
30 Reusable designs
The last chapter illustrated some simple uses of inheritance and polymorphism. It
is these programming techniques that distinguish "Object Oriented Programming"
from the "object based" (or abstract data type) style that was the main focus of Part
IV of this text. These Object Oriented (OO) techniques originated in work on
computer simulation of real world systems. The "dungeon game" is a simulation
(of an unreal world) and so OO programming techniques are well suited to its
implementation.

Although OO programming techniques were originally viewed as primarily
applicable to simulations, they have over the last ten years become much more
widely utilised. This greater use is largely a consequence of the increased
opportunity for "reuse" that OO techniques bring to application development.

Reuse, whether of functions, components, or partial designs, always enhances
productivity. If you can exploit reusable parts to handle "standard" aspects of an
application, you can focus your efforts on the unique aspects of the new program.
You will produce a better program, and you will get it working sooner than if you
have to implement everything from scratch.

Approaches to Reuse

Reusable algorithms

If you are using the "top down functional decomposition" strategy that was
illustrated in Part III, you are limited to reusing standard algorithms; the code in the
function libraries implements these standard algorithms. Reusing algorithms is
better than starting from scratch. These days, nobody writes their own sin()
function, they use the version in the maths library. Computer science students are
often made to rewrite the standard sorting and searching functions, but
professionals use qsort() and bsearch() (standardized sort and binary search
functions that are available in almost every development environment). As noted in
Chapter 13, over the years huge libraries of functions have been built up,
particularly in science and engineering, to perform standard calculations.

30

Reuse with functions

1066 Reusable designs

Reusable functions are helpful in the case where all you need to do is calculate
something. But if you want to build an interactive program with windows and
menus etc, you soon discover problems.

There are function libraries that are intended to be used when building such
programs. Multi-volume reference manuals exist to describe them. For example,
the Xlib reference manuals define the functions you can used to work with the X-
windows interface on Unix. The series "Inside Macintosh" describes how to create
windows and menus for the Mac. OS. These books include the declarations of
literally hundreds of functions, and dozens of data structures. But these function
libraries are very difficult to use.

The functions defined in these large libraries are disjoint, scattered,
inconsistently named. There is no coherence. It is almost impossible to get a clear
picture of how to organize a program. Instead you are faced with an arbitrary
collection of functions, and the declarations of some types of structures that you
have to have as globals. Programs built using just these function libraries acquire
considerable entropy (chaotic structure). Each function call takes you off to some
other arbitrary piece of code that rapes and pillages the global data structures.

Reusable components

The "object based" techniques presented in Part IV give you a better handle on
reuse. Class libraries and object based programs allow you to reuse abstract data
types. The functions and the data that they operate on are now grouped. The data
members of instances of classes are protected; the compiler helps make sure that
data are only accessed via the appropriate functions.

Program design is different. You start by identifying the individual objects that
are responsible for particular parts of the overall data. You define their classes.
Often, you will find that you can reuse standard classes, like the collection classes
in Chapters 21 and 24. As well as providing working code, these classes give you a
way of structuring the overall program. The program becomes a sequence of
interactions between objects that are instances of standard and application specific
classes.

Essentially, the unit of reuse has become larger. Programs are built at least in
part from reusable components. These reusable components include collection
classes and, on Unix, various forms of "widget". (A widget is essentially a class
that defines a "user interface" component like a menu or an alert box.)

Reusable patterns of object interactions and program designs

When inheritance was introduced in Chapter 23, it was shown that this was a way
of representing and exploiting similarities. Many application programs have
substantial similarities in their behaviour; such similarities lead to reusable designs.

You launch a program. Once it starts, it presents you with some form of "file
dialog" that allows you to create a new file, or open an existing file. The file is
opened. One or more windows are created. If the file existed previously, some

Function libraries for
interactive programs

Limitations of
function libraries

Reusable classes and
object based design

Can we reuse more?

Similar patterns of
interactions in

different programs

Introduction 1067

portions of its current contents get displayed in these new windows. The system's
menu bar gets changed, or additional menus or tool bars appear associated with the
new window(s). You use the mouse pointer and buttons to select a menu option
and a new "tools palette" window appears alongside the document window. You
select a tool from the palette. You use the tool to add data to the document.

The behaviour is exactly the same. It doesn't matter whether it is a drawing
program or spreadsheet. The same patterns of behaviour are repeated.

Object oriented programming techniques provide a way of capturing common
patterns of behaviour. These patterns involve standardized interactions between
instances of different classes.

Capturing standard patterns of interaction in code

The "opening sequence for a program" as just described would involve interactions
between an "application" object, a "document" object, several different "window"
objects, maybe a "menu manager" object and several others.

An "opening sequence" pattern could specify that the "application" object
handle the initial File/New or File/Open request. It should handle such a request by
creating a document object and giving it the filename as an argument to an
"OpenNew()" or "OpenOld()" member function. In "OpenOld()", the document
object would have to create some objects to store the data from the file and arrange
to read the existing data. Once the "open" step is complete, the application object
would tell the new document object to create its display structure. This step would
result in the creation of various windows.

Much is standard. The standard interactions among the objects can be defined
in code:

Application::HandleCommand(command#, …)
switch(command#)

newCommand:
doc = this->DoMakeDocument();
doc->OpenNew();
doc->CreateDisplay();
break;

openCommand:
filename = this->PoseFileDialog();
doc = this->DoMakeDocument();
doc->OpenOld(filename, …);
doc->CreateDisplay();
break;

…

Document::OpenOld(filename, …)
this->DoMakeDataStructures()
this->DoRead(filename, …)

Document::DoMakeDataStructures() ?

Document::DoRead(…) ?

Reusable patterns of
interaction?

Default
implementation
defined

Default
implementation
defined

Pure abstract
functions,
implementation is
application specific

1068 Reusable designs

Of course, each different program does things differently. The spreadsheet and
drawing programs have to create different kinds of data structure and then have to
read differently formatted files of data.

This is where inheritance comes in.
The situation is very much like that in the dungeon game with class Monster

and its subclasses. The Dungeon code was written in terms of interactions between
the Dungeon object and instances of class Monster. But there were never any
Monster objects. Class Monster was an abstraction that defined a few standard
behaviours, some with default implementations and some with no implementation.
When the program ran, there were instances of specialized subclasses of class
Monster; subclasses that owned their own unique data and provided effective
implementations of the behaviours declared in class Monster.

Now, class Document is an abstraction. It defines something that can be asked
to open new or old files, create displays and so forth. All kinds of document
exhibit such behaviours; each different kind does things slightly differently.

Specialized subclasses of class Document can be defined. A SpreadSheetDoc
would be a document that owns an array of Cell objects where each Cell is
something that holds either a text label, or a number, or a formula. A DrawDoc
would be a document that owns a list of PictureElements. Each of these
specialized subclasses would provide effective definitions for the empty
Document::DoRead() and Document::DoMakeDataStructures() functions (and
for many other functions as well!).

A particular program won't create different kinds of document! Instead, you
build the "spreadsheet" program or the "draw" program.

For the "draw" program, you would start by creating class DrawApp a minor
specialization of class Application. The only thing that DrawApp does differently
is that its version of the DoMakeDocument() function creates a DrawDoc. A
DrawDoc is pretty much like an ordinary Document, but it has an extra List data
member (to store its PictureElements) and, as already noted, it provides effective
implementations of functions like DoRead().

Such a program gets built with much of its basic structure defined in terms of
classes that are specializations of standardized, reusable classes taken from a
library. These reusable classes are the things like Application, Document, and
Window. Some of their member functions are defined with the necessary code in
the implementation files. Other member functions may have empty (do nothing)
implementations. Still other member functions are pure virtual functions that must
be given definitions in subclasses.

Reusing a design

A program built in this fashion illustrates reuse on a new scale. It isn't just
individual components that are being reused. Reuse now extends to design.

Design ideas are embedded in the code of those functions that are defined in the
library. Thus, the "standard opening sequence" pattern implements a particular
design idea as to how programs should start up and allow their users to select the
data files that are to be manipulated. Another defined pattern of interactions might

Utilize class
inheritance

An abstract class
Document

Possible specialized
subclasses

Building complete
programs

Reusing a design

Introduction 1069

specify how an Application object was to handle a "Quit" command (it should
first give any open document a chance to save changes, tell the document to close
its windows and get rid of data, delete the document, close any application
windows e.g. floating tool palettes, and finally quit).

The code given for the standard classes will embody a particular "look and feel"
as might be required for all applications running on a particular type of machine.
The specifications for a new application would normally require compliance with
"standard look and feel". If you had to implement a program from scratch, you
would have to sort out things like the "standard opening sequence" and "standard
quit" behaviours and implement all the code. If you have a class library that
embodies the design, you simply inherit it and get on with the new application
specific coding.

It is increasingly common for commercial products to be built using
standardized framework class libraries. A "framework class library" has the classes
that provide the basic structure, the framework, for all applications that comply
with a standardized design. The Integrated Development Environment that you
have on your personal computers includes such a class library. You will eventually
get to use that library.

A simplified example framework

The real framework class libraries are relatively complex. The rest of this chapter
illustrates a simplified framework that can serve as an introduction.

While real frameworks allow for many different kinds of data and document;
this "RecordFile" framework is much more restricted. Real frameworks allow for
multiple documents and windows; here you make do with just one of each. Real
frameworks allow you to change the focus of activity arbitrarily so one moment
you can be entering data, the next moment you can be printing some graphic
representation of the data. Here, the flow of control is much more predefined. All
these restrictions are needed to make the example feasible. (The restrictions on
flow of control are the greatest simplifying factor.)

Default code
implements the
"standard look and
feel"

Framework class
libraries

30.1 THE RECORDFILE FRAMEWORK: CONCEPTS

The "RecordFile" framework embodies a simple design for any program that
involves updating "records" in a data file. The "records" could be things like the
customer records in the example in Chapter 17. It is primarily the records that vary
between different program built using this framework.

Figure 30.1 shows the form of the record used in a program, "StudentMarks",
built using the framework. This program keeps track of students and their marks in
a particular subject. Students' have unique identifier numbers, e.g. the student
number 938654. The data maintained include the student's name and the marks for
assignments and exams. The name is displayed in an editable text field; the marks
are in editable number entry fields. When a mark is changed, the record updates
the student's total mark (which is displayed in a non-editable field.)

Example program
and record

1070 Reusable designs

+--+
|Record identifier 938654 |
| |
| +--+ |
| |Student Name Norman, Harvey | |
| +--+ |
| |
| +----------------------------+ +----------------------------+|
| |Assignment 1 (5) 4 | |MidSession (15) 11 ||
| +----------------------------+ +----------------------------+|
| |Assignment 2 (10) 9 | |Examination (50) 0 ||
| +----------------------------+ +----------------------------+|
| |Assignment 3 (10) 4 | |
| +----------------------------+ +----------------------------+|
| |Assignment 4 (10) 0 | |Total 28 ||
| +----------------------------+ +----------------------------+|
| |
| |
| |
+--+

Unique record identifier

Text in editable field

Number in editable field

Figure 30.1 A "record" as handled by the "RecordFile Framework".

When the "StudentMarks" program is started, it first presents the user with a
menu offering the choices of "New (file)", "Open (existing file)", or "Quit". If the
user selects "New" or "Open", a "file-dialog" is used to prompt for the name of the
file.

Once a file has been selected, the display changes, see Figure 30.2. It now
displays details of the name of the file currently being processed, details of the
number of records in the file, and a menu offering various options for adding,
deleting, or modifying records.

If the user selects "New record", the program responds with a dialog that
requires entry of a new unique record identifier. The program verifies that the
number entered by the user does not correspond to the identifier of any existing
record. If the identifier is unique, the program changes to a record display, like that
shown in Figure 30.1, with all editable fields filled with suitable default values.

If the user picks "Delete record" or "View/edit record", the program's first
response is to present a dialog asking for the identifier number of an existing
record. The number entered is checked; if it does not correspond to an existing
record, no further action is taken.

A "Delete record" command with a valid record identifier results in the deletion
of that record from the collection. A "View/edit" command leads to a record
display showing the current contents of the fields for the record.

After performing any necessary updates, a "Close" command closes the existing
file. The program then again displays its original menu with the options "New",
"Open", and "Quit".

"Loans" is another program built on the same framework. It is very similar in
behaviour, but this program keeps track of movies that a customer has on loan from
a small video store. Its record is shown in Figure 30.3.

Starting: "New",
"Open", "Quit"

Changing the
contents of a file

Handling a "New
record" command

Handling "Delete
…" and "View/edit

…" commands

Handling a "Close"
command

Another program,
another record

display

RecordFile Framework: Concepts 1071

+-----------------------------+--------------------------------------+
|CS204 |Number of records: 138 |
| +--------------------------------------+
| ==> New record |
| |
| |
| Delete record |
| |
| |
| View/edit record |
| |
| |
| Close file |
| |
| |
| |
| |
| |
|(use 'option-space' to switch between choices, 'enter' to select) |
+--+

Menu,
 (current choice highlighted, changed
 by tabbing between choices, "enter"
 to select processing)

Filename

Record count

Figure 30.2 The menu of commands for record manipulation.

+--+
|Record identifier 16241 |
| |
| +----------------------------+ +-----------------------+ |
| |Customer Name Jones, David | |Phone 818672 | |
| +----------------------------+ +-----------------------+ |
| |
| Movie title Charge $ |
| +----------------------------+ +------+ |
| |Gone With The Wind | | 4 | |
| +----------------------------+ +------+ +---------------+ |
| |Casablanca | | 4 | | Total 12 | |
| +----------------------------+ +------+ +---------------+ |
| |Citizen Kane | | 4 | |
| +----------------------------+ +------+ +---------------+ |
| | | | 0 | | Year 290 | |
| +----------------------------+ +------+ +---------------+ |
| | | | 0 | |
| +----------------------------+ +------+ |
+--+

Figure 30.3 Record from another "RecordFile" program.

The overall behaviours of the two programs are identical. It is just the records
that change. With the StudentMarks program, the user is entering marks for
different pieces of work. In the Loans program, the user enters the names of
movies and rental charges.

1072 Reusable designs

30.2 THE FRAMEWORK CLASSES: OVERVIEW

The classes used in programs like "StudentMarks" and "Loans" are illustrated in the
class hierarchy diagram shown in Figure 30.4.

Most IDEs can produce hierarchy diagrams, like that in Figure 30.4, from the
code of a program. Such a diagram is generated by a "class browser". A specific
class can be selected, using the mouse, and then menu commands (or other
controls) can be used to open the file with the class declaration or that with the
definition of a member function chosen from a displayed list. A class declaration
or function definition can be edited once it has been displayed. As you get more
deeply into the use of classes, you may find the "browser" provides a more
convenient editing environment than the normal editor provided by the IDE.

