input
characters should be added to a buffer maintained by the EditText object. This
input process should terminate when either a specified number of characters has
been received or a recognizably distinct terminating character (e.g. 'tab', 'enter') is
input. (The dungeon program can use such a more generalized EditText object by
specifying that the input operation is to terminate when a single character has been
entered). Often, the calling program will need to know what character terminated
the input (or whether it was terminated by a character limit being reached). The
input routine can return the terminating character (a '\0' could be returned to
indicate that a character count limit was reached).

The EditText class would have to provide an access function that lets a caller
read the characters in its buffer.

The class declaration for class EditText is:

class EditText: public Window {
public:

EditText(int x, int y, int width, char *label, short size);
void SetVal(char*);
char *GetVal() { return fBuf; }
char GetInput();

private:
void SetLabel(int s, char*);
void ShowValue();
int fLabelWidth;
char fBuf[256];
int fSize;
int fEntry;

};

In addition to the data members inherited from class Window, a EditText owns
a (large) character buffer that can be used to store the input string, integers to record
the number of characters entered so far and the limit number. Like the
NumberItem, an EditText will also need a record of the width of its label so that
the input field and the label can be kept from overlapping.

The constructor for class EditText completes the normal initialization
processes of class Window. The auxiliary private member function SetLabel() is
used to copy the given label string into the background array. The inherited
PrepareContent() function loads the current array from the background and adds
the frame. The buffer, fBuf, can be "cleared" (by setting fBuf[0] to '\0')..

The only member functions used in most programs would be GetInput(),
GetVal() and ShowAll(). Sometimes, a program might want to set an initial text
string (e.g. a prompt) in the editable field (function SetVal()).

What does a EditText
own?

What does a
NumberItem do?

WindowRep and Window classes 1029

29.2.3 DungeonItem hierarchy

Class Monster is meant to be an abstraction; the real inhabitants of the dungeon are
instances of specialized subclasses of class Monster.

Class Monster has to provide the following functions (there may be others
functions, and the work done in these functions may get expanded later, this list
represents an initial guess):

• Constructor and destructor
The constructor will set a Dungeon* pointer to link back to the Dungeon object
and set a char data member to the symbol used to represent the Monster on the
map view.
Since class Monster is to be in a hierarchy, it had better define a virtual
destructor.

• Read
A Monster is supposed to read details of its initial position, its "health" and
"strength" from an input file. It will need data members to store this
information.

• Access functions to get position, to check whether "alive", …

• A Run() function that as already outlined will work through redefinable
auxiliary functions like CanAttack(), Attack(), CanDetect(), Advance()
and NormalMove().

• Draw and Erase functions.

• A Move function.
Calls Erase(), changes coords to new coords given as argument, and calls
Draw().

• GetHit function
Reduces "health" attribute in accord with damage inflicted by Player.

The example implementation has three specializations: Ghost, Patrol, and
Wanderer. These classes redefine member functions from class Monster as
needed.

A Ghost is a Monster that:

• uses the default "do nothing" implementation defined by Monster::
NormalMove() along with the standard CanAttack(), Attack() functions;

• has a CanDetect() function that returns true when the player is within a fixed
distance of the point where the Ghost is located (the presence of intervening
walls makes no difference to a Ghost object's power of detection);

class Ghost

Inheritance and Polymorphism 1030

• has an Advance() function that moves the Ghost one square vertically,
diagonally, or horizontally so as to advance directly toward the player; a Ghost
can move through walls;

• has a high initial "health" rating;

• inflicts only a small amount of damage when attacking the Player.

Class Ghost needs to redefine only the Advance() and CanDetect() functions.
Since a Ghost does not require any additional data it does not to change the
Read() function.

A Patrol is a Monster that:

• uses the default CanAttack(), Attack() functions to attack an adjacent
player;

• has a CanDetect() function that returns true there is a clear line of sight
between it and the Player object;

• has an Advance() function that instead of moving it toward the Player allows
it to fire a projectile that follows the "line of sight" path until it hits the Player
(causing a small amount of damage), the movement of the projectile should
appear on the screen;

• has a NormalMove() function that causes it to follow a predefined patrol route
(it never departs from this route so it does not attempt to pursue the Player).

• has a moderate initial "health" rating;

• inflicts a large amount of damage when making a direct attack on an adjacent
player.

The patrol route should be defined as a sequence of points. These will have to be
read from the input file and so class Patrol will need to extend the Monster::
Read() function. The Patrol::Read() function should check that the given
points are adjacent and that all are accessible (within the bounds of the dungeon
and not blocked by walls).

Class Patrol will need to define extra data members to hold the route data. It
will need an array of Pt objects (this can be a fixed sized array with some
reasonable maximum length for a patrol route), an integer specifying the number of
points in the actual route, an integer (index value) specifying which Pt in the array
the Patrol is currently at, and another integer to define the direction that the
Patrol is walking. (The starting point given for the Patrol will be the first
element of the array. Its initial moves will cause it to move to successive elements
of the Pt array; when it reaches the last, it can retrace its path by having the index
decrease through the array.)

A Wanderer is a Monster that:

• uses the default CanAttack(), Attack() functions to attack an adjacent
player;

class Patrol

class Wanderer

DungeonItem hierarchy 1031

• has a CanDetect() function that returns true there is a clear line of sight
between it and the Player object;

• has an Advance() function that causes the Wanderer to move one step along
the line of sight path toward the current position of the Player;

• has a NormalMove() function that causes it to try to move in a constant
direction until blocked by a wall, when its movement is blocked, it picks a new
direction at random;

• has a small initial "health" rating;

• inflicts a moderate amount of damage when making a direct attack on an
adjacent player.

A Wanderer will need to remember its current direction of movement so that it can
keep trying to go in the same direction. Integer data members, representing the
current delta-x, delta-y changes of coordinate, could be used.

There are similarities between the Monster and Player classes. Both classes
define things that have a Pt coordinate, a health attribute and a strength attribute.
There are similarities in behaviours: both the Player and the Monsters read initial
data from file, get told that they have been hit, get asked whether they are still alive,
get told to draw themselves (and erase themselves), have a "move" behaviour that
involves erasing their current display, changing their Pt coordinate and then
redrawing themselves. These commonalities are sufficient to make it worth
defining a new abstraction, "active item", that subsumes both the Player and the
Monsters.

This process of abstracting out commonalities can be repeated. There are
similarities between class Collectable and the new class ActiveItem. Both are
things with Pt coordinates, draw and erase behaviours; they respond to queries
about where they are (returning their Pt coordinate). These common behaviours
can be defined in a base class: DungeonItem.

The DungeonItem class hierarchy used in the implementation is shown in Figure
29.4.

Commonalities
between class Player
and class Monster

29.2.3 Finalising the classes

Completion of the design stage involves coming up with the class declarations of
all the classes, possibly diagramming some of the more complex patterns of
interaction among instances of different classes, and developing algorithms for any
complicated functions.

