
3 Operating Systems
3.1 ORIGINS OF "OPERATING SYSTEMS"

Back in the early 1950s there were very few computers.  Large universities might
have one, as might government research laboratories, and a few big companies. A
scientist of engineer wanting to run a program would book time on the machine.
When their turn came, they would be totally in control of "THE COMPUTER".

They had to load the assembler (or high level language translator), use it to
convert their program to binary instruction format, load the binary version of their
program, start their program using the switches on the front of the computer, feed
data cards to their program as it ran, etc.  It all involved a lot of running around
fiddling with card readers (and, later on, magnetic tapes), pressing buttons, flicking
switches.  Most people didn't do the job very well and wasted a lot of the time that
they had booked on the machine.

Organizations that had computers soon started to employ professional
"computer operators".  Computer operators were responsible for getting maximum
use out of the computing equipment.  They would run the language translators and
assemblers for users, they would load binary card decks and get the programs run.
Since they worked full time with the computers, they were familiar with the all the
operating procedures involved and so made many fewer mistakes and wasted much
less time.

Since users no longer directly controlled the running of their programs, they had
to write "job control instructions" for the operators.  These job control instructions
would tell the operators of any special requirements such as the need to mount a
particular magnetic tape on which a program was to store some generated data.

Computers were changing rapidly in the early '50s.  Peripheral devices were
becoming more complex and versatile.  Many could operate semi-autonomously.
They could accept a direction from the CPU telling them to transfer some data and
could organize the data transfers so that these occurred while the CPU continued
executing a program.  Such changes made for more efficient program execution
because the CPU spent less time waiting for data transfers.  But such changes also
meant that the code to control peripheral devices became a lot more complex.  Any
erroneous I/O code could seriously disrupt the workings of the computer system
and might even result in damage to peripheral devices or to media like magnetic
tapes or punched cards.

3

Computer operators



48 Operating Systems

"System's code" for
i/o

Originally, a programmer would have been able to use all of the computer's
memory (if possible, the area with the loader program was left alone so that the
loader code wouldn't have to be toggled into memory again).  The requirements of
the new peripheral devices made it advantageous to reserve a part of memory for
"systems code" – the specialized code that controlled the new devices.  The new
organization for main memory is shown in Figure 3.1; part of memory is reserved
for the "system's code" (and, also, for system's data – the system needed memory
space to record information such as identifiers associated with magnetic tapes on
different tape decks).

Memory

System's code and 
data areas

Memory available for
user's program.

Figure 3.1 Part of main memory is reserved for "system's" code and data.

The "systems" area of memory had subroutines for whole variety of input output
tasks.  There would have been a subroutines to handle tasks such as reading one
character from the control keyboard or one column of a punched card.  Another
routine would exist to organize the transfer of the contents of a number of words of
memory (containing binary data) to a tape block.  Programmers could have calls to
these "systems subroutines" in the code of their programs.  (Later, if you study
computer architecture and operating systems you will learn why a specialized
variant on the JSR subroutine call instruction was added to the CPU's instruction
set.  This specialized instruction would have had a distinct name, e.g. "trap" or
"supervisor call (svc)".  Calls to the systems subroutines were made using this
"system call" instruction rather than the normal JSR jump to subroutine.)

Usually, rather than making direct calls to the "system's code" programmers
continued to make use of library routines.  For example, a program might use a
number input routine.  This routine would  read characters punched on a card
(making a call to one of the systems' input routines to get each character in turn)
and would convert the character sequence to a numeric value represented as a bit
pattern.  There would be two such input routines (one for integers, the other for real
numbers).  There would be corresponding output routines that could generate
character sequences that could be printed on a line printer.

These early systems established a kind of three component structure for a
running program.  The structure, shown in Figure 3.2, is the same as on modern
computer systems.  The three kinds of code are: the code written for the specific
program, library code (provided by colleagues, commercial companies, or possibly
the computer manufacturer), and "system's code" (usually provided by the
computer manufacturer, though sometimes purchased from other commercial
companies).



Origins of operating systems 49

Memory

(Loader 
program)

System's code and 
data areas. Code is 
"permanently" in 
memory.

A user's program,
comprised of user's own code and

library routines that have been
"linked" to the user's code

code & data
library
stuff

Figure 3.2 System's code, library code, and user's code.

By the late 1950s, memories were getting larger.  Many machines had as many
as 4000 words of memory (equivalent to about sixteen thousand to twenty thousand
bytes in modern terms).  Some machines had as much as 32000 words of memory.
These larger memories allowed the systems code to be extended in other ways that
could improve the utilization and performance of the computer system.

Quite substantial amounts of time tended to be wasted between jobs and
between each phase of a job.  For example a user might submit a job written in the
high level language Fortran along with a deck of data cards to be processed.  The
operator would have to load the Fortran compiler (translator) and feed in the cards
with the program; the translator would output assembly language code that would
be punched on cards or written to tape.  When the compiler stopped, the operator
had to load the assembler program and feed in the generated assembly language
source, along with source card decks for any assembly language library routines the
user had requested.  The assembler would produce binary code (on cards or tape).
The operator then had to load the binary and start the program running.  Once the
program was running, the operator had to feed in the data cards.  When the
program stopped, the operator had to collect up cards and printed output and then
reset the machine ready for the next job.  Each of these steps would involve the
operator attending card readers, punches, tape decks, and control consoles.

If a computer system only had card input and output, the entire process was very
slow.  It could take several minutes to load a Fortran translator, run a user program
through the translator and punch a deck of cards with the assembly language
translation.  Most large systems would have had several tape decks which made
things a little easier.  But it was still an involved process; the operator would have
to work at the control switches on the front of the computer, entering instructions
that would cause the computer to load the translator or assembler program from
tape, then setting the switches again before starting the loaded program.