C
o
l
l
e
c
t
i
o
n

C
o
m
m
a
n
d
H
a
n
d
l
e
r

W
i
n
d
o
w

W
i
n
d
o
w
R
e
p

A
p
p
l
i
c
a
t
i
o
n

D
o
c
u
m
e
n
t

B
T
C
o
l
l
e
c
t
i
o
n

A
D
C
o
l
l
e
c
t
i
o
n

E
d
i
t
W
i
n
d
o
w

N
u
m
b
e
r
I
t
e
m

E
d
i
t
N
u
m

E
d
i
t
T
e
x
t

K
e
y
e
d
S
t
o
r
a
b
l
e
I
t
e
m

R
e
c
o
r
d

M
y
R
e
c

B
T
r
e
e

B
T
r
e
e
N
o
d
e

D
y
n
a
m
i
c
A
r
r
a
y

M
y
A
p
p

B
T
D
o
c

A
r
r
a
y
D
o
c

M
y
D
o
c

M
yD

oc
 in

he
rit

s
fr

om
A

rr
ay

D
oc

 O
R

 B
T

D
oc

M
e
n
u
W
i
n
d
o
w

N
u
m
b
e
r
D
i
a
l
o
g

R
e
c
o
r
d
W
i
n
d
o
w

T
e
x
t
D
i
a
l
o
g

I
n
p
u
t
F
i
l
e
D
i
a
l
o
g

Figure 30.4 Class hierarchy for "RecordFile" Framework.

Class browser

RecordFile Framework: Concepts 1073

As illustrated in Figure 30.4, a program built using the framework may need to
define as few as three classes. These are shown in Figure 30.4 as the classes MyApp,
MyDoc, and MyRec; they are specializations of the framework classes Application,
Document, and Record.

Classes KeyedStorableItem, Record, and MyRec

The class KeyedStorableItem is simply an interface (same as used in Chapter 24
for the BTree). A KeyedStorableItem is something that can report its key value
(in this case, the "unique record identifier"), can say how much disk space it
occupies, and can be asked to transfer its permanent data between memory and file.
Its functions are "pure virtual"; they cannot be given any default definition, they
must be defined in subclasses.

Class Record adds a number of additional behaviours. Record objects have to
be displayed in windows. The exact form of the window depends on the specific
kind of Record. So a Record had better be able to build its own display window,
slotting in the various "EditText" and "EditNum" subwindows that it needs. Since
the contents of the "edit" windows can get changed, a Record had better be capable
of setting the current value of a data member in the corresponding edit window, and
later reading back a changed value. Some of these additional functions will be pure
virtual, but others may have "partial definitions". For example, every Record
should display its record identifier. The code to add the record identifier to the
display window can be coded as Record::AddFieldsToWindow(). A specialized
implementation of AddFieldsToWindow(), as defined for a subclass, can invoke
this standard behaviour before adding its own unique "edit" subwindows.

Every specialized program built using the framework will define its own
"MyRec" class. (This should have a more appropriate name such as StudentRec or
LoanRec.) The "MyRec" class will define the data members. So for example, class
StudentRec would specify a character array to hold the student's name and six
integer data members to hold the marks (the total can be recomputed when needed).
A LoanRec might have an array of fixed length strings for the names of the movies
on loan.

The specialized MyRec class usually wouldn't need to add any extra functionality
but it would have to define effective implementations for all those pure virtual
functions, like DiskSize() and ReadFrom(), declared in class KeyedStorable
Item. It would also have to provide the rest of the implementation of functions like
Record::AddFieldsToWindow().

Collection classes and "adapters"

Programs work with sets of records: e.g. all the students enrolled in a course, or all
the customers of the video store.

A program that has to work with a small number of records might chose to hold
them all in main memory. It would use a simple collection class like a dynamic
array, list, or (somewhat better) something like a binary tree or AVL tree. It would
work by loading all its records from file into memory when a file was opened,

KeyedStorableItem

Record

MyRec

1074 Reusable designs

letting the user change these records and add new records, and finally write all
records back to the file.

A program that needed a much larger collection of records would use something
like a BTree to store them.

The actual "collection classes" are just those introduced in earlier chapters. The
examples in this chapter use class DynamicArray and class BTree, but any of the
other standard collection classes might be used. An instance of the chosen
collection class will hold the different Record objects. Figure 30.4 includes class
DynamicArray, class BTree and its auxiliary class BTreeNode.

The different collection classes have slightly different interfaces and behaviours.
For example, class BTree looks after its own files. A simpler collection based on
an in-memory list or dynamic array will need some additional component to look
after disk transfers. But we don't want such differences pervading the main code of
the framework.

Consequently, the framework uses some "adapter" classes. Most of the
framework code can work in terms of a "generic" Collection that responds to
requests like "append record", "delete record". Specialized "adapter" classes can
convert such requests into the exact forms required by the specific type of
collection class that is used.

Figure 30.4 shows two adapter classes: ADCollection and BTCollection. An
ADCollection objection contains a dynamic array; a BTCollection owns a BTree
object (i.e. it has a BTree* data member, the BTree object is created and deleted by
code in BTCollection). These classes provide implementations of the pure virtual
functions Collection::Append() etc. These implementations call the approp-
riate functions of the actual collection class object that is used to store the data
records. The adapter classes also add any extra functions that may be needed in
association with a specific type of collection.

Command Handlers: Application, Document and their subclasses

Although classes Application and Document have quite different specific roles
there are some similarities in their behaviour. In fact, there are sufficient
similarities to make it worth introducing a base class, class CommandHandler, that
embodies these common behaviours.

A CommandHandler is something that has the following two primary behaviours.
Firstly it "runs". "Running" means that it builds a menu, loops handling commands
entered via the menu, and finally tidies up.

void CommandHandler::Run()
{

this->MakeMenu();
…
this->CommandLoop();
…
this->Finish();

}

Collection classes

Adapter classes for
different collections

ADCollection and
BTCollection

CommandHandler
::Run()

RecordFile Framework: Concepts 1075

CommandHandler
::CommandLoop()

The second common behaviour is embodied in the CommandLoop() function.
This will involve menu display, and then processing of a selected menu command:

void CommandHandler::CommandLoop()
{

while(!fFinished) {
…
int c = pose menu dialog …
this->HandleCommand(c);
}

}

A CommandHandler object will continue in its command handling loop until a flag,
fFinished, gets set. The fFinished flag of an Application object will get set by
a "Quit" command. A Document object finishes in response to a "Close" command.

As explained in the previous section, the Application object will have a menu
with the choices "New", "Open" and "Quit". Its HandleCommand() function is:

void Application::HandleCommand(int cmdnum)
{

switch(cmdnum) {
case cNEW:

fDoc = this->DoMakeDocument();
fDoc->DoInitialState();
fDoc->OpenNew();
fDoc->Run();
delete fDoc;
break;

case cOPEN:
fDoc = this->DoMakeDocument();
fDoc->DoInitialState();
fDoc->OpenOld();
fDoc->Run();
delete fDoc;
break;

case cQUIT:
fFinished = 1;
break;
}

}

The "New" and "Open" commands result in the creation of some kind of Document
object (obviously, this will be an instance of a specific concrete subclass of class
Document). Once this Document object has been created, it will be told to open a
new or an existing file, and then it will be told to "run".

The Document object will continue to "run" until it gets a "Close" command. It
will then tidy up. Finally, the Document::Run() function, invoked via fDoc
->Run(), will return. The Application object can then delete the Document
object, and resume its "run" behaviour by again displaying its menu.

How do different applications vary?
The application objects in the "StudentMarks" program and "Loans" program

differ only in the kind of Document that they create. A "MyApp" specialized

Application

Application::
HandleComand()

class MyApp

1076 Reusable designs

subclass of class Application need only provide an implementation for the
DoMakeDocument() function. Function Application::DoMakeDocument() will
be "pure virtual", subclasses must provide an implementation. A typical
implementation will be along the following lines:

Document *MyApp::DoMakeDocument()
{

return new MyDoc;
}

A StudentMarkApp would create a StudentMarkDoc while a LoanApp would create
a LoanDoc.

Specialized subclasses of class Application could change other behaviours
because all the member functions of class Application will be virtual. But in
most cases only the DoMakeDocument() function would need to be defined.

Class Document is substantially more complex than class Application. It
shares the same "run" behaviour, as defined by CommandHandler::Run(), and has
a rather similar HandleCommand() function:

void Document::HandleCommand(int cmdnum)
{

switch(cmdnum) {
case cNEWREC:

DoNewRecord();
break;

case cDELREC:
DoDeleteRecord();
break;

case cVIEW:
DoViewEditRecord();
break;

case cCLOSE:
DoCloseDoc();
fFinished = 1;
break;
}

}

Functions like DoNewRecord() are implemented in terms of a pure virtual
DoMakeRecord() function. It is this Document::DoMakeRecord() function that
gets defined in specialized subclasses so as to create the appropriate kind of Record
object (e.g. a StudentRec or a LoanRec).

Document objects are responsible for several other activities. They must create
the collection class object that they work with. They must put up dialogs to get file
names and they may need to perform other actions such as getting and checking
record numbers.

While the "adapter" classes can hide most of the differences between different
kind of collection, some things cannot be hidden. As noted in the discussion above
on ADCollection and BTCollection, there are substantial differences between
those collections that are loaded entirely into memory from file as a program starts

class Document

Document::Handle
Command()

Document hierarchy

RecordFile Framework: Concepts 1077

and those, like the BTree based collection, where individual records are fetched as
needed.

There has to be a kind of parallel hierarchy between specialized collection
classes and specialized Document classes. This is shown in Figure 30.4 with the
classes ArrayDoc and BTDoc. An ArrayDoc object creates an instance of an
ADCollection as its Collection object while a BTDoc creates a BTCollection.
Apart from DoMakeCollection() (the function that makes the Collection
object), these different specialized subclasses of Document differ in their
implementations of the functions that deal with opening and closing of files.

Different programs built using the framework must provide their own
specialized Document classes – class StudentMarkDoc for the StudentMarks
program or LoanDoc for the Loans program. Figure 30.4 uses class MyDoc to
represent the specialized Document subclass needed in a specific program.

Class MyDoc won't be an immediate subclass of class Document, instead it will
be based on a specific storage implementation like ArrayDoc or BTDoc.

Window hierarchy

As is commonly the case with frameworks, most of the classes are involved with
user interaction, both data display and data input. In Figure 30.4, these classes are
represented by the "Window" hierarchy. (Figure 30.4 also shows class WindowRep.
This serves much the same role as the WindowRep class used Chapter 29; it
encapsulates the low level details of how to communicate with a cursor addressable
screen.)

The basic Window class is an extended version of that used in Chapter 29. It
possesses the same behaviours of knowing its size and location on the screen,
maintaining "foreground" and "background" images, setting characters in these
images etc. In addition, these Window objects can own "subwindows" and can
arrange that these subwindows get displayed. They can also deal with display of
text strings and numbers at specific locations.

Class NumberItem is a minor reworking of the version from Chapter 29. An
instance of class NumberItem can be used to display the current value of a variable
and can be updated as the variable is changed.

The simple EditText class of Chapter 29 has been replaced by an entire
hierarchy. The new base class is EditWindow. EditWindow objects are things that
can be told to "handle input". "Handling input" involves accepting and processing
input characters until a '\n' character is entered.

Class EditNum and EditText are simple specializations that can be used for
verified numeric or text string input. An EditNum object accepts numeric
characters, using them to determine the (integer) value input. An EditNum object
can be told the range permitted for input data; normally it will verify that the input
value is in this range (substituting the original value if an out of range value is
input). An EditText object accepts printable characters and builds up a string
(with a fixed maximum length).

A MenuWindow allows a user to pick from a displayed list of menu items. A
MenuWindow is built up by adding "menu items" (these have a string and a numeric

ArrayDoc and BTDoc

MyDoc

class Window

NumberItem

EditWindow

EditNum and
EditText

MenuWindow

1078 Reusable designs

identifier). When a MenuWindow is displayed, it shows its menu items along with
an indicator of "the currently selected item" (starting at the first item in the menu).
A MenuWindow handles "tab" characters (other characters are ignored). A "tab"
changes the currently selected item. The selection moves cyclically through the list
of items. When "enter" ('\n ') is input, the MenuWindow returns the numeric
identifier associated with the currently selected menu item.

The "dialogs" display small windows centered in the screen that contain a
prompt and an editable field (an instance of class EditNum or class EditText). The
user must enter an acceptable value before the dialog will disappear and the
program continue. Class InputFileDialog is a minor specialization of
TextDialog that can check whether a string given as input corresponds to the name
of an existing file.

Class RecordWindow is a slightly more elaborate version of class MenuWindow.
A RecordWindow owns a list of EditNum and EditText subwindows. "Tabbing" in
a RecordWindow selects successive subwindows for further input.

The "MyRec" class used in a particular program implements a function,
AddFieldsToWindow(), that populates a RecordWindow with the necessary
EditNum and EditText subwindows.

Classes
NumberDialog and

TextDialog

RecordWindow

30.3 THE COMMAND HANDLER CLASSES

30.3.1 Class declarations

CommandHandler

The declaration of class CommandHandler is:

class CommandHandler {
public:

CommandHandler(int mainmenuid);
virtual ~CommandHandler();

virtual void Run();
protected:

virtual void MakeMenu() = 0;
virtual void CommandLoop();
virtual void PrepareToRun() { }
virtual void HandleCommand(int command) = 0;
virtual void UpdateState() { }
virtual void Finish() { }

MenuWindow *fMenu;
int fFinished;
int fMenuID;

};

A CommandHandler is basically something that owns a MenuWindow (with an
associated integer identifier). A CommandHandler can "run". It does this by filling
in the menu entries, "preparing to run", executing its command loop, and finally

Command Handler classes: declarations 1079

tidying up. The command loop will involve an update of status, acceptance of a
command number from the MenuWindow and execution of HandleCommand(). One
of the commands must set the fFinished flag.

Some of the functions are declared with "empty" implementations, e.g.
PrepareToRun(). Such functions are fairly common in frameworks. They
represent points where the framework designer has made provision for "unusual"
behaviours that might be necessary in specific programs.

Usually there is nothing that must be done before an Application displays its
main menu, or after its command handling loop is complete. But it is possible that
a particular program would need special action (e.g. display of a "splash screen"
that identifies the program). So, functions PrepareToRun() and Finish() are
declared and are called from within defined code, like that of function Run().
These functions are deliberately given empty definitions (i.e. { }) ; there is no
need to force every program to define actual implementations.