Class Dungeon

The finalised declaration for class Dungeon is:

Inheritance and Polymorphism 1032

DungeonItem

Collectable ActiveItem

Player Monster

Ghost Wanderer Patrol

owns
 link to Dungeon, point
 coord, display symbol
does
 draws itself, erases

 itself, reads data from
 file, reports where it is

owns
 3 integer value fields
does

 reads extra data,
 reports values

owns
 health & strength
 attributes

does
 reads extra data
 "runs" (define in subclass)
 gets hit

 reports if still "alive"
 moves

owns
 (nothing extra)
does
 "runs" using
 "Can Attack", "Attack",

 "Can Detect", "Advance",
 "NormalMove"

owns
 "manna", wealth attributes,
 movecount, links to windows
 used to display status

does
 reads extra data
 gets user command, takes
 collectables, attacks

 monsters, interprets
 movement & magic commands

Subclasses of Monster own
 unique data (patrol "route", wanderer record
 of last move)
does

 substitute specialized NormalMove(), Advance(),
 functions; read any extra data params.

Figure 29.4 DungeonItem class hierarchy.

class Dungeon {
public:

Dungeon();
~Dungeon();
void Load(const char filename[]);
int Run();
int Accessible(Pt p) const;
Window *Display();
Player *Human();

int ValidPoint(Pt p) const;

Monster *M_at_Pt(Pt p);
Collectable *PI_at_Pt(Pt p);
void RemoveProp(Collectable *pi);
void RemoveM(Monster *m);

Finalising the clases 1033

int ClearLineOfSight(Pt p1, Pt p2, int max,
Pt path[]);

private:
int ClearRow(Pt p1, Pt p2, int max, Pt path[]);
int ClearColumn(Pt p1, Pt p2, int max, Pt path[]);
int ClearSemiVertical(Pt p1, Pt p2, int max,

Pt path[]);
int ClearSemiHorizontal(Pt p1, Pt p2, int max,

Pt path[]);
void LoadMap(ifstream& in);
void PopulateDungeon(ifstream& in);
void CreateWindow();

DynamicArray fProps;
DynamicArray fInhabitants;
Player *fPlayer;

char fDRep[MAXHEIGHT][MAXWIDTH];
Window *fDWindow;
int fHeight;
int fWidth;

};

The Dungeon object owns the map of the maze (represented by its data elements
fDRep[][], fHeight, and fWidth). It also owns the main map window
(fDWindow), the Player object (fPlayer) and the collections of Monsters and
Collectables. Data members that are instances of class DynamicArray are used
for the collections (fInhabitants for the Monsters, fProps for the
Collectables).

The Load() and Run() functions are used by the main program. Function
Load() makes uses of the auxiliary private member functions LoadMap() and
PopulateDungeon() ; these read the various data and create Monster ,
Collectable, and Player object(s) as specified by the input. The auxiliary private
member function CreateWindow() is called from Run(); it creates the main
window used for the map and sets its background from information in the map.

Access functions like Display() and Human() allow other objects to get
pointers to the main window and the Player object. The ActiveItem objects that
move are going to need access to the main Window so as to tell it to clear and set
the character that is to appear at a particular point.

The ValidPoint() function checks whether a given Pt is within the bounds of
the maze and is not a "wall".

The functions M_at_Pt() and PI_at_Pt() involve searches through the
collections of Monsters and Collectables respectively. These function return the
first member of the collection present at a Pt (or NULL if there are no objects at that
Pt). The Remove… function eliminate members of the collections.

Class Dungeon has been given responsibility for checking whether a "clear line
of sight" exists between two Pts (this function is called in both Wanderer::
CanDetect() and Patrol::CanDetect()). The function takes as arguments the
two points, a maximum range and a Pt array in which to return the Pts along the

What does a
Dungeon own?

What does a
Dungeon do?

Inheritance and Polymorphism 1034

line of sight. Its implementation uses the auxiliary private member functions
ClearRow() etc.

The algorithm for the ClearLineOfSight() function is the most complex in
the program. There are two easy cases; these occur when the two points are in the
same row or the same column. In such cases, it is sufficient to check each point
from start to end (or out to a specified maximum) making certain that the line of
sight is not blocked by a wall. Pseudo code for the ClearRow() function is:

Dungeon::ClearRow(Pt p1, Pt p2, int max, Pt path[])
delta = if p1 left of p2 then 1 else -1
current point = p1
for i < max do

current point's x += delta;
if(current point is not accessible) return fail
path[i] = current point;
if(current point equal p2) return success
i++

return fail

Cases where the line is oblique are a bit more difficult. It is necessary to check
the squares on the map (or screen) that would be traversed by the best
approximation to a straight line between the points. There is a standard approach to
solving this problem; Figure 29.5 illustrates the principle.

The squares shown by dotted lines represent the character grid of the map or
screen; they are centred on points defined by integer coordinates. The start point
and end point are defined by integer coordinates. The real line between the points
has to be approximated by a sequence of segments joining points defined by integer
coordinates. These points define which grid squares are involved. In Figure 29.5
the squares traversed are highlighted by • marks.

(1,1)

(11,5)

Figure 29.5 A digitized line.

Finalising the clases 1035

The algorithm has to chose the best sequence of integer points, for example
choosing point (2, 1) rather than (2, 2) and (8, 4) rather than (8, 3) or (8, 5). The
algorithm works by calculating the error associated with different points (shown by
the vertical lines in Figure 29.5). The correct y value for say x=8 can be calculated;
the errors of taking y = 3, or 4, or 5 are easy to calculate and the best approximation
is chosen. When the squares traversed have been identified, they can be checked to
determine that they are not blocked by walls and, if clear, added to the path array.

The algorithm is easiest to implement using two separate versions for the cases
where the change in x is larger or the change in y is larger. A pseudo-code outline
for the algorithm for where the change in x is larger is as follows:

Dungeon::ClearSemiHorizontal(Pt p1, Pt p2, int max,
 Pt path[])
ychange = difference in y values of two points
xchange = difference in x values of two points
if(xchange > max)

return fail

deltax = if x increasing then 1 else -1
deltay = if y increasing then 1 else -1

slope = change in y divided by change in x
error = slope*deltax

current point = p1
for i < abs(xchange) do

if(error*deltay>0.5)
current point y += deltay
error -= deltay

error += slope*deltax
current point x += deltax
if(current point not accessible) return fail

path[i] = current point
if(current point equal p2) return success
i++

return fail

Class Pt

It is worth introducing a simple class to represent coordinates because many of the
functions need coordinates as arguments, and there are also several places in the
code where it is necessary to compare the coordinates of different objects. A
declaration for class Pt is:

class Pt {
public:

Pt(int x = 0, int y = 0);
int X() const;
int Y() const;
void SetPt(int newx, int newy);

Pick best next point

Check accessibility

Add to path

Inheritance and Polymorphism 1036

void SetPt(const Pt& other);
int Equals(const Pt& other) const;
int Adjacent(const Pt& other) const;
int Distance(const Pt& other) const;

private:
int fx;
int fy;

};

Most of the member functions of Pt are sufficiently simple that they can be defined
as inline functions.

Classes WindowRep and Window

The declaration for class WindowRep is

class WindowRep {
public:

static WindowRep *Instance();
void CloseDown();
void PutCharacter(char ch, int x, int y);
void Clear();
void Delay(int seconds) const;
char GetChar();
void MoveCursor(int x, int y);

private:
WindowRep();
void Initialize();
void PutCharacter(char ch);
static WindowRep *sWindowRep;
char fImage[CG_HEIGHT][CG_WIDTH];

};

The size of the image array is defined by constants CG_HEIGHT and CG_WIDTH (their
values are determined by the area of the cursor addressable screen, typically up to
24 high, 80 wide).