The process is illustrated in the various panes in Figure 3.3.  The computer
system would have had four or more tape decks; one would have the tape with the
code for the compiler, the other would have the assembler.  The other two tape
decks would hold work tapes where intermediate results could be written.  The
operator would start by loading the compiler into memory and putting the card
deck with program and data on the card reader.

System's code to help
the operators



50 Operating Systems

Tape decks

1:  tape with compil

2 : work tape

3 : tape with assemb

4 : work tape
Card
reader

Input card deck
with program
followed by
data cards

Computer

CPU

Memory System’s code

Operator gets computer to load compiler

Compiler  code

Operator runs compiler, it reads program and
      generates assembly language on tape

Program cards
read

Work tape holds 
generated assembly 
language source

Operator loads assembler and rewinds tape
      with generated assembly language

Work tape rewound

Assembler  code

Figure 3.3 Operating the computer.



Origins of operating systems 51

When the compiler had been loaded, the operator would use the control
switches to start it running.  The compiler would read the cards with the source
code and generate assembly language that would be written to tape.  The operator
then had to rewind this tape, and load the assembler.  The assembler then had to be
run; it would read its input from the first work tape and produce the binary code
(with the bit patterns for instructions) on a second work tape.  When the assembler
finished, the operator again had to rewind a tape and then again get a program (now
the user's program) loaded into memory.  Finally, the user's program could be
started.  It would read its data cards and produce output on a line printer.

Every time the operator had to do something like enter data on switches or
rewind a tape, the CPU would be left idle.  Since operators wouldn't know how
long it would take to translate a program, or assemble it, or run it, they couldn't be
instantly ready to start the next step in the process.  So time was inevitably wasted.
The CPUs were desperately expensive (CPUs with a fraction of the power of a
modern personal computer would have costed millions of dollars) so it was very
important to try to keep them working as much as possible.

Most of the operators' tasks involved simple, routine things that could be
automated and speeded up.  Control routines were written to automate the routine
tasks like loading the compiler and rewinding a tape.  This control code was added
to the systems' i/o code in the reserved area of memory.

These control programs, written to automate routine tasks for the computer
operators, were the first "Operating Systems".  They worked by reading "control
cards" and performing standard actions.

Programs were submitted along with "job control cards" that could be
interpreted by the computer's control program.  An input card deck (circa ≈1960)
would have been something like the following:

JOB USERNAME
FORTRAN …
C MY PROGRAM TO COMPUTE HEAT FLOW IN REACTOR

DIMENSION A(10,10)
...
END

ASSEMBLE …
LINK …
RUN

1.2 4.5
ENDJOB

The control program used the control cards like the "JOB" card.  These would have
a keyword (and usually additional information, the JOB card might have identified
the user who was to be charged).  A job would be terminated by an ENDJOB card;
if anything went wrong (like a coding error detected by the compiler or an
arithmetic error during execution) the operating system could tidy up by reading all
remaining cards in the card reader until it found the ENDJOB.

The operating system code handled each control card in a standard way.  When
it read a JOB card, it would print an accounting message on the operator's terminal.
A FORTRAN card was processed by loading the FORTRAN compiler into memory
and then "calling" it to read all the FORTRAN source cards.  The operating system

Job control
"languages"



52 Operating Systems

would also arrange for an output tape to be ready for the compiler to use.  If there
were no compile errors, the operating system organized the rewinding of the output
tape and the loading of the assembler.  The other steps, like the linking process
where "library" code was read from tapes were handled in similar fashion.  If the
process resulted in successful construction of an executable program, this was then
"RUN" so that it could process its data cards.  The FORTRAN compiler, the
ASSEMBLER, the LINKER, and the user program were all executed rather as if
they were subroutines called by the controlling operating system.

3.2 DEVELOPMENT OF OPERATING SYSTEMS

By the early 1960s, the larger computer systems had the form shown in Figure 3.4.
Disks were not common, most systems made do with tape decks.  An early disk
unit would have been about five feet high, would have had a multi-platter
arrangement with disks about 18 inches across.  A complete disk unit would have
held about as much data as a modern floppy and would have costed – well certainly
more than a new car, probably something close to the price of a small suburban
house.

Tapes
CPU

Disk
Printer

Card
reader &
punch

Memory

i/o
routines

job
control

code library Data

System's
area

One user's program
running

Figure 3.4 "Mainframe" computer system of early 1960s.

Most of the computers of the time got by with just tapes, but some had disks.
Disks were a lot faster than tapes (faster transferring data, no need to read all the
data sequentially because the disk control could move the disk heads to the blocks
containing the specific data required, no need to "rewind", ...).  A disk unit could
substitute for several tapes.  Space on the disk would be partitioned: e.g. blocks 0-
159 holding the FORTRAN compiler, 160-235 holding the COBOL compiler, 236-
263 with the RPG compiler, 264-274 for the ASSEMBLER, 275-304 containing
the FORTRAN subroutine library, 305-310 for the LINKER, 311- 410 for
"workspace 1", 411-511 for "workspace 2".  But even if a disk was being used, the
operations remained much the same as described for the tape-based machines.



