
31 Frameworks for
Understanding
It is unlikely that you will learn how to use a "framework class library" in any of
your computer science courses at university. Frameworks don't possess quite the
social cachet of "normal forms for relational databases", "NP complexity analysis",
"LR grammars", "formal derivation of algorithms", "Z specification" and the rest.
You might encounter "Design Patterns" (which relate to frameworks) in an
advanced undergraduate or graduate level course; but, on the whole, most
universities pay little regard to the framework-based development methodologies.

However, if you intend to develop any substantial program on your personal
computer, you should plan to use the framework class library provided with your
development environment.

As illustrated by the simple "RecordFile" framework presented in the last
chapter, a framework class library will embody a model for a particular kind of
program. Some of the classes in the framework are concrete classes that you can
use as "off the shelf" components (things like the MenuWindow and NumberDialog
classes in the RecordFile framework). More significant are the partially
implemented abstract classes. These must be extended, through inheritance, to
obtain the classes that are needed in an actual program.

Of course, the framework-provided member functions already define many
standard patterns of interactions among instances of these classes. Thus, in the
RecordFile framework, most of the code needed to build a working program was
already provided by the Application, Document, and Record classes along with
helpers like RecordWindow.

If you can exploit a framework, you can avoid the need to reimplement all the
standard behaviours that its code embodies.

The "typical framework"

The commonly encountered frameworks provide a model for what might be termed
"the classic Macintosh application". With some earlier prototypes at Xerox's
research center, this form of program has been around since 1984 on the Macintosh
(and, from rather later, on Intel-Windows machines). It is the model embodied in

31

The "classic
Macintosh
application"

1134 Frameworks

your development environment, in your word processor program, your spreadsheet,
your graphics editor, and a host of other packages.

You have an "Application". It creates "Documents" (which can save their data
to disk files). The contents of documents are displayed in "Views" inside
"Windows". (On the Macintosh, separate documents have completely separate
windows. On a Microsoft Windows system, an "Application" that supports a
"multiple document interface" has a main window; the individual documents are
associated with subwindows grouped within this main window). The same data
may appear in multiple views (e.g. a spreadsheet can display a table of numbers in
one view while another view shows a pie-chart representing the same values).

The manuals for these programs typically describe their operation in terms of
"picking an object, and giving it a command". The manual writers are thinking of
"objects" that are visual elements displayed in the views. In most cases, these will
represent actual objects as created and manipulated by the program.

"Picking an object" generally involves some mouse actions (clicking in a box, or
dragging an outline etc). The bit about "giving a command" generally refers to use
of a menu, or of some form of tool bar or tool palette. For instance, in your word
processor you can "pick a paragraph" and then give a command like "set 'style' to
'margin note'"; while in a drawing program you can pick a line and select
"Arrows… at start". Such commands change attributes of existing objects. New
objects can be created in a variety of ways, e.g. drawing, typing, or menu
commands like "paste".

Using the editing tools associated with a program, you build an elaborate
"network" data structure. Most of the programs will represent their data in memory
as a network of separate "objects" interlinked via pointers.

If the program is a word processor, these objects might include "text
paragraphs", "pictures", "tables", "style records", "format run descriptors" (these
associate styles with groups of characters in paragraphs, they link to their
paragraphs via pointers), and so forth. The sequence of "paragraphs" and "pictures"
forming a document might be defined by a list.

A draw program will have as basic elements things like lines, boxes, ovals; the
basic components of a picture are instances of these classes (each instance having
its own attributes like colour, size, position). Individual elements can be grouped;
such groups might be represented by lists. Usually, a draw program allows
multiple groups, so its primary data structure might be a list of lists of elements.
The ordering in the top level list might correspond to the front to back ordering in
which items are drawn.

A spreadsheet might use an array of cells whose contents are pointers to data
objects like text strings, numbers, and "formulae objects". There would be other
data structures associated with the array that help identify relationships amongst
cells so that if a number in a cell gets changed, the dependent formulae are
recalculated.

This network data structure (or a printout of a visual representation) might be all
that the program produces (e.g. word processor and draw programs). In other
cases, like the spreadsheet, you want to perform calculations once the data are
entered.