In contrast functions like MakeMenu() and HandleCommand() are pure virtual.
These have to be given definitions before you have a working program.

Application

Class Application is a minor specialization of CommandHandler. An
Application is a kind of CommandHandler that owns a Document that it creates in
its DoMakeDocument() function. An Application provides effective implement-
ations for the pure virtual functions CommandHandler::MakeMenu() and Command
Handler::HandleCommand().

class Application : public CommandHandler {
public:

Application();
virtual ~Application();

protected:
virtual void MakeMenu();
virtual void HandleCommand(int command);
virtual Document* DoMakeDocument() = 0;
Document *fDoc;

};

Function DoMakeDocument() is in the protected section. In a normal program, it is
only used from within HandleCommand() and consequently it does not need to be
public. It is not made private because it is possible that it might need to be called
from a function defined in some specialized subclass of class Application.
Because function DoMakeDocument() is pure virtual, class Application is still
abstract. Real programs must define a specialized subclass of class Application.

Document

Class Document is a substantially more elaborate kind of CommandHandler; Figure
30.5 is a design diagram for the class.

Functions with
empty bodies

Pure virtual
functions

1080 Reusable designs

class Document :
public CommandHandler

char fFileName[64];
int fVerifyInput;
Collection *fStore;

NumberItem *fNumDisplay;

void PrepareToRun();
void UpdateState();
Collection *DoMakeCollection();

void MakeMenu();

void HandleCommand(int command);

void InitializeNewFile();
void OpenOldFile();

void DoCloseDoc();

void DoNewRecord();
void DoDeleteRecord();

void DoViewEditRecord();

Record *DoLoadRecord(long recnum);
void DoEditRecord(Record *);

long GetKey();
Record *DoMakeRecord(long recnum);

long GetExistingRecordNum();

Document();
virtual ~Document();

void OpenNew();
void OpenOld();
void DoInitialState();

Record *MakeEmptyRecord();

All member functions, and
 destructor are virtual.
All non-public members are
 protected.

Functions shown in
 bold are pure virtual.

Owned data

Link to collaborator

File opening
…

Create record when reading from file.

Put filename etc. in MenuWindow;
Update record count in MenuWindow
Create "Collection" object

Build record handling menu
Handle commands to manipulate records

Defined by subclasses, involve file
 handling actions that vary according
 to type of collection used.

Prompt for unique record id and create record
Prompt for existing record id, then delete record
Prompt for existing record id, arrange display and editng

"Load" a record (i.e.g get from collection.
Set up call to RecordWindow that handles editing

Return unique identifier
Create record with newly allocated unique id.

Organize dialog to get exising record id.

Figure 30.5 Design diagram for class Document.

As shown in Figure 30.5, in addition to the data members that it has because it is
a CommandHandler (e.g. the MenuWindow) a Document has, as owned data members,
the file "base name" (a character array), an integer flag whose setting determines
whether file names should be verified, and a Collection object separately created
in the heap and accessed via the fStore pointer. (Of course, this will point to an
instance of some specialized subclass of class Collection.) A Document also has
a link a NumberItem; this (display window) object gets created by the Document but
ownership is transferred to the MenuWindow.

In some cases, the contents of fFileName will be the actual file name. But in
other cases, e.g. with the BTree storage structure, there will be separate index and
data files and fFileName is used simply as a base name. If a single file is used for
storage, then file names can be checked when opening an old file.

All the member functions, and the destructor, are virtual so as to allow
redefinition as needed by subclasses. Quite a few functions are still pure virtual;

Document's data
members

Command Handler classes: declarations 1081

examples include the functions for creating Record objects and some of those
involved in file handling. The data members, and auxiliary member functions, are
all protected (rather than private). Again, this is done so as to maximize the
potential for adaptation in subclasses.

The public interface defines a few additional functions; most of these involve
file handling and related initialization and are used in the code of Application::
HandleCommand().

class Document : public CommandHandler {
public:

Document();
virtual ~Document();

virtual void OpenNew();
virtual void OpenOld();
virtual void DoInitialState();

The other additional public function is one of two used to create records.
Function MakeEmptyRecord() is used (by a Collection object) to create an
empty record that can then be told to read data from a file:

virtual Record *MakeEmptyRecord() = 0;

The other record creating function, DoMakeRecord() is used from within
Document::DoNewRecord(); it creates a record with a new identifier. Since it is
only used from within class Document, it is part of the protected interface.

protected:
virtual void PrepareToRun();
virtual void UpdateState();

virtual void MakeMenu();
virtual void HandleCommand(int command);

The default implementations of the protected functions PrepareToRun() and
UpdateState() simply arrange for the initial display, and later update, of the
information with the filename and the number of records.

Functions MakeMenu() and HandleCommand() define and work with the
standard menu with its options for creating, viewing, and deleting records. These
definitions cover for the pure virtual functions defined in the base CommandHandler
class.

Class Document has two functions that use dialogs to get keys for records.
Function GetKey() is used to get a new unique key, while GetExistingRecord
Num() is used to get a key already associated with a record. Keys are restricted to
positive non zero integers. Function GetKey() checks whether the given key is
new by requesting the Collection object to find a record with the given identifier
number. The function fails (returns -1) if the Collection object successfully
finds a record with the given identifier (an "alert" can then be displayed warning the
user that the identifier is already in use).

Redefining empty and
pure virtual functions
inherited from
CommandHandler

Dialogs for getting
record identifiers

1082 Reusable designs

virtual long GetKey();
virtual long GetExistingRecordNum();

Class Document can provide default definitions for the functions that handle
"new record", "view record" and "delete record" commands. Naturally, these
commands are handled using auxiliary member functions called from Handle
Command():

virtual void DoNewRecord();
virtual void DoDeleteRecord();
virtual void DoViewEditRecord();

For example, DoViewEditRecord() can define the standard behaviour as
involving first a prompt for the record number, handling the case of an invalid
record number through an alert while a valid record number leads to calls to "load"
the record and then the invocation of DoEditRecord().

virtual Record *DoLoadRecord(long recnum);
virtual void DoEditRecord(Record *r);

Function DoEditRecord() can ask the Record to create its own RecordWindow
display and then arrange for this RecordWindow to handle subsequent input (until
an "enter", '\n', character is used to terminate that interaction).

The remaining member functions are all pure virtual. The function that defines
the type of Collection to use is defined by a subclass defined in the framework,
e.g. ArrayDoc or BTDoc. These classes also provide effective definitions for the
remaining file handling functions.

virtual Collection *DoMakeCollection() = 0;
virtual void InitializeNewFile() = 0;
virtual void OpenOldFile() = 0;
virtual void DoCloseDoc() = 0;

Function DoMakeRecord(), like the related public function MakeEmpty
Record(), must be defined in a program specific subclass ("MyDoc" etc).

virtual Record *DoMakeRecord(long recnum) = 0;

The class declaration ends with the specification of the data members and links
to collaborators:

char fFileName[64];
NumberItem *fNumDisplay;
Collection *fStore;
int fVerifyInput;

};

Default definitions of
command handling

functions

Loading and editing
records

Pure virtual member
functions

Functions provided
in framework

subclasses

Program specific
function

Data members

Command Handler classes: declarations 1083

Classes BTDoc and ArrayDoc

Classes BTDoc and ArrayDoc are generally similar. They have to provide
implementations of the various file handling and collection creation functions
declared in class Document. Class BTDoc has the following declaration:

class BTDoc : public Document {
public:

BTDoc();
protected:

virtual Collection *DoMakeCollection();
virtual void InitializeNewFile();
virtual void OpenOldFile();
virtual void DoCloseDoc();

};

The constructor for class BTDoc simply invokes the inherited Document constructor
and then changes the default setting of the "file name verification" flag (thus
switching off verification). Since a BTree uses multiple files, the input file dialog
can't easily check the name.

The declaration of class ArrayDoc is similar. Since it doesn't require any special
action in its constructor, the interface consists of just the three protected functions.

30.3.2 Interactions

Principal interactions when opening a file

Figure 30.6 illustrates some of the interactions involved when an application object
deals with an "Open" command from inside its HandleCommand() function. The
illustration is for the case where the concrete "MyDoc" document class is derived
from class BTDoc.

All the interactions shown in Figure 30.6 are already implemented in the
framework code. A program built using the framework simply inherits the
behaviour patterns shown

The only program specific aspect is the implementation of the highlighted call to
DoMakeDocument(). This call to DoMakeDocument() is the first step in the
process; it results in the creation of the specialized MyDoc object.

Once created, the new document object is told to perform its
DoInitialState() routine in which it creates a Collection object. Since the
supposed MyDoc class is derived from class BTDoc, this step results in a new
BTCollection.

The next step, opening the file, is relatively simple in the case of a BTDoc. First
the document uses a dialog to get the file name; an InputFileDialog object is
created temporarily for this purpose. Once the document has the file name, it
proceeds by telling its BTreeCollection to "open the BTree". This step leads to
the creation of the actual BTree object whose constructor opens both index and data
files.

Inherited pattern of
interactions

A single program
specific function call

Create the collection

Open the file

1084 Reusable designs

"MyApp"
object

"MyDoc"
object

loop

InputFile
Dialog

DoMakeDocument()

+ constructor

DoInitialState()

DoMakeCollection()

"BTCollection"
object

+

OpenOld()

+

PoseModally()

OpenOldFile()

OpenBTree()

BTee
object

+

Run()
CommandLoop()

DoCloseDoc()

CloseBTree()

delete

deletedelete

Other interactions
involved in record

handling

Figure 30.6 Framework defined interactions for an Application object handling
an "Open" command.

The next step would get the document to execute its Run() function. This
would involve processing any record handling commands (none shown in Figure
30.6) and eventually a "Close" command.

A "Close" command gets forwarded to the collection. This responds by deleting
the BTree object (whose destructor arranges to save all "housekeeping data" and
then close its two files).

Closing

Command Handler classes: interactions 1085

A return is then made from Document::Run() back to Application::
HandleCommand(). Since the document object is no longer needed, it gets deleted.
As shown in Figure 30.6 this also leads to the deletion of the BTCollection object.

Additional interactions for a memory based collection

A document based on an "in memory" storage structure would have a slightly more
elaborate pattern of interactions because it has to load the existing records when the
file is opened. The overall pattern is similar. However, as shown in Figure 30.7,
the OpenOldFile() function results in additional interactions.

In this case, the collection object (an ADCollection) will be told to read all its
data from the file. This will involve control switching back and forth among
several objects as shown in Figure 30.7. The collection object would read the
number of records and then have a loop in which records get created, read their
own data, and are then added to the DynamicArray. The collection object has to
ask the document object to actually create the new Record (this step, and the
MyRec::ReadFrom() function, are the only program specific parts of the pattern).

"MyDoc"
object

"ADCollection"
object

constructor

ReadFrom()

"MyRec"
object

+MakeEmptyRecord()

ReadFrom()
loop

"DynamicArray"
object

Append()

Figure 30.7 Opening a document whose contents are memory resident
(interactions initiated by a call to ArrayDoc::OpenOldFile()).

Interactions while creating a new record

Figure 30.8 illustrates another pattern of interactions among class instances that is
almost entirely defined within the framework code. It shows the overall steps
involved in creating a new record (Document::DoNewRecord() function).

The interactions start with the document object using a NumberDialog object to
get a (new) record number from the user. The check to determine that the number
is new involves a request to the collection object to perform a Find() operation
(this Find() should fail).

1086 Reusable designs

"MyDoc"
object

GetKey()

Number
Dialog

+

PoseModally()

"Collection"
object

Find()
LoadRecord()

+

"MyRec"
object

DoMakeRecord()

DoEditRecord()

Append()

Save()

DoMakeRecordWindow()

+

"RecordWindow"
object

ShowText()
ShowNumber()
AddSubwindow()

PoseModally()

delete

loop

Figure 30.8 Some of the interactions resulting from a call to Document::
DoNewRecord().

If the newly entered record identifier number is unique, a new record is created
with the given record number. This involves the program specific implementation
of the function MyDoc::DoMakeRecord().

The next step involves the new MyRec object being asked to create an
appropriate RecordWindow. The object created will be a standard RecordWindow;
but the code for MyRec::DoMakeRecordWindow() will involve program specific
actions adding a specific set of text labels and editable fields.

Once created, the RecordWindow will be "posed modally". It has a loop dealing
with subsequent input. In this loop it will interact with the MyRec object (notifying
it of any changes to editable fields) as well as with the editable subwindows that it
contains.

When control is returned from RecordWindow::PoseModally(), the MyRec
object will already have been brought up to date with respect to any changes. The

Command Handler classes: interactions 1087

RecordWindow can be deleted. The new record can then be added to the
Collection (the Append() operation).

Although the new record was created by the document object, it now belongs to
the collection. The call to Save() represents an explicit transfer of ownership.
Many collections will have empty implementations for Save() (because they don't
have to do anything special with respect to ownership). A collection that uses a
BTree will delete the memory resident record because it will already have made a
permanent copy on disk (during its Append() operation).

30.3.3 Implementation Code

CommandHandler

The constructor for class CommandHandler sets is state as "unfinished" and creates
a MenuWindow. (All Window objects have integer identifiers. In the current code,
these identifiers are only used by RecordWindow and Record objects.)

CommandHandler::CommandHandler(int mainmenuid)
{

fMenuID = mainmenuid;
fMenu = new MenuWindow(fMenuID);
fFinished = 0;

}

The destructor naturally gets rid of the MenuWindow.

CommandHandler::~CommandHandler()
{

delete fMenu;
}

The Run() function completes the construction of the MenuWindow and other
initial preparations and then invokes the CommandLoop() function. When this
returns, any special tidying up operations are performed in Finish().

void CommandHandler::Run()
{

this->MakeMenu();
this->PrepareToRun();
this->CommandLoop();
this->Finish();

}

It may appear that there is something slightly odd about the code. The
MenuWindow is created in the CommandHandler's constructor, but the (virtual)
function MakeMenu() (which adds menu items to the window) is not called until
the start of Run(). It might seem more natural to have the call to MakeMenu() as
part of the CommandHandler's constructor.

1088 Reusable designs

However, that arrangement does not work. Constructors do not use dynamic
calls to virtual functions. If the call to MakeMenu() was part of the Command
Handler 's constructor, it would be the (non existent) CommandHandler::
MakeMenu() function that was invoked and not the desired Application::
MakeMenu() or Document::MakeMenu() function.

Constructors that do invoke virtual functions dynamically (so called "virtual
constructors") are a frequently requested extension to C++ but, for technical
reasons, they can not be implemented.