Development of operating systems 53

Part of the machine's main memory would be reserved for the primitive
Operating System.   This would have consisted of a set of standard i/o subroutines
that controlled the various peripheral devices and the subroutines that interpreted
the job control cards.  In addition to this Operating System (OS), the computer
would have a number of pieces of software supplied by its manufacturer:

• FORTRAN compiler (translator for a programming language intended for use
by scientists and engineers)

• FORTRAN subroutine libraries (by now these would contain subroutines for
doing things like sorting, complex mathematical operations like 'matrix
inversion', as well as more standard things like converting digits to numeric
values or calculating SINE(), LOG() etc)

• COBOL compiler (translator for a business programming language)

and others.
The job control component of the OS minimized the time needed by the

operators to set up the machine between successive jobs, and the time spent
organising successive phases of an individual job.  The system's i/o routines could
arrange for i/o to proceed simultaneously with computations.  Together these
improved the efficiency of machine usage.  But there were problems.  For example:

• CPU usage was still relatively low.  Even with smart peripherals running
simultaneously with computations, most programs spent a large amount of
time (often 50% or more) in "wait loops" waiting for input data to be read from
devices, or waiting for output data to be printed.

• Programmers were inconvenienced by slow turn around and lack of
opportunity to test and debug their programs.  (It was common to have to wait
24 hours for results to be returned, and the 'results' might be simply a statement
to the effect that the compiler had found the second card of the program to be
wrongly punched!)

• Some programs needed more memory than could be obtained.

These problems, and other related problems, were dealt with in a series of
developments undertaken throughout the 1960s and early 1970s that lead to more
sophisticated operating systems.

3.2.1 Multiprogramming

The most pressing problem was the "waste" of CPU cycles when the single job in
the computer's memory had to wait for an i/o transfer to complete.  The CPU was
by far the most costly part of the computer system of this period.  The prices of
other components like the peripherals and memory were falling.  Larger memories
were practical.  The availability of larger main memories provided the solution to
the problem of keeping the CPU busy.  If a single job in main memory couldn't



54 Operating Systems

keep the CPU occupied all the time, then have two or more jobs in memory (Figure
3.5).

Tapes
CPU

Disk
Printer

Card
reader &
punch

Memory

i/o
routines

job
control code library Data

System's
area

One user's program
2nd user's 
program

code

Figure 3.5 Early multiprogrammed system.

The computer's memory was be split up into "partitions".

• One held the OS.
• Another (tiny) part would hold the 'boot' loader (the name 'boot' loader

apparently relates to some argument that starting the computer using this
loader to read the OS from tape/disk was like 'picking oneself up by one's
bootstraps'. ?. !)

• The rest of memory was split up among two, three or more program partitions.

A user's program would be run in a partition in much the same way as it had
previously been run using all memory not allocated to the OS.

In the early versions of this scheme, only the CPU and the OS were shared.
Each memory "partition" had to have its own assigned peripheral devices – a line
printer, a card reader, two or more tape decks, and a separate allocation of space on
disk (if there was a disk).  The OS had to be more elaborate because it had to keep
track of each of  the different jobs and of the way peripheral devices had been
allocated to jobs.  If a job asked the OS to perform some i/o operation that involved
delays, the OS had to switch the CPU to execute instructions for a job in a different
memory partition.  Really, the more elaborate OS was using a computer with a
large memory to simulate the working of two (or more) smaller, slower computers!

The "partitioning" of memory was adjustable.  The operators could enter
commands at the control terminal that would get the OS to rearrange the way
memory was used.  For example, in the morning the operators might arrange to
have two medium sized partitions to run average jobs.  In the afternoon, when lots
of programmers had submitted programs that needed small test runs, the operators
could reconfigure the machine to have three small partitions.  Overnight, the



Multiprogramming 55

machine would be used with all the non-OS memory in a single partition so as to
allow bigger programs to run.

The human operators were involved in the relatively slow, and infrequent,
process of reconfiguring the machine for a different degree of "multi-
programming".  The process of switching the CPU among the different programs
was all done automatically, in mere millisecond times, under the control of the of
code in the OS.  Switching would normally happen only when a running job made
a request for i/o to the OS; a request like "card reader, read a card and store all 80
characters in this portion of memory ...", or "line printer, this portion of memory
holds the 132 characters to be printed on a line, please print them", or "tape drive 8,
transfer your next data block into memory starting here ...".  The OS would get the
device to start the data transfer, and arrange to be notified when the transfer was
complete.  But the requesting program usually wouldn't be able to continue until
the transfer was done – so the OS switched the CPU to work for another program.

Essentially all operating systems now use some form of multiprogramming
system.  Support for multiprogramming may be limited in an OS for a personal
computer (after all a personal computer is to be used by just one person and that
person can probably only concentrate on one thing at a time); a personal computer
may have many different programs concurrently in memory but the CPU may only
get switched when the user selects the window associated with a different program.
Larger machines use elaborate multiprogramming schemes.  Human intervention is
no longer needed to change the degree of multiprogramming.  The job control
portions of the OS now include code for elaborate algorithms that work out how
many jobs should be allowed to run to get best performance.  Rather than fixed
memory partitions, these modern multiprogramming systems can reorganize
memory whenever this is found to be necessary.

3.2.2 Timesharing

Multiprogrammed systems improved the usage of the CPU – but didn't do that
much for the programmers.

Programmers were lucky to get one test run of their programs each day.  While
this may have encouraged a meticulously careful style of coding it really didn't do
much for the productivity of the average programmer.  Programmers needed a
system where they could edit their code making additions and corrections, give the
new code to a language translator (compiler) and either rapidly get any coding
errors identified or get a program that could be run.  If a program was successfully
compiled, programmers needed to make small test runs that allowed their programs
to be tested with small data sets.

"Timesharing" systems, pioneered at MIT in Boston USA starting around 1960,
provided programmers with more appropriate development environments.  It was
the development of disk (and drum) storage that made these new systems possible.
(Drums have ceased to be used.  They are a variation on disks in which data is
recorded in tracks on a cylinder rather than on a flat platter.  Each track had its own
read-write head, see Figure 3.6.  Drums were a lot faster than disks, but the



56 Operating Systems

multiple read-write heads made them expensive.  They have gone out of fashion
because their maximum storage capacity is a lot less than a disk.)