Application,
Document, View, and

Window

"Pick and object, give
it a command"

"Network" data
structures

Introduction 1135

Example frameworks

The frameworks that you are most likely to encounter are, for the Macintosh:

• Symantec's Think Class Library (TCL) Version 2

• Apple's MacApp Version 3.5

and for Intel-Windows:

• Borland's Object Windows Library (OWL) Version 2

• Microsoft Foundation Classes (MFC) Version 1.5

Several other companies have competing products for the Intel-Windows
environment.

There are substantial similarities among these frameworks because they all
attempt to model the same type of interactive program and all have been
influenced, to varying degrees, by the earlier experimental MacApp 1 and MacApp
2 libraries. (The Borland framework includes a slightly simpler Program-Window
model in addition to the " standard" Application-Document-Window-View model.
If you are using the Borland framework, you will probably find it worthwhile using
the simpler Program-Window model for the first one or two programs that you try
to implement.)

A similar class library exists for Unix. This ET++ class library is available free
via ftp on the Internet (on Netscape, try ftp://ftp.ubilab.ubs.ch/pub/ET++/). It might
be possible to adapt ET++ for use on a Linux environment.

There are "problems" with the C++ code in all these libraries. The Borland
library probably makes the best use of the current C++ language. The ET++ library
was written several years ago, before C++ supported either multiple inheritance or
templates and, in some respects, its coding styles are dated. The Symantec
compiler does not yet support recent language features like exceptions (the library
fakes exception handling with the aid of various "macros"). The dialect of C++
used for MacApp is slightly non-standard (it had to be changed so that the library
could support use from dialects of Pascal and Modula2 as well as C++). The
MacApp system is also relatively expensive compared with the other products and
its development environment, although having some advantages for large scale
projects, is not nearly as convenient to use as the Integrated Development
Environments from Symantec, Borland, or Microsoft.

The early class libraries (MacApp and ET++), and also MFC, have essentially
all their classes organized in a tree structured hierarchy. This style was influenced
by earlier work on class libraries for Smalltalk. There are some disadvantages with
this arrangement. "Useful" behaviours tend to migrate up to the base class of the
hierarchy. The base "TObject" class acquires abilities so that an instance can:
transfer itself to/from disk, duplicate itself, notify other dependent objects any time
it gets changed, and so forth. All classes in the hierarchy are then expected to
implement these behaviours (despite the fact that in most programs Window objects
never get asked to duplicate themselves or transfer themselves to disk). This is one

Similar underlying
model

Some C++ limitations

Library structures

1136 Frameworks

the factors that contribute to complexity of the frameworks (like the three hundred
member functions for a scroll bar class).

The structure of the "RecordFile" framework, a "forest" of separate trees, is
similar to that of the more modern frameworks. These more modern frameworks
can still provide abstractions representing abilities like persistence (the ability of an
object to transfer itself to/from a disk file). In modern C++, this can be done by
defining a pure abstract (or maybe partially implemented abstract) base class, e.g.
class Storable. Class Storable defines the interface for any object that can save
itself (functions like DiskSize(), ReadFrom(), WriteTo()). Persistent behaviours
can be acquired by a class using multiple inheritance to fold "storability" in with the
class's other ancestry.

In the older frameworks, the "collection classes" can only be used for objects
that are instances of concrete classes derived from the base "TObject" class. More
modern frameworks use template classes for their collections.

The frameworks are evolving. Apart from ET++, each of the named
frameworks is commercially supported and new versions are likely to appear. This
evolutionary process tends to parallelism rather than divergence. Clever features
added in the release of one framework generally turn up in the following releases of
the competitors.

It will take you at least a year to fully master the framework library for your
development environment. But you should be able to get their tutorial examples to
run immediately and be able to implement reasonably interesting programs within
two or three weeks of framework usage. ET++ provides the source code for some
examples but no supporting explanations or documentation. The commercial
products all include documented tutorial examples in their manuals. These tutorials
build a very basic program and then add more sophisticated features. The tutorial
for Borland OWL is probably the best of those currently available.

There is no point in reproducing three or four different tutorials. Instead the rest
of this chapter looks at some general aspects common to all the frameworks.

Chapter topics

The following sections touch on topics like "Resources", "Framework Macros", the
auxiliary code-generating tools (the so called "Wizards" and "Experts"), and
"Graphics" programming. There are no real complexities. But together these
features introduce a nearly impenetrable fog of terminology and new concepts that
act as a barrier to those just starting to look at a framework library.