The static member function Instance(), and the static variable sWindowRep
are used in the implementation of the "singleton" pattern as explained in the
implementation section. Another characteristic of the singleton nature is the fact
that the constructor is private; a WindowRep object can only get created via the
public Instance() function.

Most of the members of class Window have already been explained. The actual
class declaration is:

class Window {
public:

Window(int x, int y, int width, int height,
char bkgd = ' ', int framed = 1);

virtual ~Window();
void Clear(int x, int y);
void Set(int x, int y, char ch);
void SetBkgd(int x, int y, char ch);

Finalising the clases 1037

int X() const;
int Y() const;
int Width() const;
int Height() const;

void ShowAll() const;
void ShowContent() const;
void PrepareContent();

protected:
void Change(int x, int y, char ch);
int Valid(int x, int y) const;
char Get(int x, int y, char **img) const;
void SetFrame();
char **fBkgd;
char **fCurrentImg;
int fX;
int fY;
int fWidth;
int fHeight;
int fFramed;

};

The declarations for the specialized subclasses of class Window were given
earlier.

DungeonItem class hierarchy

The base class for the hierarchy defines a DungeonItem as something that can read
its data from an input stream, can draw and erase itself, and can say where it is. It
owns a link to the Dungeon object, its Pt coordinate and a symbol.

class DungeonItem {
public:

DungeonItem(Dungeon *d, char sym);
virtual ~DungeonItem();
Pt Where() const;
virtual void Draw();
virtual void Read(ifstream& in);
virtual void Erase();

protected:
Dungeon *fD;
Pt fPos;
char fSym;

};

Since class DungeonItem is the base class in a hierarchy, it provides a virtual
destructor and makes its data members protected (allowing access by subclasses).

A Collectable object is just a DungeonItem with three extra integer data
members and associated access functions that can return their values. Because a
Collectable needs to read the values of its extra data members, the class redefines
the DungeonItem read function.

DungeonItem

Inheritance and Polymorphism 1038

Collectable class Collectable : public DungeonItem {
public:

Collectable(Dungeon* d, char sym);
int Hlth();
int Wlth();
int Manna();
virtual void Read(ifstream& in);

private:
int fHval;
int fWval;
int fMval;

};

An ActiveItem is a DungeonItem that gets hit, gets asked if is alive, moves,
and runs. Member function Run() is pure virtual, it has to be redefined in
subclasses (because the "run" behaviours of subclasses Player and Monster are
quite different). Default definitions can be provided for the other member
functions. All ActiveItem objects have "strength" and "health" attributes. The
inherited DungeonItem::Read() function will have to be extended to read these
extra data.

class ActiveItem : public DungeonItem {
public:

ActiveItem(Dungeon *d, char sym);
virtual void Read(ifstream& in);
virtual void Run() = 0;
virtual void GetHit(int damage);
virtual int Alive() const;

protected:
virtual void Move(const Pt& newpoint);
Pt Step(int dir);
int fHealth;
int fStrength;

};

(Function Step() got added during implementation. It returns the coordinate of
the adjacent point as defined by the dir parameter; 7 => north west neighbor, 8 =>
north neighbor etc.)

A Player is a specialized ActiveItem. The class has one extra public member
function, ShowStatus(), and several additional private member functions that are
used in the implementation of its definition of Run(). A Player has extra data
members for its wealth and manna attributes, a move counter that gets used when
updating health and manna. The Player object owns the NumberItem and
EditText windows that are used to display its status and get input commands.

class Player : public ActiveItem {
public:

Player(Dungeon* d);
virtual void Run();
virtual void Read(ifstream& in);
void ShowStatus();

private:
void TryMove(int newx, int newy);

ActiveItem

Player

Finalising the clases 1039

void Attack(Monster *m);
void Take(Collectable *pi);
void UpdateState();
char GetUserCommand();
void PerformMovementCommand(char ch);
void PerformMagicCommand(char ch);

int fMoveCount;
int fWealth;
int fManna;
NumberItem *fWinH;
NumberItem *fWinW;
NumberItem *fWinM;
EditText *fWinE;

};

Class Monster is just an ActiveItem with a specific implementation of Run()
that involves the extra auxiliary functions CanAttack() etc. Since instances of
specialized subclasses are going to be accessed via Monster* pointers, and there
will be code of the form Monster *m; … ; delete m;, the class should define a
virtual destructor.

class Monster : public ActiveItem {
public:

Monster(Dungeon* d, char sym);
virtual ~Monster();
virtual void Run();

protected:
virtual int CanAttack();
virtual void Attack();
virtual int CanDetect();
virtual void Advance();
virtual void NormalMove() { }

};

Class Ghost defines the simplest specialization of class Monster. It has no extra
data members. It just redefines the default (do nothing) CanDetect() and
Advance() member functions.

class Ghost : public Monster {
public:

Ghost(Dungeon *d);
protected:

virtual int CanDetect();
virtual void Advance();

};

The other two specialized subclasses of Monster have additional data members.
In the case of class Patrol, these must be initialized from input so the Read()
function is redefined. Both classes redefine Normal Move() as well as
CanDetect() and Advance().

Monster

Ghost

Inheritance and Polymorphism 1040

class Wanderer : public Monster {
public:

Wanderer(Dungeon *d);
protected:

virtual void NormalMove();
virtual int CanDetect();
virtual void Advance();
int fLastX, fLastY;
Pt fPath[20];

};

class Patrol : public Monster {
public:

Patrol(Dungeon *d);
virtual void Read(ifstream& in);

protected:
virtual void NormalMove();
virtual int CanDetect();
virtual void Advance();
Pt fPath[20];
Pt fRoute[100];
int fRouteLen;
int fNdx, fDelta;

};

Object Interactions

Figure 29.6 illustrates some of the interactions involved among different objects
during a cycle of Dungeon::Run().

Dungeon
object

Monster
object(s)

fInhabitants
(Dynamic Array)

loop

Run()

Nth(i)

Run()

Player
object

Human()

Where()

GetHit()Human()

CanAttack()

Attack()

Figure 29.6 Some of the object interactions in Dungeon::Run.

The diagram illustrates aspects of the loop where each Monster object in the
fInhabitants collection is given a chance to run. The Dungeon object will first
interact with the DynamicArray fInhabitants to get a pointer to a particular
Monster. This will then be told to run; its Run() function would call its
CanAttack() function.

Finalising the clases 1041

In CanAttack(), the Monster would have to get details of the Player object's
position. This would involve first a call to member function Human() of the
Dungeon object to get a pointer, and then a call to Where() of the Player object.

The diagram in Figure 29.7 illustrates the case where the Player is adjacent and
the Monster object's Attack() function is called. This will again involve a call to
Dungeon::Human(), and then a call to the GetHit() function of the Player object.

Figure 29.7 illustrates some of the interactions that might occur when the a
movement command is given to Player:Run().

Player
object

Dungeon
object

EditText
window

loop

Run()

GetVal()

Monster
object

GetUserCommand()

…Movement…
MonsterAt()

GetHit()

Alive()

Attack()

RemoveM()
delete

Figure 29.7 Object interactions during Player::Run.