Metal cylinder, surface covered by 
magnetic oxide, tracks on surface of 
cylinder

A read/write head for 
each track

Figure 3.6 Drum storage.

The CPU of MIT's original time-sharing computer was a slightly modified
version of the largest computer then commercially available – an IBM 7094.  The
machine had two blocks of memory, both with 32K (i.e. 32768) words.  One block
of memory held the operating system.  The other held the program and data for a
single user.  The computer had several very large disks with a total capacity of
several million words of storage (≈50 Megabyte in modern terms?).

The computer was intended to support up to 32 people working simultaneously.
Users worked at 'teletypes' (a kind of electric typewriter) that were connected to the
computer via a special controller (see Figure 3.7).

Only one user's program was actually running at any time.  It was the program
that was currently in memory.  The other 'users' would be waiting.  Their programs
would be saved on the drum.

A user's program was allowed to run until either it asked the OS to arrange
some input or output (to the user's teletype or to a disk file); or until a 'time
quantum' expired.  (A time quantum might be ≈ 0.1 seconds.)  When a program
asked for i/o or used up its time quantum it would be 'swapped out to the drum'.
'Swapping out' meant that the content of user memory was written to the drum.  A
different user's program would then be 'swapped in'.  This program would then be
allowed to run until it exceed its time quantum or asked for i/o.  The second
program would then get swapped out and a third program would be swapped in.
Eventually, it would be program one's turn to run again.



Time sharing 57

Tapes
CPU

Disk

Memory
block 1

Memory
block 2

O.S.

A user's program 
loaded from the drum

Drum; each of 32 users 
has a "memory image" 
on the drum.

Terminal concentrator

ed test.for
a
C     PROGRAM TO
         DIMENSION A(10)

ed test.for
a
C     PROGRAM TO
         DIMENSION A(10)

Many terminals;
maximum 32
active.

Figure 3.7 MIT's pioneering "time-sharing" computer system.

Even if the system was very busy with lots of users, each individual user would
get ≈0.1 seconds worth of CPU time every three seconds.  So it would seem to an
individual user that their program was running continuously, albeit on a rather slow
computer.

Operating systems for personal computers don't use timesharing.  (They are
personal computers because you don't want to share!)  But most other operating
systems (e.g. the Unix system you may use in more advanced CS subjects)
incorporate sophisticated versions of the timesharing scheme pioneered by MIT.

Modern computer systems have much more memory and so don't have to do
quite as much "swapping"; but swapping is still necessary.   (Swaps are between
memory and disk as the machines won't have drums; but quite often there will be a
special small high speed disk that is used only for swapping and not to hold files.)
If you get to use Unix, you will notice when you've been "swapped out"!  (The
machine seems to ignore you.)

There are obvious similarities in "multiprogramming" and "timesharing"; both
involve the OS controlling the use of a computer system so that it appears as
several computers (lots of little ones, or lots of slow ones).  Multiprogramming and
timesharing evolved to meet different needs; multiprogramming was to optimize
CPU usage, timesharing was an attempt to optimize programmer usage!  The



58 Operating Systems

switching of the CPU and swapping of programs after a time quantum is quite
wasteful; during the switch the CPU isn't doing any useful work.  In the '60s when
CPU power was at a premium, timesharing systems were not common.

Modern OSs combine timesharing with "background batch streams" (successor
to multiprogramming) to get the best of both approaches.  If no interactive user
needs the CPU, the OS allocates it to a long running, multi-programmed
"background job".

3.2.3 File Management

Users of the MIT system were able to keep their own files on disk.  Operating
systems had to be extended quite a lot before they could allow users to have their
own files like this.

The first disks were limited in capacity and all their storage capacity was needed
for systems software – compilers, assemblers, subroutine libraries, work areas for
the compilers etc.  As suggested in an earlier example, the system's administrator
could allocate the space; e.g.  "FORTRAN compiler in blocks 0..159" etc.  This
was adequate when there wasn't much disk space and whatever there was had all to
be used for systems software.  As disks got larger, it became possible to allow users
to have some space.  But this space couldn't be allocated to users in the same way
as the system's administrator had allocated it for systems software.  It was no good
telling a user "You can have blocks 751 to 760" because they'd make mistakes and
use blocks 151 to 160 (and so overwrite the compiler!).

Every attempt by a user program to read from or to write to the disk has to be
checked  another task for the OS.  The OS has to keep records of the disk space
used by each user.  The simple form of "file directory" (illustrated in Figure 1.14)
has to be made more elaborate to suit a shared environment.  In shared
environments, the disk directories contain details of file ownership and access
permissions as well as the standard information like file name and block allocation.
The time-shared computer systems started to have files owned by the operating
system with lists of the names of users; the main directory on the disk would have
an individual directory for each user.  These individual directories contained details
of the files belonging to that user.  The OS could impose restrictions on the number
of files, or total space allocated to an individual user.  Users could specify that they
wanted files to be private, or to be readable by other users in a cooperative work
group.

Once the OS had acquired records of users, it could keep records of jobs run,
CPU time consumed and so forth.  Previously, such accounting information had
had to be manually logged by the computer operators.  By the mid to late 1960s,
these accounting tasks had become another responsibility of the OS; the operators
merely had to run a program that printed out the bills that had been calculated using
the information that the OS had stored.