There is then a brief section on support for "persistent objects". This is really a
more advanced feature. Support for persistence becomes important when your
program needs to save either complex "network" data structures involving many
separate objects interlinked via pointer data members, or collections that are going
to include instances of different classes (heterogeneous collections). If your
framework allows your program to open ordinary fstream type input/output files
(like the files used in all previous examples), you should continue to use these so
long as your data are simple. You should only switch to using the more advanced

Tutorial examples

Resources, code
generators, etc

Persistence

Introduction 1137

forms of file usage when either forced by the framework or when you start needing
to save more complex forms of data.

The final sections look at the basic "event handling" structure common to these
frameworks, and other common patterns of behaviour.

Events

31.1 "RESOURCES" AND "MACROS"

Resources

Most of the frameworks use "Resources". "Resources" are simply predefined, pre-
initialized data structures.

Resources are defined (using "Resource Editors") externally to any program. A
file containing several "resources" can, in effect, be include in the list of compiled
files that get linked to form a program. Along with the resources themselves, a
resource file will contain some kind of index that identifies the various data
structures by type and by an identifier name (or unique identifier number).

When a program needs to use one these predefined data structures, it makes a
call to the "Resource Manager" (a part of the MacOS and Windows operating
systems). The Resource Manager will usually make a copy, in the heap, of the
"Resource" data structure and return a pointer to this copy. The program can then
do whatever it wants with the copy.

Resources originated with the Macintosh OS when that OS and application
programs were being written in a dialect of Pascal. Pascal does not support direct
initialization of the elements of an array or a record structure. It requires the use of
functions with separate statements that explicitly initialise each of the various
individual data elements. Such functions are very clumsy. This clumsiness
motivated the use of the separate "resource" data structures. These were used for
things like arrays of strings (e.g. the words that appear as menu options, or the error
messages that get displayed in alert box), and simple records like a "rectangle"
record that defines the size and position of a program's main window.

It was soon found that resources were convenient in other ways. If the error
messages were held in an external data structure, rewording of a message to make it
clearer (or translation into another language) was relatively easy. The resource
editor program would be used to change the resource. There was no need to change
program source text and laboriously recompile and relink the code.

New resource types were defined. Resources were used for sound effects,
pictures, fonts and all sorts of other data elements needed by programs. Resource
bitmap pictures could be used to define the iconic images that would represent
programs and data files. An "alert" resource would define the size and content of a
window that could be used to display an error message. A "dialog" resource could
define the form of a window, together with the text and number fields used for
input of data.

The very first resources were defined as text. The contents of such text files
would be a series of things very like definitions of C structs. The files were
"compiled" (by a simplified C compiler) to produce the actual resource files.

"Resource" data
structures

All data types –
sound, graphics, text,
windows

1138 Frameworks

Resource editors Subsequently, more sophisticated resource editors have been created. These
resource editors allow a developer to chose the form of resource that is to be built
and then to enter the data. Textual data can be typed in; visual elements are entered
using "graphics editor" components within the resource editor itself. These
graphics editors are modelled on standard "draw" programs and offer palettes of
tools. An "icon editor" component will have tools for drawing lines, arcs, and
boxes; a "window editor" component will have tools that can add "buttons", "text
strings", "check boxes" and so forth. Depending on the environment that you are
working with, you may have a single resource editor program that has a range of
associated editor components, one for each type of resource; alternatively, you may
have to use more than one resource editor program.

Macintosh resource editors generally produce resources in "compiled form" (i.e.
the final resource file, with binary data representing the resources, is generated
directly). The resource editors for the Windows development environments create
a text file representation that gets compiled during the program "build" process.
You can view the Windows resources that you define in the text format although
you will mostly use the graphically oriented components of the resource editor.
There are auxiliary programs for the Macintosh development environments that
convert compiled resources into a textual form; it would be unusual for you to need
to use these.