Class CommandHandler provides the default implementation for one other
function, the main CommandLoop():

void CommandHandler::CommandLoop()
{

while(!fFinished) {
this->UpdateState();
int c = fMenu->PoseModally();
this->HandleCommand(c);
}

}

Application

Class Application is straightforward. Its constructor and destructor add nothing
to those defined by the base CommandHandler class:

Application::Application() : CommandHandler(kAPPMENU_ID)
{
}

Application::~Application()
{
}

Its MakeMenu() function adds the three standard menu items to the
MenuWindow. (Constants like kAPPEMENU_ID, cNEW and related constants used by
class Document are all defined in a common header file. Common naming
conventions have constants that represent "commands" take names starting with 'c'
while those that define other parameters have names that begin with 'k'.)

void Application::MakeMenu()
{

fMenu->AddMenuItem("New", cNEW);
fMenu->AddMenuItem("Open",cOPEN);
fMenu->AddMenuItem("Quit",cQUIT);

}

The code implementing Application::HandleCommand() was given earlier
(in Section 30.2).

Beware: no "virtual
constructors"

Command Handler classes: implementation 1089

Document

The constructor for class Document has a few extra data members to initialize. Its
destructor gets rid of the fStore (Collection object) if one exists.

Document::Document() : CommandHandler(kDOCMENU_ID)
{

fStore = NULL;
fFileName[0] = '\0';
fVerifyInput = 1;

}

The MakeMenu() function adds the standard menu options to the document's
MenuWindow() function. Member DoInitialState() simply uses the (pure
virtual) DoMakeCollection() function to make an appropriate Collection
object. The function actually called would be BTDoc::DoMakeCollection() or
ArrayDoc::DoMakeCollection (or other similar function) depending on the
particular type of document that is being built.

void Document::MakeMenu()
{

fMenu->AddMenuItem("New record", cNEWREC);
fMenu->AddMenuItem("Delete record",cDELREC);
fMenu->AddMenuItem("View/edit record",cVIEW);
fMenu->AddMenuItem("Close file",cCLOSE);

}

void Document::DoInitialState()
{

fStore = DoMakeCollection();
}

Functions PrepareToRun() and UpdateState() deal with the initial display
and subsequent update of the display fields with document details. (The
NumberItem used for output is given to the MenuWindow as a "subwindow". As
explained in Section 30.6, subwindows "belong" to windows and, when
appropriate, get deleted by the window. So although the Document creates the
NumberItem and keeps a link to it, it never deletes it.)

void Document::PrepareToRun()
{

fNumDisplay = new NumberItem(0, 31, 1, 40,
"Number of records:",0);

fMenu->AddSubWindow(fNumDisplay);
}

void Document::UpdateState()
{

fNumDisplay->SetVal(fStore->Size());
fMenu->ShowText(fFileName, 2, 2, 30, 0, 1);

}

Initialization
functions

Display of document
details

1090 Reusable designs

Getting keys for new
and existing records

The functions GetKey() and GetExistingRecordNum() both use dialogs for
input. Function GetKey(), via the DoLoadRecord() function, lets the document
interact with the Collection object to verify that the key is not already in use:

long Document::GetKey()
{

NumberDialog n("Record identifier", 1, LONG_MAX);
long k = n.PoseModally(1);
if(NULL == DoLoadRecord(k))

return k;
Alert("Key already used");
return -1;

}

long Document::GetExistingRecordNum()
{

if(fStore->Size() == 0) {
Alert("No records defined.");
return -1;
}

NumberDialog n("Record number", 1, LONG_MAX);
return n.PoseModally(1);

}

Record *Document::DoLoadRecord(long recnum)
{

return fStore->Find(recnum);
}

Function DoLoadRecord() might seem redundant, after all the request to
fStore to do a Find() operation could have been coded at the point of call.
Again, this is just a point where provision for modification has been built into the
framework. For example, someone working with a disk based collection of records
might want to implement a version that maintained a small "cache" or records in
memory. He or she would find it convenient to have a redefinable
DoLoadRecord() function because this would represent a point where the
"caching" code could be added.

Function Alert() is defined along with the windows code. It puts up a dialog
displaying an error string and waits for the user to press the "enter" key.

Class Document uses the inherited CommandHandler::Run() function. Its own
HandleCommand() function was given earlier (Section 30.2). Document::
HandleCommand() is implemented in terms of the auxiliary member functions
DoNewRecord(), DoDeleteRecord(), DoViewEditRecord(), and DoCloseDoc().
Function DoCloseDoc() is pure virtual but the others have default definitions.

Functions DoNewRecord() and DoEditRecord() implement most of the
interactions shown in Figure 30.8; getting the key, making the record, arranging for
it to be edited through a temporary RecordWindow object, adding and transferring
ownership of the record to the Collection object:

void Document::DoNewRecord()
{

long key = GetKey();

Provision for further
extension

Running and
handling commands

Command Handler classes: implementation 1091

if(key<=0)
return;

Record *r = DoMakeRecord(key);
DoEditRecord(r);
fStore->Append(r);
fStore->Save(r);

}

void Document::DoEditRecord(Record *r)
{

RecordWindow *rw = r->DoMakeRecordWindow();
rw->PoseModally();
delete rw;

}

Function DoDeleteRecord() gets a record identifier and asks the Collection
object to delete that record. (The Collection object is expected to return a success
indicator. A failure results in a warning to the user that the key given did not exist.)

void Document::DoDeleteRecord()
{

long recnum = GetExistingRecordNum();
if(recnum<0)

return;
if(!fStore->Delete(recnum))

Alert(NoRecMsg);
}

Function DoViewEditRecord() first uses a dialog to get a record number, and
then "loads" that record. If the load operation fails, the user is warned that the
record number was invalid. If the record was loaded, it can be edited:

void Document::DoViewEditRecord()
{

long recnum = GetExistingRecordNum();
if(recnum<0)

return;
Record *r = DoLoadRecord(recnum);
if(r == NULL) {

Alert(NoRecMsg);
return;
}

DoEditRecord(r);
fStore->Save(r);

}

Functions OpenNew() and OpenOld() handle standard aspects of file opening
(such as display of dialogs that allow input of a file name). Aspects that depend on
the type of collection structure used are handled through the auxiliary (pure virtual)
functions InitializeNewFile() and OpenOldFile():

void Document::OpenNew()
{

TextDialog onew("Name for new file");

Standard file
handling

1092 Reusable designs

onew.PoseModally("example",fFileName);
InitializeNewFile();

}

void Document::OpenOld()
{

InputFileDialog oold;
oold.PoseModally("example",fFileName, fVerifyInput);
OpenOldFile();

}

ArrayDoc

Class ArrayDoc has to provide implementations for the DoMakeCollection() and
the related file manipulation functions.

It creates an ADCollection (a DynamicArray within an "adapter"):

Collection *ArrayDoc::DoMakeCollection()
{

return new ADCollection(this);
}

The OpenOldFile() function has to actually open the file for input, then it
must get the ADCollection to load all the data. Note the typecast on fStore. The
type of fStore is Collection* . We know that it actually points to an
ADCollection object. So we can use the typecast to get an ADCollection*
pointer. Then it is possible to invoke the ADCollection::ReadFrom() function:

void ArrayDoc::OpenOldFile()
{

fstream in;
in.open(fFileName, ios::in | ios::nocreate);
if(!in.good()) {

Alert("Bad file");
exit(1);
}

((ADCollection*)fStore)->ReadFrom(in);
in.close();

}

Function DoCloseDoc() is very similar. It opens the file for output and then
arranges for the ADCollection object to save the data (after this, the collection has
to be told to delete all its contents):

void ArrayDoc::DoCloseDoc()
{

fstream out;
out.open(fFileName, ios::out);
if(!out.good()) {

Alert("Can not open output");
return;
}

Creating a collection
object

Handling file
transfers

Command Handler classes: implementation 1093

((ADCollection*)fStore)->WriteTo(out);
out.close();

((ADCollection*)fStore)->DeleteContents();

}

BTDoc

As noted earlier, a BTDoc needs to change the default setting of the "verify file
names" flag (normally set to true in the Document constructor):

BTDoc::BTDoc() { fVerifyInput = 0; }

Its DoMakeCollection() function naturally makes a BTCollection object (the
this argument provides the collection object with the necessary link back to its
document):

Collection *BTDoc::DoMakeCollection()
{

return new BTCollection(this);
}

The other member functions defined for class BTDoc are simply an interface to
functions provided by the BTCollection object:

void BTDoc::InitializeNewFile()
{

((BTCollection*)fStore)->OpenBTree(fFileName);
}

void BTDoc::OpenOldFile()
{

((BTCollection*)fStore)->OpenBTree(fFileName);
}

void BTDoc::DoCloseDoc()
{

((BTCollection*)fStore)->CloseBTree();
}

Let the BTree object
handle the files

30.4 COLLECTION CLASSES AND THEIR ADAPTERS

The underlying collection classes are identical to the versions presented in earlier
chapters. Class DynamicArray, as used in ADCollection, is as defined in Chapter
21. (The Window classes also use instances of class DynamicArray.) Class
BTCollection uses an instance of class BTree as defined in Chapter 24.

Class Collection itself is purely an interface class with the following
declaration:

1094 Reusable designs

class Collection {
public:

Collection(Document *d) { this->fDoc = d; }
virtual ~Collection() { }

virtual void Append(Record *r) = 0;
virtual int Delete(long recnum) = 0;
virtual Record *Find(long recnum) = 0;
virtual void Save(Record *r) { }

virtual long Size() = 0;
protected:

Document *fDoc;
};

It should get defined in the same file as class Document. A Collection is
responsible for getting Record objects from disk. It has to ask the Document object
to create a Record of the appropriate type; it is for this reason that a Collection
maintains a link back to the Document to which it belongs.

The declarations for the two specialized subclasses are:

class ADCollection : public Collection {
public:

ADCollection(ArrayDoc *d) : Collection(d) { }

virtual void Append(Record *r);
virtual int Delete(long recnum);
virtual Record *Find(long recnum);
virtual long Size();

virtual void ReadFrom(fstream& fs);
virtual void WriteTo(fstream& fs);
virtual void DeleteContents();

protected:
DynamicArray fD;

};

and

class BTCollection : public Collection {
public:

BTCollection(BTDoc *d) : Collection(d) { }

virtual void Append(Record *r);
virtual int Delete(long recnum);
virtual Record *Find(long recnum);

virtual long Size();
virtual void Save(Record *r);

void OpenBTree(char* filename);
void CloseBTree();

Abstract base class
collection

Specialization using
an array

Specialization using
a BTree

RecordFile Framework: Collection classes and adaptors 1095

private:
BTree *fBTree;

};

Each class defines implementations for the basic Collection functions like
Append(), Find(), Size(). In addition, each class defines a few functions that
relate to the specific form of storage structure used.

In the case of Append() and Size(), these collection class adapters can simply
pass the request on to the actual collection used:

void ADCollection::Append(Record *r) { fD.Append(r); }

void BTCollection::Append(Record *r)
{

fBTree->Add(*r);
}

long ADCollection::Size()
{

return fD.Length();
}

long BTCollection::Size()
{

return fBTree->NumItems();
}

A DynamicArray doesn't itself support record identifiers, so the Find()
operation on an ADCollection must involve an inefficient linear search:

Record *ADCollection::Find(long recnum)
{

int n = fD.Length();
for(int i = 1; i<=n; i++) {

Record *r = (Record*) fD.Nth(i);
long k = r->Key();
if(k == recnum)

return r;
}

return NULL;
}

This Find() function has to be used to implement Delete() because the
record must first be found before the DynamicArray::Remove() operation can be
used. (Function Delete() takes a record identifier, Remove() requires a pointer).

int ADCollection::Delete(long recnum)
{

Record *r = Find(recnum);
if(r != NULL) {

fD.Remove(r);
return 1;
}

else return 0;

Adapting a dynamic
array to fulfil the role
of Collection

1096 Reusable designs

}

The linear searches involved in most operations on an ADCollection make this
storage structure unsuitable for anything apart from very small collections. A more
efficient "in-memory" structure could be built using a binary tree or an AVL tree.

The corresponding functions for the BTCollection also involve work in
addition to the basic Find() and Remove() operations on the collection. Function
BTCollection::Find() has to return a pointer to an in-memory record. All the
records in the BTree itself are on disk. Consequently, Find() had better create the
in-memory record. This gets filled with data from the disk record (if it exists). If
the required record is not present (the BTree::Find() operation fails) then the
newly created record should be deleted.

Record *BTCollection::Find(long recnum)
{

Record *r = fDoc->MakeEmptyRecord();
int success = fBTree->Find(recnum, *r);
if(success)

return r;

delete r;
return NULL;

}

(The record is created via a request back to the document object: fDoc->MakeEmpty
Record();.)

The function BTree::Remove() does not return any success or failure
indicator; "deletion" of a non-existent key fails silently. A Collection is supposed
to report success or failure. Consequently, the BTCollection has to do a Find()
operation on the BTree prior to a Remove(). If this initial BTree::Find() fails,
the BTCollection can report a failure in its delete operation.

int BTCollection::Delete(long recnum)
{

Record *r = Find(recnum);
if(r != NULL) {

delete r;
fBTree->Remove(recnum);
return 1;
}

else return 0;
}

The other member functions for these classes mostly relate to file handling.
Function ADCollection::ReadFrom() implements the scheme shown in Figure
30.7 for loading the entire contents of a collection into memory:

void ADCollection::ReadFrom(fstream& fs)
{

long len;
fs.read((char*)&len, sizeof(len));
for(int i = 1; i <= len; i++) {

Adapting a BTree to
fulfil the role of

Collection

RecordFile Framework: Collection classes and adaptors 1097

Record *r = fDoc->MakeEmptyRecord();
r->ReadFrom(fs);
fD.Append(r);
}

}

The WriteTo() function handles the output case, getting called when a
document is closed. It writes the number of records, then loops getting each record
to write its own data:

void ADCollection::WriteTo(fstream& fs)
{

long len = fD.Length();
fs.write((char*)&len, sizeof(len));
for(int i = 1; i <= len; i++) {

Record *r = (Record*) fD.Nth(i);
r->WriteTo(fs);
}

}

A DynamicArray does not delete its contents. (It can't really. It only has void*
pointers). When a document is finished with, all in memory structures should be
freed. The ADCollection has to arrange this by explicitly removing the records
from the DynamicArray and deleting them.

void ADCollection::DeleteContents()
{

int len = fD.Length();
for(int i = len; i>= 1; i--) {

Record* r = (Record*) fD.Remove(i);
delete r;
}

}

(The code given in Chapter 21 for class DynamicArray should be extended to
include a destructor that does get rid of the associated array of void* pointers.)