Virtual memory 59

3.2.4 Virtual Memory

In the late '50s and early '60s, computer memories were still quite small; it was rare
for a computer to have more than 32K (32768) words of main memory (in modern
terms, that is about 120,000 to 160,000 bytes).  Some of this memory had to be
reserved for the OS.  This meant that programmers were limited in the amount of
code and data that they could get in memory.

Once disks became available, schemes were devised that allowed programmers
to have programs and data that exceeded the machine's main memory capacity.
When the programming was running, only parts of its code and data would be in
main memory, the rest would be on disk.  Initially, individual programmers were
responsible for organizing their program code and data so that both could be stored
partly in memory and partly on disk.  As shown in Figure 3.8, the programmer had
to break up a program into groups of subroutines that got used in the same "phases"
of a program.

A program would typically start by using one group of routines (some taken
from a library) to read in data, then another group of routines would do calculations
needed to set up for the main processing phase, a different group of routines would
do the main calculations, another calculation phase would follow to get results that
were to be printed, and then some routines would be used in an output phase.  At
any one time, only a few of the routines needed to be in main memory.

The program would have some fixed amount of space for code in main memory.
The complete program was stored on disk (spread over many disk blocks). When
the program was run, a small part of this code would have to be in main memory.
This chunk of code would have included the main program, and any frequently
used subroutines.  The main program had to have extra code to load the different
'overlays' as each was needed.  It would start by loading the 'overlay' with the input
routines (Figure 3.8A).  Once the main program had loaded the input 'overlay' it
would call the input routines; these would read the program's data.  When the input
phase was complete, the main program would resume and arrange the loading of
code for phase 1 of the calculations.  The phase 1 routines would then be called
(Figure 3.8B).  The main program would continue by loading the overlay with the
routines for the next phase. The phase 2 routines would then be executed (Figure
3.8C).  The program would continue in this way, loading each bit of code as it was
needed.

As well as bothering about shuffling the code between disk and main memory,
the programmers had to devise equally complex schemes to shuffle their data.  It
was very common to have far more data than would fit in main memory.  For
example, an engineer who wanted to model heat flow in a metal beam might need
to work out the temperature at successive time intervals at a number of points on
the beam.  To get meaningful results, the engineer would have needed a fairly fine
grid of points, e.g. modelling 1000 points along the beam and 100 points across the
beam.  But you can't fit 100,000 real numbers into main memory if you've only got
32K words for the OS, your program and your data.

"Overlays"



60 Operating Systems

Program occupying many blocks on disk:

Limited main 
memory space 
available for code

main, common 
routines, overlay 
loader

input
phase 
1

phase 
2

phase 
3

output

A

Main program loads 
and runs input

B

Main program loads 
phase 1 overlay,
calls phase 1 
routines

C

Main program loads 
phase 1 overlay,
calls phase 1 
routines

Figure 3.8 Program "overlay" scheme.

When shuffling code, programmers had standard 'overlay' models to follow.
When shuffling data, they were on their own and had to invent their own schemes
(because the best way of shuffling data between memory and disk depends on the
frequency of access and the access patterns used in a particular program).

This need to bother about shuffling code and data around was a distraction.  It
didn't have anything to do with solving a problem (like working out something
about heat flow in beams); it was simply a matter of fighting with limitations of the
computing systems available.  The programmers just wanted big programs with big
"address spaces", but they were being forced to think in terms of a two level
storage system – the main memory, and a secondary disk memory.

Another extension to the computer's operating system hid the sordid details of
the "two level store" from the programmers.  With a little help from some special
extra hardware in the CPU, an OS can be made to fake things, so that it seems  as if
a computer has a very much larger memory than it really does possess.

The OS can arrange to know which parts of a program's code and data are in
memory and which parts are on disk.  When a chunk of code or data not in memory
is needed, the OS can shuffle things around to get that code or data into memory.
The programmer need never know that this is happening.

The Atlas computer built by the University of Manchester, England, around
about 1960 was the first with what was then called a "one level store".  It combined

Paging



Virtual memory 61

16K words of real memory and storage on a drum.  The OS, and special "paging"
hardware in the CPU, faked things so that the Atlas machine seemed to be a
computer with one million words of memory.

It took more than ten years before these memory management schemes became
widely used on large computers.  The name for the scheme was changed to virtual
storage  or virtual memory.  (The use of the word virtual is slightly odd.  It is really
the same usage as in optics where one talks of "virtual images" being produced by
magnifying glasses and by mirrors.  The virtual store isn't real store – it just looks
that way.  The term has acquired wider usage, so multiprogramming is now
sometimes discussed in terms of virtual processors  – the OS makes it look as if
you have many processors.  "Virtual reality" is the latest extension.)

In addition to special "paging" hardware that is needed in the CPU, support for
virtual memory requires a lot more code in the OS.  But now it is all commonplace;
the CPU chips and OSs even for personal computers started to support virtual
memory in the late 1980s.

Virtual memory

3.2.5 "Spooling"

Developers of Operating Systems found yet another way in which they could make
the OS fake things so that the computer seemed different from what it really was.

A program that wants to print data can ask the OS – "please send this
information to the line printer".  But what happens if you have a multiprogrammed
computer, where the execution of several programs is being interleaved, and more
than one of the programs wants to print data?

It obviously won't do to have a program print a line or two then stop, have
another program start and print a line, then the first program resume.  Interleaved
printouts aren't much use.

The first solution was a little expensive; you had to have many peripheral
devices.  If you intended to have 4 memory partitions, for 4-way multi-
programming, then you had had to buy four separate printers.  Although printer
manufacturers liked this scheme, it was not widely popular.

Eventually, once most systems were equipped with disks, the OS developers
found a work around.  Programmers never send output directly to devices like
printers – they merely think they do.  The OS fakes it so that each program that
wants to print thinks that it has its own exclusive printer ("virtual printers").