The Windows development environments allow resources to be "shared". A
resource file that you create for a new project can in effect "#include" other
resource files. This has the advantage of saving a little disk space in that
commonly used resources (e.g. the icons that go in a toolbar to represent commands
like "File/Open", or "Print") need only exist in some master resource file rather than
being duplicated in the resource files for each individual project. However there
are disadvantages, particularly for beginners. Frequently, a beginner has the
opinion that any resource associated with their project can be changed, or even
deleted. Deleting the master copy of something like the main "file dialog" resource
causes all sorts of problems. If you are working in a Windows development
environment, check the text form of a resource file to make sure the resource is
defined in the file rather than #included. The resource editor will let you duplicate
a resource so that you can always get a separate, and therefore modifiable copy of a
standard resource.

The individual resources of a given type have identifier numbers (e.g. MENU
1001, MENU 1002, etc). These need to be used in both the resource file and the
program text where the resources are used. If the numbers used to identify
particular resources are inconsistent, the program won't work. In the Macintosh
environments, you just have to keep the numbers consistent for yourself.

In the Windows environments, you can use a header file that contains a series of
#define constants (e.g. #define MYFILEMENU 1001). This header file can be
#included in both the (source text) resource file and in program (.cp) files. This
reduces the chance of inconsistent usage of resource numbers. Instead of a separate
header file, you can put such declarations are the start of the resource (.rc) file.
Any resource #includes and actual definitions of new resources can then be
bracketed by C++ compiler directive (e.g. #ifdef RESOURCEOMPILER … #endif)
that hide these data from the C++ compiler. The resource (.rc) file may then get

"Shared" resources
for Windows OS

Resources and Macros 1139

#included in the .cp source text files. You will see both styles (separate header and
direct #include of a resource .rc file) in your framework's examples.

Resources were invented long before development switched to C++ and OO
programming approaches. Resources are just simple data structures. The
frameworks will define classes that correspond to many of the resource types. For
example, you might have a program that needs bitmap iconic pictures (or
multicoloured pixmap pictures); for these you would use instances of some class
"BitMapPicture" provided by the framework. The framework's "BitMapPicture"
class will have a member function, (e.g. void BitMapPicture::GetResource(
int idnum)) that allows a BitMapPicture object to load a BITMAP resource from a
file and use the resource data to initialize its own data fields. On the whole, you
won't encounter problems in pairing up resource data structures and instances of
framework classes.

However, there can be problems with some forms of "window" resources (these
problems are more likely to occur with the Macintosh development environments
as the Windows environments handle things slightly differently). You may want to
define a dialog window that contains "static text" strings for prompts, "edit text"
strings for text input fields, and "edit number" components for entering numeric
data. Your resource editor has no problem with this; it can let you design your
dialog by adding EditText and EditNum components selected from a tools palette.
The data structure that it builds encodes this information in a form like an
instruction list: "create an EditNum and place it here in the window, create an
EditText and place it here".

The corresponding program would use an instance of some framework class
"DialogWindow". Class DialogWindow might have a constructor that simply
creates an empty window. Its GetResource() function would be able to load the
dialog window resource and interpret the "instruction list" so populating the new
window with the required subwindows. It is at this point that there may be
problems.

The basic problem is that the program cannot create an instance of class
EditText if the code for this class is not linked. Now the only reference to class
EditText in the entire program may be the implicit reference in something like a
resource data structure defining an "InputFileDialog". The linker may not have
seen any reason to add the EditText code to the program.

You can actually encounter run-time errors where an alert box pops up with a
message like "Missing component, consult developer". These occur when the
program is trying to interpret a resource data structure defining a window that
contains a subwindow of a type about which the program knows nothing.

Your framework will have a mechanism for dealing with this possible problem.
The exact mechanism varies a lot between frameworks. Generally, you have to
have something like an "initialization function" that "names" all the special window
related classes that get used by the program. This initialization function might have
a series of (macro) calls like "ForceReference(EditText); ForceReference(
EditNum)" (which ensure that the compiled program would have the code
necessary to deal with EditText and EditNum subwindows).

You may find that there are different kinds of resource that seem to do more or
less the same thing. For example on the Macintosh you will find a "view" resource

Resources and
classes

Missing component,
consult developer!

"Outdated" resource
types

1140 Frameworks

type and a "DLOG" (dialog) and its related "DITL" (dialog item list) resource types.
They may seem to allow you do the same thing – build a dialog window with
subwindows. They do differ. One will be the kind of resource that you use with
your framework code, the other (in this case the DLOG and DITL resources) will be
an outdated version that existed for earlier Pascal based development systems.
Check the examples of resource usage that come with the tutorials in your IDE
manuals and use the resources illustrated there.