The Player object would have had to start by asking its EditText window to
get input. When EditText::GetInput() returns, the Player object could inspect
the character string entered (a call to the EditText's GetVal() function, not shown
in diagram). If the character entered was a digit, the Player object's function
PerformMovementCommand would be invoked. This would use Step() to
determine the coordinates of the adjacent Pt where the Player object was to move.
The Player would have to interact with the Dungeon object to check whether the
destination point was occupied by a Monster (or a Collectable).

The diagram in Figure 29.7 illustrates the case where there is an adjacent
Monster. The Player object informs the Monster that it has been hit. Then it
checks whether the Monster is still alive. In the illustration, the Monster object
has been destroyed, so the Player must again interact with the Dungeon object.
This removes the Monster from the fInhabitants list (interaction with the
DynamicArray is not shown) and deletes the Monster.

29.3 AN IMPLEMENTATION

The files used in the implementation, and their interdependencies are summarized
in Figure 29. 8.

Inheritance and Polymorphism 1042

main.o
Dungeon.o

Ditem.o
WindowRep.o

Geom.o
D.o

main.cp
Dungeon.cp

Ditem.cp
WindowRep.cp

Geom.cp
D.cp

Dungeon.h Ditem.h

WindowRep.h
Geom.h D.h

Figure 29.8 Module structure for Dungeon game example.

The files D.h and D.cp contain the DynamicArray code defined in Chapter 21.
The Geom files have the definition of the simple Pt class. The WindowRep files
contain WindowRep, Window and its subclasses. DItem.h and DItem.cp contain the
declaration and definition of the classes in the DungeonItem hierarchy while the
Dungeon files contain class Dungeon.

An outline for main() has already been given; function Terminate(), which
prints an appropriate "you won" or "you lost" message, is trivial.

29.3.1 Windows classes

There are two aspects to class WindowRep: its "singleton" nature, and its
interactions with a cursor addressable screen.

The constructor is private. WindowRep objects cannot be created by client code
(we only want one, so we don't want to allow arbitrary creation). Clients (like the
code of class Dungeon) always access the unique WindowRep object through the
static member function Instance().

WindowRep *WindowRep::Instance()
{

if(sWindowRep == NULL)
sWindowRep = new WindowRep;

Implementation: Windows classes 1043

return sWindowRep;
}

WindowRep *WindowRep::sWindowRep = NULL;

The first time that it is called, function Instance() creates the WindowRep object;
subsequent calls always return a pointer to the same object.

The constructor calls function Initialize() which performs any system
dependent device initialization. It then sets up the image array, and clears the
screen.

WindowRep::WindowRep()
{

Initialize();
for(int row = 0; row < CG_HEIGHT; row++)

for(int col = 0; col< CG_WIDTH; col++)
fImage[row][col] = ' ';

Clear();
}

The implementation of functions like Initialize() involves the same system
dependent calls as outlined in the "Cursor Graphics" examples in Chapter 12.
Some example functions are:

void WindowRep::Initialize()
{
#if defined(SYMANTEC)
/*
Have to change the "mode" for the 'console' screen.
Putting it in C_CBREAK allows characters to be read one by
one as they are typed
*/

csetmode(C_CBREAK, stdin);
#else
/*
No special initializations are needed for Borland IDE
*/
#endif
}

void WindowRep::MoveCursor(int x, int y)
{

if((x<1) || (x>CG_WIDTH)) return;
if((y<1) || (y>CG_HEIGHT)) return;

#if defined(SYMANTEC)
cgotoxy(x,y,stdout);

#else
gotoxy(x,y);

#endif
}

void WindowRep::PutCharacter(char ch)
{

Inheritance and Polymorphism 1044

#if defined(SYMANTEC)
fputc(ch, stdout);
fflush(stdout);

#elif
putch(ch);

#endif
}

Functions like WindowRep::Delay() and WindowRep::GetChar() similarly
repackage code from "Cursor Graphics" example.

The WindowRep::Putcharacter() function only does the cursor movement
and character output operations when necessary. This function also keeps the
WindowRep object's image array consistent with the screen.

void WindowRep::PutCharacter(char ch, int x, int y)
{

if((x<1) || (x>CG_WIDTH)) return;
if((y<1) || (y>CG_HEIGHT)) return;

if(ch != fImage[y-1][x-1]) {
MoveCursor(x,y);
PutCharacter(ch);
fImage[y-1][x-1] = ch;
}

}

The CloseDown() function clears the screen, performs any device specific
termination, then after a short delay lets the WindowRep object self destruct.

void WindowRep::CloseDown()
{

Clear();
#if defined(SYMANTEC)

csetmode(C_ECHO, stdin);
#endif

sWindowRep = NULL;
Delay(2);
delete this;

}

Window

The constructor for class Window initializes the simple data members like the width
and height fields. The foreground and background arrays are created. They are
vectors, each element of which represents an array of characters (one row of the
image).

Window::Window(int x, int y, int width, int height,
char bkgd, int framed)

{
fX = x-1;
fY = y-1;

Implementation: Windows classes 1045

fWidth = width;
fHeight = height;
fFramed = framed;

fBkgd = new char* [height];
fCurrentImg = new char* [height];
for(int row = 0; row < height; row++) {

fBkgd[row] = new char[width];
fCurrentImg[row] = new char[width];
for(int col = 0; col < width; col++)

fBkgd[row][col] = bkgd;
}

}

Naturally, the main task of the destructor is to get rid of the image arrays:

Window::~Window()
{

for(int row = 0; row < fHeight; row++) {
delete [] fCurrentImg[row];
delete [] fBkgd[row];
}

delete [] fCurrentImg;
delete [] fBkgd;

}

Functions like Clear(), and Set() rely on auxiliary routines Valid() and
Change() to organize the real work. Function Valid() makes certain that the
coordinates are within the window's bounds. Function Change() is given the
coordinates, and the new character. It looks after details like making certain that
the window frame is not overwritten (if this is a framed window), arranging for a
request to the WindowRep object asking for the character to be displayed, and the
updating of the array.

void Window::Clear(int x, int y)
{

if(Valid(x,y))
Change(x,y,Get(x,y,fBkgd));

}

void Window::Set(int x, int y, char ch)
{

if(Valid(x,y))
Change(x, y, ch);

}

(Function Change() has to adjust the x, y values from the 1-based scheme used for
referring to screen positions to a 0-based scheme for C array subscripting.)

void Window::Change(int x, int y, char ch)
{

if(fFramed) {
if((x == 1) || (x == fWidth)) return;
if((y == 1) || (y == fHeight)) return;

Inheritance and Polymorphism 1046

}

WindowRep::Instance()->PutCharacter(ch, x + fX, y + fY);
x--;
y--;
fCurrentImg[y][x] = ch;

}

Note the call to WindowRep::Instance(). This returns a WindowRep* pointer.
The WindowRep referenced by this pointer is then asked to output the character at
the specified point as offset by the origin of this window.