Rather than send output directly to a device like a printer, the OS would collect
("spool up") all the output from the program and save it in a temporarily allocated
file on disk.  Each running program could be allocated a separate area on disk to
store its output temporarily.  When a program finished, the file containing the
output that it had written was tidied up by the OS and then transferred to a queue.
A little printer control program would form another part of the OS.  It would run
the printer(s) attached to the computer.  For each printer that the system had, the
print control program would take a file from the output queue and arrange to get it
printed in one piece.  As each print file finished, the print control program would
arrange to take the next file from the head of the output queue.



62 Operating Systems

3.2.6 Late 1960s early 1970s system

By the late 1960s early 1970s, Operating Systems were becoming large and
complex, see Figure 3.9.  The figure shows some of the software components that
would have made up the OS in memory (the relative sizes of components are not
significant).

Operating System's part of main memory:

i/o
routines

process 
management

jcl 
interpreter

accounting

file 
management

memory 
managment

spooler

O.S.
data

Figure 3.9 OS. of late 1960s early 1970s.

There would be a number of i/o handling routines.  These would include "device
driver" routines that organize data transfers to/from peripheral devices.  Other
routines would deal with 'interrupts' that devices use to indicate when they've
completed a data transfer.  The OS would respond to interrupts by updating its
records of which programs were waiting for i/o.

Another large chunk of code would be devoted to "process management", i.e.
the scheduling of the allocation of the CPU, the processor, to programs.  This code
kept track of which programs were ready to use the CPU and which were waiting
for i/o from terminals, or disks, or other devices.  If the system supported
interactive users with 'time sharing', this scheduling code had to make sure that no
program ran for too long without stopping to let other programs have some CPU
cycles.  There would be complex rules to apply to determine which to pick if there
were several multiprogrammed jobs ready to run. The system would typically have
a large number of jobs queued up on disk, these queued jobs would have been read
earlier from cards.  Another part of "process management" code would be run
regularly to check whether any queued job should be started.

The system would have some routines for interpreting the cards with "Job
Control Language" (JCL) statements that specify the various processing steps a job
required.  "JOB" cards would have information that the JCL interpreter had to
check to identify the job's owner (so that accounts could be kept and file use could
be checked).  Other JCL cards would specify things like the compiler (translator) to
be used, or files needed to hold data.

File management code would take up another large chunk of memory. This code
would allow users to create files to store programs or data on disk; checks would
have to be made to restrict users to allowed disk quotas,  other checks would be
made to see that only authorized users could access a file, and the code would have
to make certain that disk blocks were allocated properly so that files didn't get

"Device drivers" and
"interrupt handlers"

"Process
management"

Job control
interpreter

File management



Complex OS of late 1960s early 1970s 63

mixed up. File management code also had to look after things like providing
temporary files for 'spooling' program output, special files for "swapping" time-
shared programs, and other special files that modelled "virtual memory" for big
programs.

Memory management code would organize the allocation of main memory to
user's programs.  This might be something relatively easy, like maintaining a fixed
number of 'partitions' in which programs could run.  Where used, things like
"virtual memory" made memory management a lot more complex.

There would be some code used to keep accounts so that people could be
charged for their computer usage.  The OS code would also include minor
specialized components like the "spooler".

All of the code components in the OS would have needed their own tables of
data, these data tables would have taken up another area of memory.

Memory manager

Spooler and other
minor components

OS data areas

3.3 NETWORKING

Originally, computers were located in isolated, air-conditioned computer rooms
and they communicated only through their card readers, line printers, and the
operators control terminal.  Gradually, they began to be linked up.  It was limited at
first:

• machines like the MIT time-share machine would be connected to many
terminals in surrounding buildings,

• a university with a central computer might have extra line printers and card
readers located off campus at research centres; these would be linked to the
computer by specially installed non-standard telephone lines.

The first real networked systems would have been the US's SAGE air defence
system and the air-line seat reservation systems.  These were fairly specialized.
The main computer only ran a single program.  SAGE had a program that kept
track of aircraft movements; the seat reservation systems looked after files that
contained details of bookings for each scheduled flight in the next couple of weeks.

The main computers were linked by special high-speed "leased line" telephone
connections to smaller computers in other towns.  These smaller computers acted
as concentrators for messages coming from many terminals, either directly
connected terminals or terminals linked via slow-speed telephone connections, see
Figure 3.10.

During the 1960s, a number of organizations like large banks and airlines
started to "network" their computer systems.  But the scope was always fairly
limited.  The organizations had a main computer that ran one program – a seat
reservation program, or a bank accounting record keeping program ("transaction
programs" they keep track of individual transaction like the cashing of a check).
The remote computers joined via special telephone lines just provided input data
for transactions.  But, a much more innovative scheme for networking appeared
around 1968.



64 Operating Systems

Tapes
CPU

Disk

Memory

System's
area

Special application 
program

Main system

Leased line 
connector

CPU
Memory

CPU
Memory

CPU
Memory

Remote small computers

Terminals

Figure 3.10 Early networked system, such as the airline seat reservation
systems.

The US Department of Defence (DOD) sponsored a lot of research at
universities and research institutes through its "Advanced Research Projects
Agency" (ARPA).  DOD-ARPA paid for large CDC computers for scientific
computing at labs. like Oak Ridge, Los Alamos, and Livermore.  It paid for DEC-6
and DEC-10 systems for research into Artificial Intelligence at places like MIT.
There were ARPA funded scientists and engineers at many places remote from the
centres with the ARPA computers.  ARPA wanted to improve access to the shared
computers by this wider community of users.  This was achieved through the
creation of the "ARPA network" (ARPAnet), which is the ancestor of the modern
Internet.