The remaining functions of class BTCollection are all simple. Function
OpenBTree() creates the BTree object itself (letting it open the files) while
CloseBTree() deletes the BTree.

void BTCollection::OpenBTree(char* filename)
{

fBTree = new BTree(filename);
}

void BTCollection::CloseBTree()
{

delete fBTree;
}

Class BTCollection provides an implementation for Save(). This function is
called whenever the Document object has finished with a Record object. In the

1098 Reusable designs

case of an in-memory collection, like ADCollection, no action is required. But
with the BTCollection, it is necessary to get rid of the now redundant in-memory
record.

void BTCollection::Save(Record *r)
{

delete r;
}

30.5 CLASS RECORD

As noted earlier, class KeyedStorableItem is simply an interface (it is the
interface for storable records as defined for class BTree in Chapter 24):

class KeyedStorableItem {
public:

virtual ~KeyedStorableItem() { }
virtual long Key(void) const = 0;
virtual void PrintOn(ostream& out) const { }
virtual long DiskSize(void) const = 0;
virtual void ReadFrom(fstream& in) = 0;
virtual void WriteTo(fstream& out) const = 0;

};

Class Record provides a default implementation for the Key() function and
adds the responsibilities related to working with a RecordWindow that allows
editing of the contents of data members (as defined in concrete subclasses).

class Record : public KeyedStorableItem {
public:

Record(long recNum) { this->fRecNum = recNum; }
virtual ~Record() { }
virtual long Key() const { return this->fRecNum; }

virtual RecordWindow *DoMakeRecordWindow();
virtual void SetDisplayField(EditWindow *e);
virtual void ReadDisplayField(EditWindow *e);
virtual void ConsistencyUpdate(EditWindow *e) { }

protected:
virtual void CreateWindow();
virtual void AddFieldsToWindow();
long fRecNum;
RecordWindow *fRW;

};

Class Record defines two data members itself. One is a long integer to hold the
unique identifier (or "key"), the other is a link to the RecordWindow collaborator.

Function DoMakeRecordWindow() uses an auxiliary function CreateWindow()
to actually create the window. Once created, the window is "populated" by adding
subwindows (in AddFieldsToWindow()).

Data members
defined by class

Record

RecordFile Framework: Record class 1099

RecordWindow *Record::DoMakeRecordWindow()
{

CreateWindow();
AddFieldsToWindow();
return fRW;

}

Function CreateWindow() is another "unnecessary" function introduced to
increase the flexibility of the framework. It is unlikely that any specific program
would need to change the way windows get created, but it is possible that some
program might need to use a specialized subclass of RecordWindow. Having the
window creation step handled by a separate virtual function makes adaptation
easier.

void Record::CreateWindow()
{

fRW = new RecordWindow(this);
}

Function Record::AddFieldsToWindow() can add any "background" text
labels to the RecordWindow. A concrete "MyRec" class would also add EditNum
and EditText subwindows for each editable field; an example is given later in
Section 30.8. Each of these subwindows is specified by position, a label (possibly
empty) and a unique identifier. These window identifiers are used in subsequent
communications between the RecordWindow and Record objects.

void Record::AddFieldsToWindow()
{

fRW->ShowText("Record identifier ", 2, 2, 20, 0);
fRW->ShowNumber(fRecNum, 24, 2, 10);
// Then add data fields

// typical code
// EditText *et = new EditText(1001, 5, 4, 60,
// "Student Name ");
//fRW->AddSubWindow(et);
//EditNum *en = new EditNum(1002, 5, 8, 30,
// "Assignment 1 (5) ", 0, 5,1);
//fRW->AddSubWindow(en);

}

When a RecordWindow is first displayed, it will ask the corresponding Record
to set values in each of its editable subwindows. This is done by calling Record::
SetDisplayField(). The EditWindow passed via the pointer parameter can be
asked its identity so allowing the Record object to select the appropriate data to be
used for initialization:

void Record::SetDisplayField(EditWindow *e)
{
// Typical code:
// long id = e->Id();
// switch(id) {

Building the display
structure

Showing current data
values

1100 Reusable designs

//case 1001:
// ((EditText*)e)->SetVal(fStudentName, 1);
// break;
//case 1002:
// ((EditNum*)e)->SetVal(fMark1,1);
// break;
// …
}

Function Record::ReadDisplayField() is called when the contents of an
EditWindow have been changed. The Record can identify which window was
changed and hence determine which data member to update:

void Record::ReadDisplayField(EditWindow *e)
{
// Typical code:
// long id = e->Id();
// switch(id) {
//case 1001:
// char* ptr = ((EditText*)e)->GetVal();
// strcpy(fStudentName, ptr);
// break;
//case 1002:
// fMark1 = ((EditNum*)e)->GetVal();
// break;
// …
}

Interactions between Record and RecordWindow objects are considered in more
detail in the next section (see Figure 30.9).

Getting newly edited
values

30.6 THE WINDOWS CLASS HIERARCHY

30.6.1 Class Responsibilities

WindowRep

The role of the unique WindowRep object is unchanged from that in the version
given in Chapter 29. It "owns" the screen and deals with the low level details
involved in input and output of characters.

The version used for the "RecordFile" framework has two small extensions.
There is an extra public function, Beep(); this function (used by some dialogs)
produces an audible tone to indicate an error. (The simplest implementation
involves outputting '\a' "bell" characters.)

The other extension arranges for any characters input via GetChar() to be
copied into the fImage array. This improves the consistency of screen updates that
occur after data input.

The implementation of this extension requires additional fXC, fYC integer data
members in class WindowRep. These hold the current position of the cursor. They

Window class hierarchy: class responsibilities 1101

are updated by functions like MoveCursor() and PutCharacter(). Function
GetChar() stores an input character at the point (fXC, fYC) in the fImage array.

These extensions are trivial and the code is not given.

Window

Class Window is an extended version of that given in Chapter 29. The major
extension is that a Window can have a list (dynamic array) of "subwindows" and so
has some associated functionality. In addition, Window objects have integer
identifiers and there are a couple of extra member functions for things like
positioning the cursor and outputting a string starting at a given point in the
Window.

The additional (protected) data members are:

DynamicArray fSubWindows; "List of subwindows"
int fId; "Identifier"

The following functions are added to the public interface:

int Id() const { return this->fId; }

Function Id() returns the Window object's identifier. The constructor for class
Window is changed so that this integer identifier number is an extra (first)
parameter. (The destructor is extended to get rid of subwindows.)

void ShowText(const char* str, int x, int y,
 int width, int multiline =0, int bkgd = 1);

void ShowNumber(long value, int x, int y, int width,
 int bkgd = 1);

void ClearArea(int x0, int y0, int x1, int y1,
 int bkgd);

These functions are just generally useful output functions. Function
ShowText() outputs a string, possibly on multiple lines, starting at the defined x,
y position . Function ShowNumber() converts a number to a text string and uses
ShowText() to output this at the given position. Function ClearArea() fills the
specified area with ' 'characters. Each of these functions can operate on either the
"foreground" or "background" image array of the Window. The code for these
functions is straightforward and is not given.

virtual void SetPromptPos(int x, int y);

The default implementation of SetPromptPos() involves a call to the
WindowRep object's MoveCursor() function. It is necessary to change the x, y
values to switch from Window coordinates to screen coordinates before invoking
MoveCursor().

Window identifier

Utility output
functions

1102 Reusable designs

The function PrepareToDisplay() is just an extra "hook" added to increase
flexibility in the framework. It gets called just before a Window gets displayed
allowing for any unusual special case initializations to be performed.

virtual void PrepareToDisplay() { }

The first of the extra functions needed to support subwindows is
CanHandleInput(). Essentially this returns "true" if a Window object is actually an
instance of some class derived from class EditWindow where a GetInput()
function is defined. In some situations, it is necessary to know which
(sub)windows are editable so this function has been added to the base class for the
entire windows hierarchy. By default, the function returns "false".

virtual int CanHandleInput() { return 0; }

The three main additions for subwindows are the public functions
AddSubWindow() and DisplayWindow() and the protected function Offset().

void AddSubWindow(Window *w);
void Offset(int x, int y);
void DisplayWindow();

Member function AddSubWindow(Window *w) adds the given Window w as a
subwindow of the Window executing the function. This just involves appending w
to the "list" fSubWindows.

When creating a subwindow, it is convenient to specify its position in terms of
the enclosing window. However, the fX, fY position fields of a Window are
supposed to be in screen coordinates. The function Offset(), called from
AddSubWindow(), changes the fX, fY coordinates of a subwindow to take into
account the position of its enclosing parent window.

The function DisplayWindow(), whose implementation is given later, prepares
a window, and its subwindows for display. This involves calls to functions such as
PrepareContent(), PrepareToDisplay(), and ShowAll().

NumberItem

The role of class NumberItem is unchanged from that of the version presented in
the last chapter; it just displays a numeric value along with a (possibly null) label
string.

The constructor now has an additional "int id" argument at the front of the
argument list that is used to set a window identifier. Function SetVal() also has
an extra "int redraw" parameter; if this is false (which is the default) a change to
the value does not lead to immediate updating of the screen.

The implementation of NumberItem was changed to use the new functionality
like ShowText() and ShowNumber() added to the base Window class. The
implementation code is not given, being left as an exercise.

Provision for
subwindows

Window class hierarchy: class responsibilities 1103

EditWindow

The significant changes to the previously illustrated Window classes start with class
EditWindow.

Class EditWindow is intended to be simply an abstraction. It represents a
Window object that can be asked to "get input".

"Getting input" means different things in different contexts. When an EditNum
window is "getting input" it consumes digits to build up a number. A MenuWindow
"gets input" by using "tab" characters to change the selected option. However,
although they differ in detail, the various approaches to "getting input" share a
similar overall pattern.

There may have to be some initialization. After this is completed, the actual
input step can be performed. Sometimes, it is necessary to validate an input. If an
input value is unacceptable the user should be notified and then the complete
process should be repeated.

The actual input step itself will involve a loop in which characters are accepted
(via the WindowRep object) and are then processed. Different kinds of EditWindow
process different kinds of character; thus a MenuWindow can basically ignore
everything except tabs, an EditNum only wants to handle digits, while an EditText
can handle more or less any (printable) character. The character input step should
continue until some terminator character is entered. (The terminator character may
be subclass specific.) The terminator character is itself sometimes significant; it
should get returned as the result of the GetInput() function.

This overall pattern can be defined in terms of a GetInput() function that
works with auxiliary member functions that can be redefined in subclasses.
Pseudo-code for this GetInput() function is as follows:

InitializeInput();
do {

SetCursorPosition();
Get character (ch)
while(ch != '\n') {

if(!HandleCharacter(ch))
break;

Get character (ch)
}

TerminateInput();
v = Validate();

} while (fMustValidate && !v);
return ch;

The outer loop, the do … while() loop, makes the EditWindow keep on
processing input until a "valid" entry has been obtained. (An entry is "valid" if it
satisfies the Validate() member function, or if the fMustValidate flag is false).

Prior to the first character input step, the cursor is positioned, so that input
characters appear at a suitable point within the window.

The "enter" key ('\n ') is to terminate all input operations. The function
HandleCharacter() may return false if the character ch corresponds to some

Getting input

Overall input process

Consuming
characters

Inner loop getting
characters until
terminator

Validate

1104 Reusable designs

other (subclass specific) terminator; if this function returns true it means that the
character was "successfully processed" (possibly by being discarded).

The virtual function TerminateInput() gets called when a terminating
character has been read. Class EditText is an example of where this function can
be useful; EditText::TerminateInput() adds a null character ('\0') at the end of
the input string.

In addition to checking the data entered, the Validate() function should deal
with aspects like notifying a user of an incorrect value.

Class EditWindow can provide default definitions for most of these functions.
These defaults make all characters acceptable (but nothing gets done with input
characters), make all inputs "valid", do nothing special at input termination etc.
Most subclasses will need to redefine several if not all these virtual functions.

By default, an EditWindow is expected to be a framed window with one line of
content area (as illustrated in Figure 30.1 with its editable name and number fields).

The class declaration is:

class EditWindow : public Window {
public:

EditWindow(int id, int x, int y, int width,
int height = 3, int mustValidate = 0);

virtual char GetInput();

virtual int CanHandleInput() { return 1; }
virtual int ContentChanged() { return 0; }

protected:
virtual void InitializeInput() {

this->PrepareToDisplay();
}

virtual void SetCursorPosition() {
this->SetPromptPos(fWidth-1, fHeight-1);
}

virtual int HandleCharacter(char ch) { return 1; }
virtual void TerminateInput() { }
virtual int Validate() { return 1; }
int fEntry;
int fMustValidate;

};

The inherited function Window::CanHandleInput() is redefined. As specified
by EditWindow::CanHandleInput(), all EditWindow objects can handle input.

A ContentChanged() function is generally useful For example, an EditNum
object has an "initial value" which it displays prior to an input operation; it can
detect whether the input changes this initial value. If an EditNum object indicates
that it has not been changed, there is no need to copy its value into a Record object.
The ContentChanged() behaviour might as well be defined for class EditWindow
although only it is only useful for some subclasses. It can be given a default
definition stating "no change".

Functions like ContentChanged() and InitializeInput() have been
defined in the class declaration. This is simply for convenience in presentation.
They should either be defined separately in the header file as inline functions, or

EditWindow
declaration

Main GetInput()
function

Auxiliary functions
for GetInput()

Other member
functions

Window class hierarchy: class responsibilities 1105

defined normally in the implementation file. The definition of GetInput(),
essentially the same as the pseudo code given, is included in Section 30.6.2.

The two data members added by class EditWindow are a flag to indicate whether
input values should be validated (fMustValidate) and the variable fEntry (which
is used in several subclasses to do things like record how many characters have
been accepted).

EditText

An EditText is an EditWindow that can accept input of a string. This string is held
(in a 256 character buffer) within the EditText object. Some other object that
needs text input can employ an EditText, require it to perform a GetInput()
operation, and, when input is complete, can ask to read the EditText object's
character buffer.

Naturally, class EditText must redefine a few of those virtual functions
declared by class EditWindow. An EditWindow can simply discard characters that
are input, but an EditText must save printable characters in its text buffer;
consequently, HandleCharacter() must be redefined. An EditWindow positions
the cursor in the bottom right corner of the window (an essentially arbitrary
position), an EditText should locate the cursor at the left hand end of the text input
field; so function SetCursorPosition() gets redefined.

Normally, there are no "validation" checks on text input, so the default "do
nothing" functions like EditWindow::Validate() do not need to be redefined.