Function SetBkgd() simply validates the coordinate arguments and then sets a
character in the background array. Function Get() returns the character at a
particular point in either background of foreground array (an example of its use is
in the statement Get(x, y, fBkgd) in Window::Clear()).

char Window::Get(int x, int y, char **img) const
{

x--;
y--;
return img[y][x];

}

Function PrepareContent() loads the current image array from the background
and, if appropriate, calls SetFrame() to add a frame.

void Window::PrepareContent()
{

for(int row = 0; row < fHeight; row++)
for(int col = 0; col < fWidth; col++)

fCurrentImg[row][col] = fBkgd[row][col];
if(fFramed)

SetFrame();
}

void Window::SetFrame()
{

for(int x=1; x<fWidth-1; x++) {
 fCurrentImg[0][x] = '-';
 fCurrentImg[fHeight-1][x] = '-';

}
for(int y=1; y < fHeight-1; y++) {
 fCurrentImg[y][0] = '|';
 fCurrentImg[y][fWidth-1] = '|';

}
fCurrentImg[0][0] = '+';
fCurrentImg[0][fWidth-1] = '+';
fCurrentImg[fHeight-1][0] = '+';
fCurrentImg[fHeight-1][fWidth-1] = '+';

}

A Window object's frame uses its top and bottom rows and leftmost and rightmost
columns. The content area, e.g. the map in the dungeon game, cannot use these

Implementation: Windows classes 1047

perimeter points. (The input file for the map could define the perimeter as all
"wall".)

The access functions like X(), Y(), Height() etc are all trivial, e.g.:

int Window::X() const
{

return fX;
}

The functions ShowAll() and ShowContent() are similar. They have loops
take characters from the current image and send the to the WindowRep object for
display. The only difference between the functions is in the loop limits; function
ShowContent() does not display the periphery of a framed window.

void Window::ShowAll() const
{

for(int row=1;row<=fHeight; row++)
for(int col = 1; col <= fWidth; col++)

WindowRep::Instance()->
PutCharacter(

fCurrentImg[row-1][col-1],
fX+col, fY+row);

}

NumberItem and EditText

The only complications in class NumberItem involve making certain that the
numeric value output does not overlap with the label. The constructor checks the
length of the label given and essentially discards it if display of the label would use
too much of the width of the NumberItem.

NumberItem::NumberItem(int x, int y, int width, char *label,
long initval) : Window(x, y, width, 3)

{
fVal = initval;
fLabelWidth = 0;
int s = strlen(label);
if((s > 0) && (s < (width-5)))

SetLabel(s, label);
PrepareContent();
ShowValue();

}

(Note how arguments are passed to the base class constructor.)
Function SetLabel() copies the label into the left portion of the background

image. Function SetVal() simply changes the fVal data member then calls
ShowValue().

void NumberItem::SetLabel(int s, char * l)
{

fLabelWidth = s;

Inheritance and Polymorphism 1048

for(int i=0; i< s; i++)
fBkgd[1][i+1] = l[i];

}

Function ShowValue() starts by clearing the area used for number display. A
loop is then used to generate the sequence of characters needed, these fill in the
display area starting from the right. Finally, a sign is added. (If the number is too
large to fit into the available display area, a set of hash marks are displayed.)

void NumberItem::ShowValue()
{

int left = 2 + fLabelWidth;
int pos = fWidth - 1;
long val = fVal;
for(int i = left; i<= pos; i++)

fCurrentImg[1][i-1] = ' ';
if(val<0) val = -val;
if(val == 0)

fCurrentImg[1][pos-1] = '0';
while(val > 0) {

int d = val % 10;
val = val / 10;
char ch = d + '0';
fCurrentImg[1][pos-1] = ch;
pos--;
if(pos <= left) break;
}

if(pos<=left)
for(i=left; i<fWidth;i++)

fCurrentImg[1][i-1] = '#';
else
if(fVal<0)

fCurrentImg[1][pos-1] = '-';
ShowContent();

}

Class EditText adopts a similar approach to dealing with the label, it is not
shown if it would use too large a part of the window's width. The contents of the
buffer have to be cleared as part of the work of the constructor (it is sufficient just
to put a null character in the first element of the buffer array).

EditText::EditText(int x, int y, int width, char *label,
short size) : Window(x, y, width, 3)

{
fSize = size;
fLabelWidth = 0;
int s = strlen(label);
if((s > 0) && (s < (width-8)))

SetLabel(s, label);
PrepareContent();
fBuf[0] = '\0';
ShowValue();

}

Implementation: Windows classes 1049

The SetLabel() function is essentially the same as that of class NumberItem.
The SetVal() function loads the buffer with the given string (taking care not to
overfill the array).

void EditText::SetVal(char* val)
{

int n = strlen(val);
if(n>254) n = 254;
strncpy(fBuf,val,n);
fBuf[n] = '\0';
ShowValue();

}

The ShowValue() function displays the contents of the buffer, or at least that
portion of the buffer that fits into the window width.

void EditText::ShowValue()
{

int left = 4 + fLabelWidth;
int i,j;
for(i=left; i<fWidth;i++)

fCurrentImg[1][i-1] = ' ';
for(i=left,j=0; i<fWidth; i++, j++) {

char ch = fBuf[j];
if(ch == '\0') break;
fCurrentImg[1][i-1] = ch;
}

ShowContent();
}

Function GetInput() positions the cursor at the start of the data entry field
then loops accepting input characters (obtained via the WindowRep object). The
loop terminates when the required number of characters has been obtained, or when
a character like a space or tab is entered.

char EditText::GetInput()
{

int left = 4 + fLabelWidth;
fEntry = 0;
ShowValue();
WindowRep::Instance()->MoveCursor(fX+left, fY+2);
char ch = WindowRep::Instance()->GetChar();
while(isalnum(ch)) {

fBuf[fEntry] = ch;
fEntry++;
if(fEntry == fSize) {

ch = '\0';
break;
}

ch = WindowRep::Instance()->GetChar();
}

fBuf[fEntry] = '\0';
return ch;

}

Inheritance and Polymorphism 1050

The function does not prevent entry of long strings from overwriting parts of the
screen outside of the supposed window area. You could have a more sophisticated
implementation that "shifted existing text leftwards" so that display showed only
the last few characters entered and text never went beyond the right margin.

29.3.2 class Dungeon

The constructor and destructor for class Dungeon are limited. The constructor will
simply involve initializing pointer data members to NULL, while the destructor
should delete "owned" objects like the main display window.

The Load() function will open the file, then use the auxiliary LoadMap() and
PopulateDungeon() functions to read the data.

void Dungeon::Load(const char filename[])
{

ifstream in(filename, ios::in | ios::nocreate);
if(!in.good()) {

cout << "File does not exist. Quitting." << endl;
exit(1);
}

LoadMap(in);
PopulateDungeon(in);
in.close();

}

The LoadMap() function essentially reads "lines" of input. It will have to
discard any characters that don't fit so will be making calls to ignore(). The
argument END_OF_LINE_CHAR would normally be '\n' but some editors use '\r'.

const int END_OF_LINE_CHAR = '\r';

void Dungeon::LoadMap(ifstream& in)
{

in >> fWidth >> fHeight;
in.ignore(100, END_OF_LINE_CHAR);
for(int row = 1; row <= fHeight; row++) {

char ch;
for(int col = 1; col <= fWidth; col++) {

in.get(ch);
if((row<=MAXHEIGHT) && (col <= MAXWIDTH))

fDRep[row-1][col-1] = ch;
}

in.ignore(100, END_OF_LINE_CHAR);
}

if(!in.good()) {
cout << "Sorry, problems reading that file. "