The ARPAnet used small computers, IMPs (Interface Message Processors)
connected by special telephone lines that allowed high speed data transfers.  A
particular IMP could be connected directly to one of the main CDC or DEC PDP-
10 computers that were ARPA's shared computer resources.  Other IMPs simply
acted as terminal concentrators, connecting several local terminals to the network.

Scientist and engineers, who were allowed to use an ARPA computer, would
have access to a terminal that was connected to an IMP located in their university
or research laboratory.  At this terminal, they could "login" to any computer on
which they  had an account  --- e.g. RLOGIN HOSTNAME=MITDEC10

The "ARPA" net
(Internet)



Networking 65

USER=WILENSKY.  If login was permitted, the chosen host computer would send a
response message back to the IMP with details of the job that had been started for
the new user.  The IMP would record the details – "user on terminal 3 @ me
connectedto job 20 on host MITDEC10."  Subsequently, each line typed by the
user was packaged by the IMP.

A packaged message had address details as well as the user's data  e.g. if the
user entered a "dir" command to list a file directory, the IMP would create a
message like "3,IMP16,20,MITDEC10,dir" (terminal 3 @ me to job 20 @
MITDEC10, content 'dir').

An IMP didn't keep open a permanent connection to a remote host.  Each
message between user and host computer would be routed individually.  Each IMP
had a map of the network and the IMPs exchanged messages that described current
traffic on links and identified areas with congestion.  Using this information, an
IMP could determine which link to use to forward a message.  An IMP that
received a message would check whether it should deliver it to a local host machine
or forward it.  Messages were stored in the IMPs until there was an opportunity to
forward them across the next link.  A message would make hops from IMP to IMP
until it arrived at its destination.

The message would be taken by the host, and the contents delivered to the user's
job.  Output from the job would be packaged by the local IMP.  The response
message would work its way back through the network, the return route might
differ from the original route.

The original intent of the ARPAnet was simply to provide this fairly flexible
"remote login service" so that expensive ARPA computers could be shared by users
all over the US.  Very soon additional uses were found.

As well as having accounts and file allocations for individual users, most
computer OSs have some form of "group accounts"; a systems administrator can
add an individual user to any number of these groups.  Once the ARPA net was
running, researchers located at different places in the US could form a "group" on a
particular research computer and work on shared files.  Many found that the easiest
way to contact their coworkers was to leave messages in shared files (avoiding
problems with nobody answering phones, difficulties of different time zones etc).
This kind of messaging lead to primitive "electronic mail" (email) systems.

These mailing systems were regularized.  Each user of a given host machine
was allocated a "mail box" file; other users could append messages to this file.
News services started about 10-15 years later.

Within a few months of its establishment, the ARPA net went international
making use of a telecommunications link via one of the first geostationary satellites
to link up with a European subnetwork.

Starting with just a few machines in the late '60s, the ARPAnet grew to several
hundred machines by the late 1970s, several thousand machines by the late 1980s
(with a name change to Internet – it went between other more localized networks)
and now the network has thousands of machines.  Nowadays, most host machines
manage without IMPs, doing message packaging and routing for themselves.

In the mid-1970s, different types of computer network started to appear.  By this
time, computers were much less costly; and while it was common for an
organization to have a large "mainframe" machine, this would be supplemented by

Message packets

Store and forward
message delivery

Remote login services

Collaborative group
working and email

Local networks



66 Operating Systems

a large number of "minicomputers" of various forms.  Each minicomputer would
have some disks, a display screen and keyboard, but they typically wouldn't all
have printers, tape units etc.  Organizations set up "local networks" that simply
joined up the different computers in any one office or department so as to allow
them to share things like printers, and have some shared files.  These shared file
systems allow individuals working on different minicomputers to work together on
a large project.

These networks use messages to pass data in way somewhat similar to the wide-
area networks.  For example if a user at one minicomputer typed in a command that
specified that a file was to be copied from a local disk to a shared disk on another
computer, the operating system on the mini would exchange messages with the
computer that controlled the shared files; the first few messages exchanged would
create the new file, subsequent messages would copy the existing file chunk by
chunk.

The message passing mechanism was rather different from that used on the
wide area networks.  There are a variety of local network schemes ("token ring",
"ethernet") with ethernet being currently the most popular.  All the computers on an
ethernet are connected to something like a co-axial cable.  Messages are
"broadcast" on this cable.  All the computers can read messages at the same time,
but only the computer to which a message is addressed will actually deal with the
data.

Modern personal computers typically have hardware interfaces and software in
their operating systems that allow them to be connected to "ethernet" style
networks.  Each individual ethernet network has to be limited in size, but different
local networks can be joined together by "bridges" and "routers" that can forward
messages from one network to another.  (A bridge or router serves much the same
purpose as an ARPAnet IMP; it is a simple computer that runs a program that
organizes the forwarding of messages.)  Often local networks will have "bridges"
that connect them to the worldwide Internet.

Broadcasting
message packets

Ethernet networks

3.4 MODERN SYSTEMS

The operating systems written for the mainframe computers of the late 1960s and
early 1970s did succeed in delivering efficient CPU usage through "multi-
programmed batch computing", as well as supporting interactive timesharing.  But
these systems were often difficult to use (the "job control language", JCL,
statements that had to be written to run a job were hard for the average user to
understand, and the job control mechanisms were quite limited).  The systems were
proprietary; each computer manufacturer supplied an operating system for their
computers, but these different operating systems were quite different in their styles
of JCL and the facilities that they provided.  Such differences hindered those users
who had to work with more than one kind of computer.