The declaration for class EditText is:

class EditText: public EditWindow {
public:

EditText(int id, int x, int y, int width, char *label,
short size = 256, int mustValidate = 0);

void SetVal(char* val, int redraw = 0);
char *GetVal() { return this->fBuf; }

virtual int ContentChanged();
protected:

virtual void InitializeInput();
virtual void SetCursorPosition();
virtual int HandleCharacter(char ch);
virtual void TerminateInput();

void ShowValue(int redraw);

int fLabelWidth;
char fBuf[256];
int fSize;
int fChanged;

};

Class EditText adds extra public member functions SetVal() and GetVal()
that allow setting of the initial value, and reading of the updated value in its fBuf

EditWindow's extra
data members

Extra functions to
set, and read string

Redefining auxiliary
functions of
GetInput()

Extra data members

1106 Reusable designs

text buffer. (There is an extra protected function ShowValue() that gets used in
the implementation of SetVal().)

Class EditText adds several data members. In addition to the text buffer, fBuf,
there is an integer fLabelWidth that records how much of the window's width is
taken up by a label. The fSize parameter has the same role as the size parameter
in the EditText class used in Chapter 29. It is possible to specify a maximum size
for the string. The input process will terminate when this number of characters has
been entered. The class uses an integer flag, fChanged, that gets set if any input
characters get stored in fBuf (so changing its previous value).

EditNum

An EditNum is an EditWindow that can deal with the input of a integer. This
integer ends up being held within the EditNum object. Some other object that needs
integer input can employ an EditNum, require it to perform a GetInput()
operation, and, when input is complete, can ask the EditNum object for its current
value.

The extensions for class EditNum are similar to those for class EditText. The
class adds functions to get and set its integer. It provides effective implementations
for HandleCharacter() and SetCursorPosition(). It has an extra (protected)
ShowValue() function used by its SetVal() public function.

Class EditNum() redefines the Validate() function. The constructor for class
EditNum requires minimum and maximum allowed values. If the "must validate"
flag is set, any number entered should be checked against these limits.

The class declaration is:

class EditNum: public EditWindow {
public:

EditNum(int id, int x, int y, int width, char *label,
long min, long max, int mustValidate = 0);

void SetVal(long, int redraw = 0);
long GetVal() { return this->fVal; }

virtual int ContentChanged();

protected:
virtual void InitializeInput();
virtual void SetCursorPosition();
virtual int HandleCharacter(char ch);
virtual void TerminateInput();
virtual int Validate();

void ShowValue(int redraw);

int fLabelWidth;
long fMin;
long fMax;
long fSetVal;
long fVal;
int fsign;

};

Data members

Validating numeric
input

Extra functions to
set, and read integer

Redefining auxiliary
functions of

GetInput()

Data members

Window class hierarchy: class responsibilities 1107

The data members include the minimum and maximum limits, the value of the
EditNum, its "set value", and a label width. The fsign field is used during input to
note the ± sign of the number.

MenuWindow

A MenuWindow is a specialized input handling (EditWindow) type of window that
allows selection from a menu. By default, it is a "full screen" window, (70x20).

The class declares two extra public member functions: AddMenuItem() and
PoseModally().

Function AddMenuItem() adds a menu item (a string and integer combination)
to the MenuWindow . There is a limit on the number of items, function
AddMenuItem() returns "false" if this limit is exceeded. The limit is defined by the
constant kMAXCHOICES (a suitable limit value is 6). The menu strings are written
into the window's "background image" at fixed positions; their identifier numbers
are held in the array fCmds.

Function PoseModally() does some minor setting up, calls GetInput()
(using the standard version inherited from class EditWindow) and finally returns the
selected command number. (A "modal" window is one that holds the user in a
particular processing "mode". When a MenuWindow is "posed modally", the only
thing that a user can do is switch back and forth among the different menu choices
offered.)

Two of the auxiliary functions for GetInput() have to be redefined. Function
SetCursorPosition() now displays a cursor marker (the characters ==>). The
position is determined by the "currently chosen" menu item (as identified by the
data member fChosen).

Function HandleCharacter() is redefined. This version ignores all characters
apart from "tabs". Input of a "tab" character changes the value of fChosen (which
runs cyclically from 0…fChoices-1 where fChoices is the number of menu items
added). Whenever the value of fChosen is changed, the cursor is repositioned.
(The extra private member function ClearCursorPosition() is needed to clear
the previous image of the cursor.)

class MenuWindow : public EditWindow {
public:

MenuWindow(int id, int x = 1, int y = 1,
int width = 70, int height = 20);

int AddMenuItem(const char *txt, int num);
int PoseModally();

protected:
virtual void SetCursorPosition();
virtual int HandleCharacter(char ch);

void ClearCursorPosition();

int fCmds[kMAXCHOICES];
int fChoices;
int fChosen;

AddMenuItem()

PoseModally() and
"modal" windows

MenuWindow
declaration

Additional
functionality

Redefining auxiliary
functions for
GetInput()

Data members

1108 Reusable designs

};

The Dialogs: NumberDialog, TextDialog, and InputFileDialog

The "dialogs" (NumberDialog , TextDialog and its specialization
InputFileDialog) are essentially little windows that pop up in the middle of the
screen displaying a message and an editable subwindow. A NumberDialog works
with an EditNum subwindow, while a TextDialog works with an EditText
subwindow.

They have constructors (the constructor sets the message string and, in the case
of the NumberDialog limits on the range permitted for input values) and a
PoseModally() function. The PoseModally() function takes an input argument
(a value to be displayed initially in the editable subwindow) and returns as a result
(or as a result parameter) the input data received.

The PoseModally() function arranges for the editable subwindow to "get
input" and performs other housekeeping, e.g. the InputFileDialog may try to
open a file with the name entered by the user.

The class declarations are:

class NumberDialog : public EditWindow {
public:

NumberDialog(const char* msg,
long min = LONG_MIN, long max = LONG_MAX);

long PoseModally(long current);
protected:

EditNum *fE;
};

class TextDialog : public EditWindow {
public:

TextDialog(const char* msg);
virtual void PoseModally(char *current,

char newdata[]);
protected:

EditText *fE;
};

class InputFileDialog : public TextDialog {
public:

InputFileDialog();
void PoseModally(char *current, char newdata[],

int checked = 1);
};

RecordWindow

As noted earlier, class RecordWindow is a slightly more sophisticated version of the
same idea as embodied in class MenuWindow. Rather than use something specific
like a set of "menu items", a RecordWindow utilizes its list of "subwindows".
"Tabbing" in a MenuWindow moves a marker from one item to another; "tabbing" in

Window class hierarchy: class responsibilities 1109

a RecordWindow results in different editable subwindows being given the chance to
"get input".

The class declaration is:

class RecordWindow : public EditWindow {
public:

RecordWindow(Record *r);
void PoseModally();

protected:
void CountEditWindows();
void NextEditWindow();
virtual void InitEditWindows();

Record *fRecord;
int fNumEdits;
int fCurrent;
EditWindow *fEWin;

};

The data members include the link to the associated Record, a count of the number
of editable subwindows, an integer identifying the sequence number of the current
editable subwindow and a pointer to that subwindow. (Pointers to subwindows are
of course stored in the fSubWindows data member as declared in class Window.)

The constructor for class RecordWindow simply identifies it as something
associated with a Record. The RecordWindow constructor makes it a full size
(70x20) window.

The only additional public member function is PoseModally(). This is the
function that arranges for each editable subwindow to have a turn at getting input.
The function is defined as follows:

void RecordWindow::PoseModally()
{

char ch;
DisplayWindow();
CountEditWindows();
InitEditWindows();
fCurrent = fNumEdits;

do {

NextEditWindow();
fRecord->SetDisplayField(fEWin);

ch = fEWin->GetInput();

if(fEWin->ContentChanged()) {
fRecord->ReadDisplayField(fEWin);
fRecord->ConsistencyUpdate(fEWin);
}

} while(ch != '\n');
}

Auxiliary functions
for PoseModally

Data members

Initialization

Loop until user ends
input with "enter'

Activate next edit
subwindow

Subwindow gets
input

Update record

1110 Reusable designs

The initialization steps deal with things like getting the window displayed and
determining the number of editable subwindows.

The main body of the PoseModally() function is its loop. This loop will
continue execution until the user terminates all input with the "enter" key.

The code of the loop starts with calls to an auxiliary private member function
that picks the "next" editable subwindow. The associated Record object is then
told to (re)initialize the value in the subwindow. Once its contents have been reset
to correspond to those in the appropriate member of the Record, the edit window is
given its chance to "get input".

The editable item will return the character that stopped its "get input" loop. This
might be the '\n ' ("enter") character (in which case, the driver loop in
PoseModally() can finish) or it might be a "tab" character (or any other character
that the edit window can not handle, e.g. a '*' in an EditNum).

When an editable subwindow has finished processing input, it is asked whether
its value has changed. If the value has been changed, the associated Record object
is notified. A Record will have to read the new value and copy it into the
corresponding data member. Sometimes, there is additional work to do (the
"consistency update" call).

Figure 30.9 illustrates a pattern of interactions between a RecordWindow and a
Record. The example shown is for a StudentRec (as shown in Figure 30.1). It
illustrates processes involved in changing the mark for assignment 1 from its
default 0 to a user specified value.

When the loop in RecordWindow::PoseModally() starts, the EditText
subwindow for the student's name will become the active subwindow. This results
in the first interactions shown. The RecordWindow would ask the Record to set that
display field; the Record would invoke EditText::SetVal() to set the current
string. Then, the EditText object would be asked to GetInput().

If the user immediately entered "tab", the GetInput() function would return
leaving the EditText object unchanged.

After verifying that the subwindow's state was unchanged, the RecordWindow
would arrange to move to the next subwindow. This would be the EditNum with
the mark for the first assignment.

The Record would again be asked to set a subwindow's initial value. This
would result in a call to EditNum::SetVal() to set the initial mark.

The EditNum subwindow would then have a chance to GetInput(). It would
loop accepting digits (not shown in Figure 30.9) and would calculate the new value.

When this input step was finished, the RecordWindow could check whether the
value had been changed and could get the Record to deal with the update.

Example trace of
interactions

30.6.2 Implementation Code

This section contains example code for the implementation of the window classes.
Not all functions are given, but the code here should be sufficient to allow
implementation. (The complete code can be obtained by ftp over the Internet as
explained in the preface.)

Window class hierarchy: implementation 1111

RecordRecordWindow

PoseModally()

EditText
(Window id = 1001)

EditNum
(id 1002)

SetDisplayField() SetVal()

GetInput()

ContentChanged()

NextEditWindow()

SetDisplayField() SetVal()

GetInput()

ContentChanged()

ReadDisplayField() GetVal()

ConsistencyUpdate()

Figure 30.9 Example trace of specific object interactions while a
RecordWindow is "posed modally".

Window

Most of the code is similar to that given in Chapter 29. Extra functions like
ShowText() and ShowNumber() should be straightforward to code.

The DisplayWindow() function gets the contents of a window drawn, then
arranges to get each subwindow displayed:

void Window::DisplayWindow()
{

PrepareContent();
PrepareToDisplay();
ShowAll();
int n = fSubWindows.Length();
for(int i=1; i<=n; i++) {

Window* sub = (Window*) fSubWindows.Nth(i);
sub->DisplayWindow();
}

}

The destructor will need to have a loop that removes subwindows from the
fSubWindows collection and deletes them individually.

1112 Reusable designs

EditWindow

The constructor for class EditWindow passes most of the arguments on to the
constructor of the Window base class. Its only other responsibility is to set the
"validation" flag.

EditWindow::EditWindow(int id, int x, int y, int width,
int height, int mustValidate)

: Window(id, x, y, width, height)
{

fMustValidate = mustValidate;
}

The GetInput() function implements the algorithm given earlier. Characters
are obtained by invoking the GetChar() function of the WindowRep object.

char EditWindow::GetInput()
{

int v;
char ch;
InitializeInput();
do {

SetCursorPosition();
fEntry = 0;
ch = WindowRep::Instance()->GetChar();
while(ch != '\n') {

if(!HandleCharacter(ch))
break;

ch = WindowRep::Instance()->GetChar();
}

TerminateInput();
v = Validate();

} while (fMustValidate && !v);
return ch;

}

EditText

The EditText constructor is mainly concerned with sorting out the width of any
label and getting the label copied into the "background" image array (via the call to
ShowText()). The arguments passed to the EditWindow base class constructor fix
the height of an EditText to three rows (content plus frame).

EditText::EditText(int id, int x, int y, int width,
char *label, short size, int mustValidate)

: EditWindow(id, x, y, width, 3, mustValidate)
{

fSize = size;
fLabelWidth = 0;
int s = (label == NULL) ? 2 : strlen(label)+2;
width -= 6;
fLabelWidth = (s < width) ? s : width;

Normal "get input"
behaviour

Window class hierarchy: implementation 1113

ShowText(label, 2, 2, fLabelWidth);
fBuf[0] = '\0';
fChanged = 0;

}

The SetVal() member function copies the given string into the fBuf array
(avoiding any overwriting that would occur if the given string was too long):

void EditText::SetVal(char* val, int redraw)
{

int n = strlen(val);
if(n>254) n = 254;
strncpy(fBuf,val,n);
fBuf[n] = '\0';
ShowValue(redraw);
fChanged = 0;

}

The ShowValue() member function outputs the string to the right of any label
already displayed in the EditText. The output area is first cleared out by filling it
with spaces and then characters are copied from the fBuf array:

void EditText::ShowValue(int redraw)
{

int left = fLabelWidth;
int i,j;
for(i=left; i<fWidth;i++)

fCurrentImg[1][i-1] = ' ';
for(i=left,j=0; i<fWidth; i++, j++) {

char ch = fBuf[j];
if(ch == '\0') break;
fCurrentImg[1][i-1] = ch;
}

if(redraw)
ShowContent();

}

If the string is long, only the leading characters get shown.
Function EditText::HandleCharacter() accepts all characters apart from

control characters (e.g. "enter") and the "tab" character:

int EditText::HandleCharacter(char ch)
{

if(iscntrl(ch) || (ch == kTABC))
return 0;

if(fEntry == 0) {
ClearArea(fLabelWidth, 2, fWidth-1, 2,0);
Set(fLabelWidth, 2, ch);
SetPromptPos(fLabelWidth+1, 2);
}

fBuf[fEntry] = ch;
fChanged = 1;
fEntry++;

EditText::
ShowValue()

Handling input
characters
Return "fail" if
unacceptable
character

Initialization for first
character

Store character

1114 Reusable designs

if(fEntry == fSize) return 0;
else return 1;

}

Normally, an EditText will start by displaying the default text. This should be
cleared when the first acceptable character is entered. Variable fEntry (set to zero
in InitializeInput()) counts the number of characters entered. If its value is
zero a ClearArea() operation is performed. Acceptable characters fill out the
fBuf array (until the size limit is reached).