"Quitting." << endl;
exit(1);
}

Implementation: class Dungeon 1051

cout << "Dungeon map read OK" << endl;

if((fWidth > MAXWIDTH) || (fHeight > MAXHEIGHT)) {
cout << "Map too large for window, only using "

"part of map." << endl;
fWidth = (fWidth < MAXWIDTH) ? fWidth : MAXWIDTH;
fHeight = (fHeight < MAXHEIGHT) ?

fHeight : MAXHEIGHT;
}

}

The DungeonItem objects can appear in any order in the input file, but each
starts with a character symbol followed by some integer data. The
PopulateDungeon() function can use the character symbol to control a switch()
statement in which objects of appropriate kinds are created and added to lists.

void Dungeon::PopulateDungeon(ifstream& in)
{

char ch;
Monster *m;
in >> ch;
while(ch != 'q') {

switch(ch) {
case 'h':

if(fPlayer != NULL) {
cout << "Limit of one player "

"violated." << endl;
exit(1);

}
else {

fPlayer = new Player(this);
fPlayer->Read(in);
}

break;
case 'w':

m = new Wanderer(this);
m->Read(in);
fInhabitants.Append(m);
break;

case 'g':
m = new Ghost(this);
m->Read(in);
fInhabitants.Append(m);
break;

case 'p':
m = new Patrol(this);
m->Read(in);
fInhabitants.Append(m);
break;

case '*':
case '=':
case '$':

Collectable *prop = new Collectable(this, ch);
prop->Read(in);
fProps.Append(prop);

Create Player object

Create different
specialized Monster
objects

Create Collectable
items

Inheritance and Polymorphism 1052

break;
default:

cout << "Unrecognizable data in input file."
<< endl;

cout << "Symbol " << ch << endl;
exit(1);
}
in >> ch;

}
if(fPlayer == NULL) {

cout << "No player! No Game!" << endl;
exit(1);
}

if(fProps.Length() == 0) {
cout << "No items to collect! No Game!" << endl;
exit(1);
}

cout << "Dungeon population read" << endl;
}

The function verifies the requirements for exactly one Player object and at least
one Collectable item.

The Run() function starts by creating the main map window and arranging for
all objects to be drawn. The main while() loop shows the Collectable items,
gets the Player move, then lets the Monsters have their turn.

int Dungeon::Run()
{

CreateWindow();
int n = fInhabitants.Length();
for(int i=1; i <= n; i++) {

Monster *m = (Monster*) fInhabitants.Nth(i);
m->Draw();
}

fPlayer->Draw();
fPlayer->ShowStatus();
WindowRep::Instance()->Delay(1);

while(fPlayer->Alive()) {
for(int j=1; j <= fProps.Length(); j++) {

Collectable *pi =
(Collectable*) fProps.Nth(j);

pi->Draw();
}

fPlayer->Run();
if(fProps.Length() == 0)

break;

int n = fInhabitants.Length();
for(i=1; i<= n; i++) {

Monster *m = (Monster*)
fInhabitants.Nth(i);

m->Run();

Implementation: class Dungeon 1053

}
}

return fPlayer->Alive();
}

(Note the need for type casts when getting members of the collections; the function
DynamicArray::Nth() returns a void* pointer.)

The CreateWindow() function creates a Window object and sets its background
from the map.

void Dungeon::CreateWindow()
{

fDWindow = new Window(1, 1, fWidth, fHeight);
for(int row = 1; row <= fHeight; row++)

for(int col = 1; col <= fWidth; col++)
fDWindow->SetBkgd(col, row,

fDRep[row-1][col-1]);
fDWindow->PrepareContent();
fDWindow->ShowAll();

}

Class Dungeon has several trivial access functions:

int Dungeon::Accessible(Pt p) const
{

return (' ' == fDRep[p.Y()-1][p.X()-1]);
}

Window *Dungeon::Display() { return fDWindow; }
Player *Dungeon::Human() { return fPlayer; }

int Dungeon::ValidPoint(Pt p) const
{

int x = p.X();
int y = p.Y();
// check x range
if((x <= 1) || (x >= fWidth)) return 0;
// check y range
if((y <= 1) || (y >= fHeight)) return 0;
// and accessibility
return Accessible(p);

}

There are similar pairs of functions M_at_Pt() and PI_at_Pt(), and
RemoveM() and RemoveProp() that work with the fInhabitants list of Monsters
and the fProps list of Collectables. Examples of the implementations are

Collectable *Dungeon::PI_at_Pt(Pt p)
{

int n = fProps.Length();
for(int i=1; i<= n; i++) {

Collectable *pi = (Collectable*) fProps.Nth(i);
Pt w = pi->Where();
if(w.Equals(p)) return pi;

Inheritance and Polymorphism 1054

}
return NULL;

}

void Dungeon::RemoveM(Monster *m)
{

fInhabitants.Remove(m);
m->Erase();
delete m;

}

The ClearLineOfSight() function checks the coordinates of the Pt arguments
to determine which of the various specialized auxiliary functions should be called:

int Dungeon::ClearLineOfSight(Pt p1, Pt p2, int max, Pt path[])
{

if(p1.Equals(p2)) return 0;
if(!ValidPoint(p1)) return 0;
if(!ValidPoint(p2)) return 0;

if(p1.Y() == p2.Y())
return ClearRow(p1, p2, max, path);

else
if(p1.X() == p2.X())

return ClearColumn(p1, p2, max, path);

int dx = p1.X() - p2.X();
int dy = p1.Y() - p2.Y();

if(abs(dx) >= abs(dy))
return ClearSemiHorizontal(p1, p2, max, path);

else
return ClearSemiVertical(p1, p2, max, path);

}

The explanation of the algorithm given in the previous section dealt with cases
involving rows or oblique lines that were more or less horizontal. The
implementations given here illustrate the cases where the line is vertical or close to
vertical.

int Dungeon::ClearColumn(Pt p1, Pt p2, int max, Pt path[])
{

int delta = (p1.Y() < p2.Y()) ? 1 : -1;
int x = p1.X();
int y = p1.Y();
for(int i = 0; i < max; i++) {

y += delta;
Pt p(x,y);
if(!Accessible(p)) return 0;
path[i] = p;
if(p.Equals(p2)) return 1;
}

return 0;
}

Implementation: class Dungeon 1055

int Dungeon::ClearSemiVertical(Pt p1, Pt p2, int max,
Pt path[])

{
int ychange = p2.Y() - p1.Y();
if(abs(ychange) > max) return 0;
int xchange = p2.X() - p1.X();

int deltax = (xchange > 0) ? 1 : -1;
int deltay = (ychange > 0) ? 1 : -1;

float slope = ((float)xchange)/((float)ychange);
float error = slope*deltay;

int x = p1.X();
int y = p1.Y();
for(int i=0;i<abs(ychange);i++) {

if(error*deltax>0.5) {
x += deltax;
error -= deltax;
}

error += slope*deltay;
y += deltay;
Pt p(x, y);
if(!Accessible(p)) return 0;
path[i] = p;
if(p.Equals(p2)) return 1;
}

return 0;
}

29.3.3 DungeonItems

DungeonItem

Class DungeonItem implements a few basic behaviours shared by all variants. Its
constructor sets the symbol used to represent the item and sets the link to the
Dungeon object. The body of the destructor is empty as there are no separate
resources defined in the DungeonItem class.