Further the code for these OSs was often poor.  Most of the systems had not
been designed, they had just grown.  More and more features would have been
added to an original simple multiprogrammed OS.  Consequently, the systems were
difficult to maintain.



Modern operating systems 67

Modern operating systems started to appear in the 1970s.  Their designers had
different objectives.  With hardware costs declining, there was no longer a need to
try to maximize machine usage.  Some computer power could be "wasted" if this
made the system easier to use and so made the users more productive.  Unix was
one of the first of the modern systems; its designers sought to create a system that
would make programmers more productive.  Later systems, like the Macintosh OS,
have focussed on the needs of other less sophisticated users.

3.4.1 UNIX

Unix started to be developed around 1969, with the first published description
appearing in 1973.  It was developed at an ATT research lab. and was made freely
available to universities, encouraging its widespread adoption.

Unlike earlier operating systems which had been written in assembly language,
the code for Unix was largely in C.  The use of a high level language made the
code much easier for programmers to understand and maintain.  Further, the Unix
OS was designed!  The programmers who developed Unix started with a clear idea
of how their OS was to work and what services it was to provide.

Unix was more limited in its aims than many other OSs of the time.  It was
intended solely to provide a good environment for timeshare style program
development.  Other OSs were attempting to do timesharing, and database
transactions, and run large jobs,  and ...; but such different uses of a computer tend
to conflict resulting in poor performance in all areas.

The design for Unix modelled the OS in terms of several layers (when
describing the design, someone made an analogy with a nut or an onion and
introduced terms like" kernel", "shell" etc --- these names have stuck):

• the innermost layer (the "kernel") has the code for the i/o handling routines
("device drivers") etc;

• another layer contains the code for process management, file management, and
memory management;

• further layers contain code for looking after wide area and local networks and
so forth;

• the next layer out comprised large numbers of useful utility programs –
programs for copying files, comparing files to find differences etc

• the outermost layer (the "shell") was the job control language interpreter, but
this JCL interpreter was much more flexible than any that had been proposed
previously.

Unix was originally written for a particular kind of computer (the "PDP11/20")
manufactured by Digital Equipment Corporation (DEC).  But, the relatively clean
design of the system, and the use of a high level language, made it possible for the
system to be adapted to other computers (only the "device drivers" and other really
low level code had to be redone).  Unix was moved to related but more powerful
computer architectures (DEC's VAX series of computers) and to totally different
computer architectures.  During the 1980s, Unix was adapted to run on computers



68 Operating Systems

as diverse as the modern Cray supercomputers down to personal computers with
Intel-80386 CPU chips.

The US Department of Defence's Advanced Research Projects Agency (ARPA)
sponsored development of Unix at the University of Berkeley.  The Berkeley
developers added features to support virtual memory and networking (both wide
area and local networking).  Late in the 1980s, many computer companies, ATT,
Berkeley University, IEEE, etc got together and established standards for all Unix
systems.

Unix thus has the advantage of being a system that is non-proprietary, is widely
available, and is effective in its original role of supporting program development.
Most students continuing with computing studies will eventually get to work with
some Unix systems.  Modern Unix systems have been expanded so as to handle
tasks other than the "programmers' workbench" of the original design.  These
extensions (to handle large databases, some transaction processing and so forth)
were demanded by customers.  In some respects, these extensions detract from
Unix which no longer has a quite the simplicity and elegance of its early forms.

3.4.2 Macintosh OS

The Macintosh OS (1984), and things like Windows 3 (late 1980s), represent more
modern operating systems, having evolved in the ten to fifteen years after the start
of Unix.

The important ideas in the Mac OS (and later systems meant to work in similar
style) were developed at Xerox's Palo Alto Research Centre during the 1970s and
early 1980s (Apple started the Mac OS by getting a licence to use Xerox's ideas).

Starting around 1972, Xerox PARC had had a project that aimed to explore
what the "office of the future" would be like.  Obviously, the office workers were
going to make heavy use of computers.  The Xerox researchers realized that the old
systems were inappropriate.

The old systems had the computer as sort of oracle, surrounded by priests (the
system's programmers and system's administrators) and neophytes (the computer
operators); even the newer Unix systems had to have "system's gurus" to attend
them and keep users at bay.

In an "office of the future", individual's would have their own computers, and
these therefore would have to have operating systems that did not need priestly
ministrations from gurus or others.

Unlike other developers of that period, the Xerox group realized that the cost of
CPU power was going to drop dramatically.  Consequently, it wasn't going to be
important to keep the CPU efficiently employed, what was going to be important
was the efficient use of time of the office workers.  So it was going to be
worthwhile "wasting" CPU cycles with the computer doing extra work if this
would simplify the tasks of the user.

Given these premises, the Xerox group focussed on what they thought would be
the needs of users; they identified factors such as:



A simple example program: implementation 69

• visual displays for "high-bandwidth" communication (show the user what
programs and files are available for use etc);

• direct manipulation (use of mouse pointer, selection of object represented
visually [as an "icon"], picking a command from a menu – the "point-and-
click" interface rather than the "remember-and-type-command" interface of
Unix and older systems);

• consistency (every program working in a similar manner);

• intercommunication (e.g. easy transfer of pictures, text and other data between
programs).

Xerox developed a variety of experimental systems embodying the features that
they felt would empower users and make computers more useful.  However, Xerox
never really brought these experimental systems to the level of practical, affordable
products.

Steve Jobs and others at Apple in the early 1980s recognized the importance of
the Xerox ideas and worked to make them practical.  The Mac OS of 1984 was the
first system that could really deliver computer power to all users.



70 Operating Systems