The remaining EditText member functions are all trivial:

int EditText::ContentChanged() { return fChanged; }

void EditText::InitializeInput()
{

EditWindow::InitializeInput();
fEntry = 0;

}

void EditText::SetCursorPosition()
{

SetPromptPos(fLabelWidth, 2);
}

void EditText::TerminateInput()
{

fBuf[fEntry] = '\0';
}

EditNum

Class EditNum is generally similar to class EditText. Again, its constructor is
mainly concerned with sorting out the width of any label

EditNum::EditNum(int id, int x, int y, int width,
char *label, long min, long max, int mustValidate)

: EditWindow(id, x, y, width, 3, mustValidate)
{

fMin = min;
fMax = max;;
fSetVal = fVal = 0;
int s = (label == NULL) ? 2 : strlen(label)+2;
width -= 6;
fLabelWidth = (s < width) ? s : width;
ShowText(label, 2, 2, fLabelWidth);

}

It also sets the data members that record the allowed range of valid inputs and sets
the "value" data member to zero.

The SetVal() member function restricts values to the permitted range:

void EditNum::SetVal(long val, int redraw)

Window class hierarchy: implementation 1115

{
if(val > fMax) val = fMax;
if(val < fMin) val = fMin;
fSetVal = fVal = val;
ShowValue(redraw);

}

Member ShowValue() has to convert the number to a string of digits and get
these output (if the number is too large to be displayed it is replaced by '#' marks).
There is a slight inconsistency in the implementation of EditNum. The initial value
is shown "right justified" in the available field. When a new value is entered, it
appears "left justified" in the field. (Getting the input to appear right justified is not
really hard, its just long winded. As successive digits are entered, the display field
has to be cleared and previous digits redrawn one place further left.)

void EditNum::ShowValue(int redraw)
{

int left = fLabelWidth;
int pos = fWidth - 1;
long val = fVal;
for(int i = left; i<= pos; i++)

fCurrentImg[1][i-1] = ' ';
if(val<0) val = -val;
if(val == 0)

fCurrentImg[1][pos-1] = '0';
while(val > 0) {

int d = val % 10;
val = val / 10;
char ch = d + '0';
fCurrentImg[1][pos-1] = ch;
pos--;
if(pos <= left) break;
}

if(pos<=left)
for(i=left; i<fWidth;i++)

fCurrentImg[1][i-1] = '#';
else
if(fVal<0)

fCurrentImg[1][pos-1] = '-';
if(redraw)

ShowContent();
}

The HandleCharacter() member function has to deal with a couple of special
cases. An input value may be preceded by a + or - sign character; details of the
sign have to be remembered. After the optional sign character, only digits are
acceptable. The first digit entered should cause the display field to be cleared and
then the digit should be shown (preceded if necessary by a minus sign).

int EditNum::HandleCharacter(char ch)
{

// ignore leading plus sign(s)
if((fEntry == 0) && (ch == '+'))

return 1;

EditNum::
ShowValue()

Clear field

Generate digit string
starting at right

"Hash fill" when
number too large

Add sign when
needed

EditNum::
HandleCharacter()

Deal with initial sign

1116 Reusable designs

if((fEntry == 0) && (ch == '-')) {
fsign = -fsign;
return 1;
}

if(!isdigit(ch))
return 0;

if(fEntry == 0) {
ClearArea(fLabelWidth, 2, fWidth-1, 2, 0);
fVal = 0;
if(fsign<0) {

Set(fLabelWidth, 2, '-');
Set(fLabelWidth+1, 2, ch);
}

else Set(fLabelWidth, 2, ch);
}

fEntry++;
fVal = fVal*10 + (ch - '0');
return 1;

}

As the digits are entered, they are used to calculate the numeric value which gets
stored in fVal.

The ± sign indication is held in fsign. This is initialized to "plus" in
InitializeInput() and is used to set the sign of the final number in
TerminateInput():

void EditNum::InitializeInput()
{

EditWindow::InitializeInput();
fsign = 1;

}

void EditNum::TerminateInput()
{

fVal = fsign*fVal;
}

If the number entered is out of range, the Validate() function fills the entry
field with a message and then, using the Beep() and Delay() functions of the
WindowRep object, brings error message to the attention of the user:

int EditNum::Validate()
{

if(!((fMin <= fVal) && (fVal <= fMax))){
ShowText("(out of range)", fLabelWidth , 2,

fWidth-1,0,0);
WindowRep::Instance()->Beep();
WindowRep::Instance()->Delay(1);
fVal = fSetVal;
ClearArea(fLabelWidth, 2, fWidth-1, 2, 0);
ShowValue(1);
return 0;
}

Terminate input on
non-digit

Clear entry field for
first digit

Consume ordinary
digits

EditNum::Validate

Invalid entry

Failure return

Window class hierarchy: implementation 1117

else return 1;
}

The remaining member functions of class EditNum are simple:

int EditNum::ContentChanged() { return fVal != fSetVal; }

void EditNum::SetCursorPosition()
{

SetPromptPos(fLabelWidth, 2);
}

MenuWindow

The constructor for class MenuWindow initializes the count of menu items to zero
and adds a line of text at the bottom of the window:

MenuWindow::MenuWindow(int id, int x, int y, int width, int
height)

: EditWindow(id, x, y, width, height)
{

fChoices = 0;
ShowText("(use 'option-space' to switch between

"choices, 'enter' to select)",
2, height-1, width-4);

}

Menu items are "added" by writing their text into the window background (the
positions for successive menu items are predefined). The menu numbers get stored
in the array fCmds.

int MenuWindow::AddMenuItem(const char *txt, int num)
{

if(fChoices == kMAXCHOICES)
return 0;

int len = strlen(txt);
fCmds[fChoices] = num;
int x = 10;
int y = 4 + 3*fChoices;
ShowText(txt, x, y, fWidth-14);
fChoices++;
return 1;

}

The PoseModally() member function gets the window displayed and then uses
GetInput() (as inherited from class EditWindow) to allow the user to select a
menu option:

int MenuWindow::PoseModally()
{

DisplayWindow();
fChosen = 0;

MenuWindow::
AddMenuItem()

MenuWindow::
PoseModally()

1118 Reusable designs

GetInput();
return fCmds[fChosen];

}

The "do nothing" function EditWindow::HandleCharacter() is redefined.
Function MenuWindow::HandleCharacter() interprets "tabs" as commands
changing the chosen item.

int MenuWindow::HandleCharacter(char ch)
{

if(ch != kTABC)
return 1;

ClearCursorPosition();

fChosen++;
if(fChosen==fChoices)

fChosen = 0;
SetCursorPosition();
return 1;

}

(The "tab" character is defined by the character constant kTABC. On some systems,
e.g. Symantec's environment, actual tab characters from the keyboard get filtered
out by the run-time routines and are never passed through to a running program. A
substitute tab character has to be used. One possible substitute is "option-space"
(const char kTABC = 0xCA;).

The auxiliary member functions SetCursorPosition() and
ClearCusorPostion() deal with the display of the ==> cursor indicator:

void MenuWindow::SetCursorPosition()
{

int x = 5;
int y = 4 + 3*fChosen;
ShowText("==>", x, y, 4,0,0);
SetPromptPos(x,y);

}

void MenuWindow::ClearCursorPosition()
{

int x = 5;
int y = 4 + 3*fChosen;
ShowText(" ", x, y, 4, 0, 0);

}

Dialogs

The basic dialogs, NumberDialog and TextDialog, are very similar in structure
and are actually quite simple. The constructors create an EditWindow containing a

MenuWindow::
HandleCharacter()

Ignore anything
except tabs

Clear cursor

Update chosen item

Window class hierarchy: implementation 1119

prompt string (e.g. "Enter record number"). This window also contains a
subwindow, either an EditNum or an EditText.

NumberDialog::NumberDialog(const char *msg,
long min, long max)

: EditWindow(kNO_ID, 15, 5, 35,10)
{

fE = new EditNum(kNO_ID, 5, 5, 20, NULL, min, max, 1);
ShowText(msg, 2, 2, 30);
AddSubWindow(fE);

}

TextDialog::TextDialog(const char *msg)
: EditWindow(kNO_ID, 15, 5, 35,10)

{
fE = new EditText(kNO_ID, 5, 5, 20, NULL, 63, 1);
ShowText(msg, 2, 2, 30);
AddSubWindow(fE);

}

The PoseModally() functions get the window displayed, initialize the editable
subwindow, arrange for it to handle the input and finally, return the value that was
input.

long NumberDialog::PoseModally(long current)
{

DisplayWindow();
fE->SetVal(current, 1);
fE->GetInput();
return fE->GetVal();

}

void TextDialog::PoseModally(char *current, char newdata[])
{

DisplayWindow();
fE->SetVal(current, 1);
fE->GetInput();
strcpy(newdata,fE->GetVal());

}

An InputFileDialog is simply a TextDialog whose PoseModally() function
has been redefined to include an optional check on the existence of the file:

InputFileDialog::InputFileDialog() :
TextDialog("Name of input file")

{
}

void InputFileDialog::PoseModally(char *current,
char newdata[], int checked)

{
DisplayWindow();
for(;;) {

Dialog constructors

PoseModally()
functions

InputFileDialog

1120 Reusable designs

Loop until valid file
name given

fE->SetVal(current, 1);
fE->GetInput();
strcpy(newdata,fE->GetVal());
if(!checked)

return;
ifstream in;
in.open(newdata,ios::in | ios::nocreate);
int state = in.good();
in.close();
if(state)

return;
WindowRep::Instance()->Beep();
fE->SetVal("File not found", 1);
WindowRep::Instance()->Delay(1);
}

}

The Alert() function belongs with the dialogs. It displays an EditWindow
with an error message. This window remains on the screen until dismissed by the
using hitting the enter key.

void Alert(const char *msg)
{

EditWindow e(kNO_ID, 15, 5, 35, 10);
e.DisplayWindow();
e.ShowText(msg, 2, 2, 30, 0, 0);
e.ShowText("OK", 18, 6, 3, 0, 0);
e.GetInput();

}

RecordWindow

As far as the constructor is concerned, a RecordWindow is simply an EditWindow
with an associated Record:

RecordWindow::RecordWindow(Record *r)
: EditWindow(0, 1, 1, 70, 20)

{
fRecord = r;

}

The main role of a RecordWindow is to be "posed modally". While displayed
arranges for its subwindows to "get input". (These subwindows get added using the
inherited member function Window::AddSubWindow()). The code for Record
Window::PoseModally() was given earlier.

The auxiliary functions CountEditWindows(), InitEditWindows(), and
NextEditWindow() work with the subwindows list. The CountEditWindows()
function runs through the list of subwindows asking each whether it "can handle
input":

void RecordWindow::CountEditWindows()
{

Try opening file

Warn of invalid file
name

Global function
Alert()

RecordWindow::
PoseModally()

Window class hierarchy: implementation 1121

fNumEdits = 0;
int nsub = fSubWindows.Length();
for(int i = 1; i <= nsub; i++) {

Window* w = (Window*) fSubWindows.Nth(i);
if(w->CanHandleInput())

fNumEdits++;
}

}

Function InitEditWindows(), called when the RecordWindow is getting
displayed, arranges for the associated Record to load each window with the
appropriate value (taken from some data member of the Record):

void RecordWindow::InitEditWindows()
{

int nsub = fSubWindows.Length();
for(int i = 1; i <= nsub; i++) {

Window* w = (Window*) fSubWindows.Nth(i);
if(w->CanHandleInput())

fRecord->SetDisplayField((EditWindow*)w);
}

}

Function NextEditWindow() updates the value of fCurrent (which identifies
which editable subwindow is "current"). The appropriate subwindow must then be
found (by counting through the fSubWindows list) and made the currently active
window that will be given the chance to "get input".

void RecordWindow::NextEditWindow()
{

if(fCurrent == fNumEdits)
fCurrent = 1;

else
fCurrent++;

int nsub = fSubWindows.Length();
for(int i = 1, j= 0; i <= nsub; i++) {

Window* w = (Window*) fSubWindows.Nth(i);
if(w->CanHandleInput()) {

j++;
if(j == fCurrent) {

fEWin = (EditWindow*) w;
return;
}

}
}

}

30.6.3 Using the concrete classes from a framework

The Window class hierarchy has been presented in considerable detail.
Here, the detail was necessary. After all, you are going to have to get the

framework code to work for the exercises. In addition, the structure and

1122 Reusable designs

implementation code illustrate many of the concepts underlying elaborate class
hierarchies.

Class like InputFileDialog or EditNum are actually quite complex entities.
They have more than thirty member functions and between ten and twenty data
members. (There are about 25 member functions defined for class Window; other
functions get added, and existing functions get redefined at the various levels in the
hierarchy like EditWindow, TextDialog etc).

This apparent complexity is not reflected in their use. As far as usage is
concerned, an InputFileDialog is something that can be asked to get the name of
an input file. The code using such an object is straightforward, e.g.

void Document::OpenOld()
{

InputFileDialog oold;
oold.PoseModally("example",fFileName, fVerifyInput);
OpenOldFile();

}

("Give me an InputFileDialog". "Hey, file dialog, do your stuff".)
This is typical. Concrete classes in the frameworks may have complex

structures resulting from inheritance, but their use is simple.
In real frameworks, the class hierarchies are much more complex. For example,

one of the frameworks has a class TScrollBar that handles scrolling of views
displayed in windows. It is basically something that responds to mouse actions in
the "thumb" or the "up/down" arrows and it changes a value that is meant to
represent the origin that is to be used when drawing pictures. Now, a TScrollBar
is a kind of TCtlMgr which is a specialization of TControl. Class TControl is a
subclass of TView , a TView is derived from TCommandHandler. A
TCommandHandler is actually a specialization of class TEventHandler, and,
naturally, class TEventHandler is derived from TObject.

By the time you are six or seven levels deep in a class hierarchy, you have
something fairly complex. A TScrollBar will have a fair number of member
functions defined (about 300 actually) because it can do anything a TObject can
do, and all the extra things that a TEventHandler added, plus the behaviours of a
TCommandHandler, while TView and others added several more abilities.

Usually, you aren't interested. When using a TScrollBar, all you care is that
you can create one, tell it to do its thing, and that you can use a member function
GetVal() to get the current origin value when you need it.

The reference manuals for the class libraries will generally document just the
unique capabilities of the different concrete classes. So something like an
InputFileDialog will be described simply in terms of its constructor and
PoseModally() function.

Of course sometimes you do make some use of functions that are inherited from
base classes. The RecordWindow class is an example. This could be described
primarily in terms of its constructor, and PoseModally() functions. However,
code using a RecordWindow will also use the AddSubWindows() member function.