DungeonItem::DungeonItem(Dungeon *d, char sym)
{

fSym = sym;
fD = d;

}

DungeonItem::~DungeonItem() { }

The Erase() and Draw() functions operate on the Dungeon object's main map
Window. The call fd->Display() returns a Window* pointer. The Window
referenced by this pointer is asked to perform the required operation.

void DungeonItem::Erase()
{

Inheritance and Polymorphism 1056

fD->Display()->Clear(fPos.X(), fPos.Y());
}

void DungeonItem::Draw()
{

fD->Display()->Set(fPos.X(), fPos.Y(), fSym);
}

All DungeonItem objects must read their coordinates, and the data given as
input must be checked. These operations are defined in DungeonItem::Read().

void DungeonItem::Read(ifstream& in)
{

int x, y;
in >> x >> y;
if(!in.good()) {

cout << "Problems reading coordinate data" << endl;
exit(1);
}

if(!fD->ValidPoint(Pt(x,y))) {
cout << "Invalid coords, out of range or"

"already occupied" << endl;
cout << "(" << x << ", " << y << ")" << endl;
exit(1);
}

fPos.SetPt(x,y);
}

Collectable

The constructor for class Collectable passes the Dungeon* pointer and char
arguments to the DungeonItem constructor:

Collectable::Collectable(Dungeon* d, char sym) :
 DungeonItem(d, sym)

{
fHval = fWval = fMval = 0;

}

Class Collectable's access functions (Wlth() etc) simply return the values of
the required data members. Its Read() function extends DungeonItem::Read().
Note the call to DungeonItem::Read() at the start; this gets the coordinate data.
Then the extra integer parameters can be input.

void Collectable::Read(ifstream& in)
{

DungeonItem::Read(in);
in >> fHval >> fWval >> fMval;
if(!in.good()) {

cout << "Problem reading a property" << endl;
exit(1);
}

}

Invoke inherited
Read function

Implementation: DungeonItems 1057

ActiveItem

The constructor for class ActiveItem again just initializes some data members to
zero after passing the given arguments to the DungeonItem constructor. Function
ActiveItem::Read() is similar to Collectable::Read() in that it invokes the
DungeonItem::Read() function then reads the extra data values (fHealth and
fStrength).

There are a couple of trivial functions (GetHit() { fHealth -= damage; };
and Alive() { return fHealth > 0; }). The Move() operation involves calls
to the (inherited) Erase() and Draw() functions. Function Step() works out the
x, y offset (+1, 0, or -1) coordinates of a chosen neighboring Pt.

void ActiveItem::Move(const Pt& newpoint)
{

Erase();
fPos.SetPt(newpoint);
Draw();

}

Pt ActiveItem::Step(int dir)
{

Pt p;
switch(dir) {

case 1: p.SetPt(-1,1); break;
case 2: p.SetPt(0,1); break;
case 3: p.SetPt(1,1); break;
case 4: p.SetPt(-1,0); break;
case 6: p.SetPt(1,0); break;
case 7: p.SetPt(-1,-1); break;
case 8: p.SetPt(0,-1); break;
case 9: p.SetPt(1,-1); break;

}
return p;

}

Player

The constructor for class Player passes its arguments to its parents constructor and
then sets its data members to 0 (NULL for the pointer members). The Read()
function is similar to Collectable::Read(); it invokes the inherited Dungeon
Item::Read() and then gets the extra "manna" parameter.

The first call to ShowStatus() creates the NumberItem and EditText windows
and arranges for their display. Subsequent calls update the contents of the
NumberItem windows if there have been changes (the call to SetVal() results in
execution of the NumberItem object's ShowContents() function so resulting in
changes to the display).

void Player::ShowStatus()
{

if(fWinH == NULL) {

Inheritance and Polymorphism 1058

 fWinH = new NumberItem(2, 20, 20, "Health", fHealth);
 fWinM = new NumberItem(30,20, 20, "Manna ", fManna);
 fWinW = new NumberItem(58,20, 20, "Wealth", fWealth);
 fWinE = new EditText(2, 22, 20, "Direction", 1);
 fWinH->ShowAll();
 fWinM->ShowAll();
 fWinW->ShowAll();
 fWinE->ShowAll();
 }
else {
 if(fHealth != fWinH->GetVal()) fWinH->SetVal(fHealth);
 if(fManna != fWinM->GetVal()) fWinM->SetVal(fManna);
 if(fWealth != fWinW->GetVal()) fWinW->SetVal(fWealth);
 }

}

The Run() function involves getting and performing a command followed by
update of state and display.

void Player::Run()
{

char ch = GetUserCommand();
if(isdigit(ch)) PerformMovementCommand(ch);
else PerformMagicCommand(ch);
UpdateState();
ShowStatus();

}

void Player::UpdateState()
{

fMoveCount++;
if(0 == (fMoveCount % 3)) fHealth++;
if(0 == (fMoveCount % 7)) fManna++;

}

The function PeformMovementCommand() first identifies the neighboring point.
There is then an interaction with the Dungeon object to determine whether there is a
Collectable at that point (if so, it gets taken). A similar interaction determines
whether there is a Monster (if so, it gets attacked, after which a return is made from
this function). If the neighboring point is not occupied by a Monster, the Player
object moves to that location.

void Player::PerformMovementCommand(char ch)
{

int x = fPos.X();
int y = fPos.Y();
Pt p = Step(ch - '0');
int newx = x + p.X();
int newy = y + p.Y();

Collectable *pi = fD->PI_at_Pt(Pt(newx, newy));
if(pi != NULL)

Take(pi);
Monster *m = fD->M_at_Pt(Pt(newx, newy));

Implementation: DungeonItems 1059

if(m != NULL) {
Attack(m);
return;
}

TryMove(x + p.X(), y + p.Y());
}

The auxiliary functions, Take(), Attack(), and TryMove() are all simple.
Function Take() updates the Player objects health and related attributes with data
values from the Collectable item, and then arranges for the Dungeon to dispose of
that item. Function Attack() reduces the Monster object's health (via a call to its
GetHit() function) and, if appropriate, arranges for the Dungeon object to dispose
of the Monster. Function TryMove() validates and then performs the appropriate
movement.

The function GetUserCommand() arranges for the EditText window to input
some text and then inspects the first character of the text entered.

char Player::GetUserCommand()
{

fWinE->GetInput();
char *str = fWinE->GetVal();
return *str;

}

The function PerformMagicCommand() identifies the axis for the magic bolt.
There is then a loop in which damage is inflicted (at a reducing rate) on any
Monster objects found along a sequence of points in the given direction:

void Player::PerformMagicCommand(char ch)
{

int dx, dy;
switch (ch) {

case 'q': dx = -1; dy = -1; break;
case 'w': dx = 0; dy = -1; break;
case 'e': dx = 1; dy = -1; break;
case 'a': dx = -1; dy = 0; break;
case 'd': dx = 1; dy = 0; break;
case 'z': dx = -1; dy = 1; break;
case 'x': dx = 0; dy = 1; break;
case 'c': dx = 1; dy = 1; break;
default:

return;
}
int x = fPos.X();
int y = fPos.Y();

int power = 8;
fManna -= power;
if(fManna < 0) {

fHealth += 2*fManna;
fManna = 0;
}

while(power > 0) {
x += dx;