Macros

A "macro" is a kind of textual template that can be expanded out to give possibly
quite a large number of lines of text. Macros may have "arguments"; these are
substituted into the expansion text at appropriate points. Macros can appear in the
source text of programs. They are basically there to save the programmer from
having to type out standard code again and again.

For example, you could define the following macro:

#define out(o, x) o.write((char*)&x, sizeof(x))

This defines a macro named "out". The out macro takes two arguments, which it
represents by 'o' and 'x'. Its expansion says that a call to "out" should be replaced
by code involving a call to the write() function, involving a type cast, an address
operator and the sizeof() operator.

This would allow you to use "macro calls" like the following:

out(ofile, fMark1);
out(ofile, fStudentName);

These "macro calls" would be "expanded" before the code was actually seen by the
main part of the C++ compiler. Instead of the lines out(ofile, fMark1) etc the
compiler would see the expansions:

ofile . write ((char *) & fMark1, sizeof (fMark1));
ofile . write ((char *) & fStudentName, sizeof (
fStudentName));

The frameworks, particularly ET++ and those for the Windows environment,
require lots of standard code to be added to each program-defined class that is
derived from a framework-defined class. Macros have been provided so as to
simplify the process of adding this standard code.

Most of these framework macros occur in pairs. There will be a macro that
must be "called" from within the declaration of a class, and another macro that must
be called somewhere in the file containing the implementation code for that class.
The first macro would declare a few extra member functions for the class; the
second would provide their implementation.

For example, you might have something like the following:

Macro definition

Macro call

Macro expansion

Framework defined
macros

Declare and define
macros

Resources and Macros 1141

• a "DECLARE_CLASS" macro that must go in the class declaration and must
name the parent class(es)

• a "DEFINE_CLASS" macro that must be in the implementation.

If you wanted class MyDoc based on the framework's Document class, you might
have to have something like the following:

class MyDoc : public Document {
DECLARE_CLASS(MyDoc, Document)
…

};

with the matching macro call in the implementation:

// MyDoc class

DEFINE_CLASS(MyDoc)

Record *MyDoc::MakeEmptyRecord()
{

…
}

If you are curious as to what such macros add to your code, you can always ask the
compiler to stop after the macro preprocessing stage. You can then look at the
expanded text which will contain the extra functions. A typical extra function
would be one that returns the class's name as a text string. You don't really need to
know what these functions are; but because they may get called by the framework
code they have to be declared and defined in your classes.

Your framework's documentation will list (but possibly not bother to explain)
the macros that you must include in your class declarations and implementation
files. If you use the "Class Expert/Wizard" auxiliary programs (see next section) to
generate the initial outlines for your classes, the basic macro calls will already have
been added (you might still need to insert some extra information for the calls).

Example

Check the macros
that you must use

31.2 ARCHITECTS, EXPERTS, AND WIZARDS

If you look at the code for the example "StudentMarks" program in Chapter 30, you
will see that some is "standard", and much of the rest is concerned only with the
initial construction and subsequent interaction with a display structure.

Every application built using a framework needs its own specialized subclasses
of class Application and class Document. Although new subclasses are defined
for each program, they have very much the same form in every program. The
specialized Application classes may differ only in their class names (LoanApp
versus StudentRecApp) and in a single DoMakeDocument() function. The
Document classes also differ in their names, and have different additional data
members to store pointers to program specific data classes. But again, the same

1142 Frameworks

group of member functions will have to be implemented in every specialized
Document class, and the forms of these functions will be similar.

Work with display structures is also pretty much stereotyped. The construction
code is all of the form "create an XX-subwindow and put it here". The interaction
code is basically "Which subwindow? Get data from chosen window.".

Such highly stereotyped code can be generated automatically.
The "Architects", "Experts", or "Wizards" that you will find associated with

your Integrated Development Environment are responsible for automatically
generating the initial classes for your program and, in association with a resource
editor, for simplifying the construction of any interactive display structures used by
your program.