Apparent complexity

Simplicity of use

Window classes: implementation 1123

30.7 ORGANIZATIONAL DETAILS

When working with a framework, your primary concerns are getting to understand
the conceptual application structure that is modelled in the framework, and the role
of the different classes.

However, you must also learn how to build a program using the framework.
This is a fairly complex process, though the integrated development environments
may succeed in hiding most of the complexities.

There are a couple of sources of difficulties. Firstly, you have all the "header"
files with the class declarations. When writing code that uses framework classes,
you have to #include the appropriate headers. Secondly, there is the problem of
linking the code. If each of the classes is in a separate implementation file, you will
have to link your compiled code with a compiled version of each of the files that
contains framework code that you rely on.

Headers

One way of dealing with the problem of header files is in effect to #include them
all. This is normally done by having a header file, e.g. "ClassLib.h", whose
contents consist of a long sequence of #includes:

#include "Cmdhdl.h"
#include "Application.h"
#include "Document.h"
#include "WindowRep.h"
…
#include "Dialog.h"

This has the advantage that you don't have to bother to work out which header files
need to be included when compiling any specific implementation (.cp) file.

The disadvantage is that the compiler has to read all those headers whenever a
piece of code is compiled. Firstly, this makes the compilation process slow. With
a full size framework, there might be fifty or more header files; opening and
reading the contents of fifty files takes time. Secondly, the compiler has to record
the information from those files in its "symbol tables". A framework library may
have one hundred or more classes; these classes can have anything from ten to three
hundred member functions. Recording this information takes a lot of space. The
compiler will need many megabytes of storage for its symbol tables (and this had
better be real memory, not virtual memory on disk, because otherwise the process
becomes too slow).

There are other problems related to the headers, problems that have to be sorted
out by the authors of the framework. For example, there are dependencies between
different classes and these have to be taken into account when arranging
declarations in a header file. In a framework, these dependencies generally appear
as the occurrence of data members (or function arguments) that are pointers to
instances of other classes, e.g:

Problems with
"header" files and
linking of compiled
modules

"The enormous
header file"

Slow compilations,
large memory usage

Interdependencies
among class
declarations

1124 Reusable designs

class Record {
…
RecordWindow *fWin;
…

};

class RecordWindow {
…

Record *fRec;
…
};

If the compiler encounters class Record before it learns about class
RecordWindow it will complain that it does not understand the declaration
RecordWindow *fWin. If the compiler encounters class RecordWindow before it
learns about class Record it will complain that it doesn't understand the declaration
Record *fRec.

One solution to this problem is to have dummy class declarations naming the
classes before any instances get mentioned:

class CommandHandler;
class Application;
class Document;
class Window;
class Record;
class RecordWindow;
…
// Now get first real class declaration

class CommandHandler {
…
};

Such a list might appear at the start of the composite "ClassLib.h" file.
An alternative mechanism is to include the keyword class in all the member

and argument declarations:

class RecordWindow {
public:

RecordWindow(class Record *r);
…

protected:
…
class Record *fRec;
…

};

Linking

The linking problem is that a particular program that uses the framework must have
the code for all necessary framework classes linked to its own code.

Window classes: implementation 1125

One way of dealing with this is, once again, to use a single giant file. This file
contains the compiled code for all framework classes. The "linker" has to scan this
file to find the code that is needed.

Such a file does tend to be very large (several megabytes) and the linkage
process may be quite slow. The linker may have to make multiple passes through
the file. For example, the linker might see that a program needs an
InputFileDialog; so it goes to the library file and finds the code for this class.
Then it finds that an InputFileDialog needs the code for TextDialog; once
again, the linker has to go and read through the file to find this class. In unfortunate
cases, it might be necessary for a linker to read the file three or four times (though
there are alternative solutions).

If the compiled code for the various library classes is held in separate files, the
linker will have to be given a list with the names of all these files.

Currently the Symantec system has a particularly clumsy approach to dealing
with the framework library. In effect, it copies all the source files of the framework
into each "project" that is being built using that framework. Consequently, when
you start, you discover that you already have 150 files in your program. This leads
to lengthy compilation steps (at least for the first compilation) as well as wastage of
disk space. (It also makes it easier for programmers to change the code of the
framework; changing the framework is not a wise idea.)

RecordFile Framework

Figure 30.10 illustrates the module structure for a program built using the
RecordFile framework. Although this example is more complex than most
programs that you would currently work with, it is typical of real programs.
Irrespective of whether you are using OO design, object based design, or functional
decomposition, you will end up with a program composed from code in many
implementation files. You will have header files declaring classes, structures and
functions. There will be interdependencies. One of your tasks as a developer is
sorting out these dependencies.

The figure shows the various files and the #include relationships between files.
Sometimes a header file is #included within another header; sometimes a header
file is #included by an implementation (.cp) file.

When you have relationships like class derivation, e.g. class MyApp : public
Application, the header file declaring a derived class like MyApp (My.h) has to
#include the header defining the base class Application (Application.h).

If the relationship is simply a "uses" one, e.g. an instance of class RecordWin
uses an instance of class Record, then the #include of class Record can be placed in
the RecordWin.cp file (though you will need a declaration like class Record
within the RecordWin.h file in order to declare Record* data members).

The files used are as follows:

• commands.h
Declares constants for "command numbers" (e.g. cNEW etc). Used by all
CommandHandler classes so #included in CmdHdl.h

1126 Reusable designs

main.o

main.cp

My.h

My.cp

My.o

BTDoc.h

BTDoc.cp

BTDoc.o

Record.cp

Record.o

RecordWin.cp

RecordWin.o

BTree.cp

BTree.o

WindowRep.cp

WindowRep.o

Document.cp

Document.o

Application.cp

Application.o

D.cp

D.o

CmdHdl.cp

CmdHdl.o

Record.h

RecordWin.h

BTree.h
WindowRep.h

Document.h
Application.h

D.h
CmdHdl.h

Keyd.h

commands.h

Figure 30.10 Module structure for a program using the RecordFile framework.

• Keyd.h
Declares pure abstract class KeyedStorableItem. This has to be #included
by BTree.h and Record.h. (The class declaration in Record.h tells the compiler
that a Record is a KeyedStorableItem so we had better let the compiler
know what a KeyedStorableItem is.)

• D.h
Declares the dynamic array. A Window contains an instance of class
DynamicArray so the header D.h will have to be #included in WindowRep.h.

• CmdHdl.h
Declares the abstract base class CommandHandler.

• BTree.h
Declares class BTree.

• WindowRep.h
Declares classes: WindowRep, Window, NumberItem, EditWindow, EditText,
EditNum, and the "dialog" classes. A program that uses the window code
typically uses all different kinds of windows so they might as well be declared
and define as a group.

Window classes: implementation 1127

• Document.h and Application.h
Declare the corresponding "partially implemented abstract classes".

• BTDoc.h
Declares class BTDoc, #including the Document.h class (to get a definition of
the base class Document), and BTree.h to get details of the storage structure
used.

• Record.h and RecordWin.h
Declare the Record and RecordWin classes. Class RecordWin is separate from
the other Window classes. The main group of Window classes could be used
in other programs; RecordWin is special for the type of programs considered in
this chapter.

• My.h
Declares the program specific "MyApp", "MyDocument", and "MyRec"
classes.

• The ".cp" implementation files
The code with definitions for the classes, additional #includes as needed.

The main program, in file main.cp, will simply declare an instance of the
"MyApp" class and tell it to "run".

30.8 THE "STUDENTMARKS" EXAMPLE PROGRAM

We might as well start with the main program. It has the standard form:

int main()
{

StudentMarkApp a;
a.Run();
return 0;

}

The three classes that have to be defined are StudentMarkApp, Student
MarkDoc, and StudentRec. The "application" and "document" classes are both
simple:

class StudentMarkApp : public Application {
protected:

virtual Document* DoMakeDocument();
};

class StudentMarkDoc : public BTDoc {
protected:

virtual Record *DoMakeRecord(long recnum);
virtual Record *MakeEmptyRecord();

};

The implementation for their member functions is as expected:

Application and
Document classes

1128 Reusable designs

Document *StudentMarkApp ::DoMakeDocument()
{

return new StudentMarkDoc;
}

Record *StudentMarkDoc::DoMakeRecord(long recnum)
{

return new StudentRec (recnum);
}

Record *StudentMarkDoc::MakeEmptyRecord()
{

return new StudentRec (0);
}

The specialized subclass of class Record does have some substance, but it is all
quite simple:

class StudentRec : public Record {
public:

StudentRec (long recnum);

virtual void WriteTo(fstream& out) const;
virtual void ReadFrom(fstream& in);
virtual long DiskSize(void) const ;

virtual void SetDisplayField(EditWindow *e);
virtual void ReadDisplayField(EditWindow *e);

protected:
virtual void ConsistencyUpdate(EditWindow *e);
virtual void AddFieldsToWindow();
char fStudentName[64];
long fMark1;
long fMark2;
long fMark3;
long fMark4;
long fMidSession;
long fFinalExam;

NumberItem *fN;
long fTotal;

};

The data required include a student name and marks for various assignments and
examinations. There is also a link to a NumberItem that will be used to display the
total mark for the student.

The constructor does whatever an ordinary Record does to initialize itself, then
sets all its own data members:

StudentRec::StudentRec(long recnum) : Record(recnum)
{

fMark1 = fMark2 = fMark3 = fMark4 =
fMidSession = fFinalExam = 0;

Implementation of
Application and

Document classes

Record class

Redefine
KeyedStorableItem

functions

Redefine Record
functions

Declare unique data
members

StudentMarks Program 1129

strcpy(fStudentName,"Nameless");
}

The function AddFieldsToWindow() populates the RecordWindow with the
necessary EditText and EditNum editable subwindows:

void StudentRec::AddFieldsToWindow()
{

Record::AddFieldsToWindow();

EditText *et = new EditText(1001, 5, 4, 60,
"Student Name ");

fRW->AddSubWindow(et);

EditNum *en = new EditNum(1002, 5, 8, 30,
"Assignment 1 (5) ", 0, 5,1);

fRW->AddSubWindow(en);
en = new EditNum(1003, 5, 10, 30,

"Assignment 2 (10) ", 0, 10,1);
fRW->AddSubWindow(en);
…
en = new EditNum(1007, 40, 10, 30, "Examination (50) ",

0, 60,1);
fRW->AddSubWindow(en);

fTotal = fMark1 + fMark2 + fMark3 + fMark4
+ fMidSession + fFinalExam;

fN = new NumberItem(2000, 40, 14,30, "Total ", fTotal);
fRW->AddSubWindow(fN);

}

The call to the base class function, Record::AddFieldsToWindow(), gets the
NumberItem for the record number added to the RecordWindow. An extra
NumberItem subwindow is added to hold the total.

Functions SetDisplayField() and ReadDisplayField() transfer data
to/from the EditText (for the name) and EditNum windows:

void StudentRec ::SetDisplayField(EditWindow *e)
{

long id = e->Id();
switch(id) {

case 1001:
((EditText*)e)->SetVal(fStudentName, 1);
break;

case 1002:
((EditNum*)e)->SetVal(fMark1,1);
break;

case 1003:
((EditNum*)e)->SetVal(fMark2,1);
break;

case 1004:
((EditNum*)e)->SetVal(fMark3,1);
break;

case 1005:
((EditNum*)e)->SetVal(fMark4,1);

Building the display
structure

Adding an EditText

Adding some
EditNum subwindows

Adding a
NumberItem

Data exchange with
editable windows

Setting an EditText

Setting EditNum

1130 Reusable designs

break;
case 1006:

((EditNum*)e)->SetVal(fMidSession,1);
break;

case 1007:
((EditNum*)e)->SetVal(fFinalExam,1);
break;

}
}

void StudentRec::ReadDisplayField(EditWindow *e)
{

long id = e->Id();
switch(id) {

case 1001:
char* ptr = ((EditText*)e)->GetVal();
strcpy(fStudentName, ptr);
break;

case 1002:
fMark1 = ((EditNum*)e)->GetVal();
break;

…
…
case 1007:

fFinalExam = ((EditNum*)e)->GetVal();
break;
}

}

The ReadFrom() and WriteTo() functions involve a series of low level read
(write) operations that transfer the data for the individual data members of the
record:

void StudentRec::ReadFrom(fstream& in)
{

in.read((char*)&fRecNum, sizeof(fRecNum));
in.read((char*)&fStudentName, sizeof(fStudentName));
in.read((char*)&fMark1, sizeof(fMark1));
in.read((char*)&fMark2, sizeof(fMark2));
in.read((char*)&fMark3, sizeof(fMark3));
in.read((char*)&fMark4, sizeof(fMark4));
in.read((char*)&fMidSession, sizeof(fMidSession));
in.read((char*)&fFinalExam, sizeof(fMidSession));

}

void StudentRec::WriteTo(fstream& out) const
{

out.write((char*)&fRecNum, sizeof(fRecNum));
out.write((char*)&fStudentName, sizeof(fStudentName));
out.write((char*)&fMark1, sizeof(fMark1));
…
out.write((char*)&fFinalExam, sizeof(fMidSession));

}

(The total does not need to be saved, it can be recalculated.)

Reading an EditText

Reading an EditNum

Reading from file

Writing to file

StudentMarks Program 1131

The DiskSize() function computes the size of a record as held on disk:

long StudentRec::DiskSize(void) const
{

return sizeof(fRecNum) + sizeof(fStudentName)
+ 6 * sizeof(long);

}

Function ConsistencyUpdate() is called after an editable subwindow gets
changed. In this example, changes will usually necessitate the recalculation and
redisplay of the total mark:

void StudentRec::ConsistencyUpdate(EditWindow *e)
{

fTotal = fMark1 + fMark2 + fMark3 + fMark4
+ fMidSession + fFinalExam;

fN->SetVal(fTotal, 1);
}

EXERCISES

1. Implement all the code of the framework and the StudentMark application.

2. Create new subclasses of class Collection and class Document so that an AVL tree can
be used for storage of data records.

3. Implement the Loans program using your AVLDoc and AVLCollection classes.

The records in the files used by the Loans program are to have the following data fields:

customer name (64 characters)
phone number (long integer)
total payments this year (long integer)
an array with five entries giving film names (64 characters) and weekly charge

for movies currently on loan.

The program is to use a record display similar to that illustrated in Figure 30.3.

4. There is a memory leak. Find it. Fix it correctly.
(Hint, the leak will occur with a disk based collection. It is in one of the Document
functions. The "obvious" fix is wrong because it would disrupt memory based collection
structures.)

1132 Reusable designs