Inheritance and Polymorphism 1060

y += dy;
if(!fD->ValidPoint(Pt(x,y))) return;
Monster* m = fD->M_at_Pt(Pt(x,y));
if(m != NULL) {

m->GetHit(power);
if(!m->Alive())

fD->RemoveM(m);
}

power /= 2;
}

}

Monster

The constructor and destructor functions of class Monster both have empty bodies
for there is no work to be done; the constructor passes its arguments back to the
constructor of its parent class (ActiveItem):

Monster::Monster(Dungeon *d, char sym) : ActiveItem(d, sym)
{
}

Function Monster::Run() was defined earlier. The default implementations of
the auxiliary functions are:

int Monster::CanAttack()
{

Player *p = fD->Human();
Pt target = p->Where();
return fPos.Adjacent(target);

}

void Monster::Attack()
{

Player *p = fD->Human();
p->GetHit(fStrength);

}

int Monster::CanDetect() { return 0; }

void Monster::Advance() { }

Ghost

The Ghost::CanDetect() function uses the Pt::Distance() member function
to determine the distance to the Player (this function just takes the normal
Euclidean distance between two points, rounded up to the next integral value).

int Ghost::CanDetect()
{

Player *p = fD->Human();

Implementation: DungeonItems 1061

int range = fPos.Distance(p->Where());
return (range < 7);

}

The Advance() function determines the change in x, y coords that will bring
the Ghost closer to the Player.

void Ghost::Advance()
{

Player *p = fD->Human();
Pt p1 = p->Where();
int dx, dy;
dx = dy = 0;
if(p1.X() > fPos.X()) dx = 1;
else
if(p1.X() < fPos.X()) dx = -1;
if(p1.Y() > fPos.Y()) dy = 1;
else
if(p1.Y() < fPos.Y()) dy = -1;

Move(Pt(fPos.X() + dx, fPos.Y() + dy));
}

Wanderer

The Wanderer::CanDetect() function uses the Dungeon::ClearLineOfSight()
member function to determine whether the Player object is visible. This function
call also fills in the array fPath with the points that will have to be crossed.

int Wanderer::CanDetect()
{

Player *p = fD->Human();
return
 fD->ClearLineOfSight(fPos, p->Where(), 10, fPath);

}

The Advance() function moves one step along the path:

void Wanderer::Advance()
{

Move(fPath[0]);
}

The NormalMove() function tries moving in the same direction as before.
Directions are held by storing the delta-x and delta-y values in fLastX and fLastY
data members (initialized to zero in the constructor). If movement in that general
direction is blocked, a new direction is picked randomly.

void Wanderer::NormalMove()
{

int x = fPos.X();
int y = fPos.Y();

Inheritance and Polymorphism 1062

// Try to keep going in much the same direction as last time
if((fLastX != 0) || (fLastY != 0)) {

int newx = x + fLastX;
int newy = y + fLastY;
if(fD->Accessible(Pt(newx,newy))) {

Move(Pt(newx,newy));
return;
}

else
if(fD->Accessible(Pt(newx,y))) {

Move(Pt(newx,y)); fLastY = 0;
return;
}

else
if(fD->Accessible(Pt(x,newy))) {

Move(Pt(x,newy)); fLastX= 0;
return; }

}
int dir = rand();
dir = dir % 9;
dir++;
Pt p = Step(dir);
x += p.X();
y += p.Y();
if(fD->Accessible(Pt(x,y))) {

fLastX = p.X();
fLastY = p.Y();
Move(Pt(x,y));
}

}

Patrol

The patrol route has to be read, consequently the inherited Read() function must
be extended. There are several possible errors in route definitions, so Patrol::
Read() involves many checks:

void Patrol::Read(ifstream& in)
{

Monster::Read(in);
fRoute[0] = fPos;
fNdx = 0;
fDelta = 1;
in >> fRouteLen;
for(int i=1; i<= fRouteLen; i++) {

int x, y;
in >> x >> y;
Pt p(x, y);
if(!fD->ValidPoint(p)) {

cout << "Bad data in patrol route" << endl;
cout << "(" << x << ", " << y << ")" <<

endl;
exit(1);
}

Movement in same
direction

Movement in similar
direction

Pick new direction at
random

Implementation: DungeonItems 1063

if(!p.Adjacent(fRoute[i-1])) {
cout << "Non adjacent points in patrol"

"route" << endl;
cout << "(" << x << ", " << y << ")" << endl;
exit(1);
}

fRoute[i] = p;
}

if(!in.good()) {
cout << "Problems reading patrol route" << endl;
exit(1);
}

}

The NormalMove() function causes a Patrol object to move up or down its
route:

void Patrol::NormalMove()
{

if((fNdx == 0) && (fDelta == -1)) {
fDelta = 1;
return;
}

if((fNdx == fRouteLen) && (fDelta == 1)) {
fDelta = -1;
return;
}

fNdx += fDelta;
Move(fRoute[fNdx]);

}

The CanDetect() function is identical to Wanderer::CanDect(). However,
instead of advancing one step along the path to the Player, a Patrol fires a
projectile that moves along the complete path. When the projectile hits, it causes a
small amount of damage:

void Patrol::Advance()
{

Player *p = fD->Human();
Pt target = p->Where();
Pt arrow = fPath[0];
int i = 1;
while(!arrow.Equals(target)) {

fD->Display()->Set(arrow.X(), arrow.Y(), ':');
WindowRep::Instance()->Delay(1);
fD->Display()->Clear(arrow.X(), arrow.Y());
arrow = fPath[i];
i++;
}

p->GetHit(2);
}

Reverse direction at
start

Reverse direction at
end

Move one step along
route

EXERCISES

1 Complete and run the dungeon game program.

2 This one is only for users of Borland's system.

Why should the monsters wait while the user thinks? If they know what they want to do,
they should be able to continue!

The current program requires user input in each cycle of the game. If there is no input,
the program stops and waits. The game is much more interesting if this wait is limited.
If the user doesn't type any command within a second or so, the monsters should get
their chance to run anyway.

This is not too hard to arrange.

First, the main while() loop in Dungeon::Run() should have a call WindowRep::
Instance()->Delay(1). This results in a 1 second pause in each cycle.

The Player::Run() function only gets called if there have been some keystrokes. If there
are no keystrokes waiting to be processed, the Dungeon::Run() function skips to the loop
that lets each monster have a chance to run.

All that is required is a system function, in the "console" library package, that allows a
program to check whether input data are available (without "blocking" like a normal read
function). The Borland conio library includes such a function.

Using the on-line help system in the Borland environment, and other printed
documentation, find how to check for input. Use this function in a reorganized version
of the dungeon program.

(You can achieve the same result in the Symantec system but only by utilising
specialized system calls to the "Toolbox" component of the Macintosh operating system.
It is all a little obscure and clumsy.)

3 Add multiple levels to the dungeon.

(There are various ways that this might be done. The easiest is probably to define a new
class DungeonLevel . The Dungeon object owns the main window, the Player, and a list
of DungeonLevel objects. Each DungeonLevel object owns a map, a list of collectables,
and a list of monsters. You will need some way of allowing a user to go up or down
levels. When you change level, the new DungeonLevel resets the background map in
the main window and arranges for all data to be redrawn.)

4 Add more challenging Monsters and "traps".

(Use your own imagination.)