Symantec's Visual Architect packages all the processes that you need to
generate the initial project with its code files, and interface resources. In the two
Windows environments, these processes are split up. The Application Wizard
(Expert) program generates all the basic project files. The Resource Workshop (or
App Studio) resource editor program is used to add resources. The Class Wizard
(Expert) program can be used to help create code for doing things like responding
to a mouse-button click in an "action-button", or handling the selection of an option
from a displayed menu.

Project generation

The project generation process may involve little more than entry of the basename
for the new project and specification of a few parameters. The basename is used
when choosing the names for specialized Application and Document classes; for
example, the basename "My" would typically lead to the generation of a skeletal
class MyApp : public Application { } and a skeletal class MyDocument :
public Document { }. Some of the parameters that have to be entered in dialogs
relate to options. For example, one of the dialogs presented during this project
generation process might have a "Supports printing" checkbox. If this is checked,
the menus and toolbars generated will include the standard print-related commands,
and provision will be made for linking with the framework code needed to support
printing. Other parameters define properties like the Windows' memory model to
be used when code is compiled. (The Windows OS basically has a choice of 16-bit
or 32-bit addressing.) When confronted with a dialog demanding some obscure
parameter, follow the defaults specified in the framework's reference manuals.

In the Windows environments, once you have entered all necessary information
into the dialogs, the Application Wizard/Expert completes its work by generating
the initial project files in a directory that you will have specified. These generated
files will include things equivalent to the following:

• a resource file (.rc) which will contain a few standard resources (maybe just a
File/Quit menu!);

• a main.cp file which will contain the "main" program (naturally this has the
standard form along the lines "create a MyApp object and tell it to run");

Automatic code
generation

Architects, Experts, and Wizards 1143

• MyApp.h, MyApp.cp, MyDocument.h, MyDocument.cp; these files will
contain the class declarations and skeletal implementations for these standard
classes;

• "build" and/or "make" file(s) (.mak); these file(s) contain information for the
project management system including details like where to find the framework
library files that have to be linked when the program gets built.

(Symantec's Visual Architect does not generate the project files at this stage.
Eventually it creates a rather similar set of files, e.g. a .rsrc file with the resources, a
main.cp, and so forth. The information equivalent to that held in a .mak file is
placed in the main project file; it can be viewed and changed later if necessary by
using one of the project's menu options.)

The MyApp.h, MyApp.cp files now contain the automatically generated text.
The contents would be along the following lines:

// Include precompiled framework header
#include "Framework.h"

class MyApp : public Application {
DECLARE_CLASS(MyApp, Application)

public:
virtual void DoSplashScreen();
virtual void DoAbout();
virtual Document *DoMakeDocument();

};

#include "MyApp.h"
#include "MyDocument.h"

DEFINE_CLASS(MyApp)

void MyApp::DoSplashScreen()
{

// Put some code here if you want a 'splash screen'
// on start up

}

void MyApp::DoAbout()
{

// Replace standard dialog with a dialog about
// your application
Dialog d(kDEFAULD_ABOUT); // The default dialog
d.PoseModally();

}

Document *MyApp::DoMakeDocument()
{

return new MyDocument;
}

The generated code will include effective implementations for some functions
(e.g. the DoMakeDocument() function) and "stubs" for other functions (things like

Automatically
generated MyApp.h

Automatically
generated MyApp.cp

1144 Frameworks

the DoSplashScreen() function in the example code shown). These stub routines
will be place holders for code that you will eventually have to add. Instead of code,
they will just contain some comments with "add code here" directives.

As noted in Chapter 30, you typically have to include numerous header files
when compiling the code for any classes that are derived from framework classes or
code that uses instances of framework classes. The framework may provide some
kind of master header file, e.g. "Framework.h", which #includes all the separate
header files.

This master header file may be supplied in "precompiled" form.
It takes a lot of time to open and read the contents of fifty or more separate

header files and for the compiler to interpret all the declarations and add their
information to its symbol table. A precompiled header file speeds this process up.
Essentially, the compiler has been told to read a set of header files and construct the
resulting symbol table. It is then told to save this symbol table to file in a form that
allows it to be loaded back on some future occasion. This saved file is the
"precompiled header". Your IDE manuals will contain a chapter explaining the use
of precompiled headers.

User interface components

It is possible to build display structures in much the same way as was done in the
example in the previous chapter. But you have to go through an entire edit-
compile-link-run cycle in order to see the display structure. If one of the
components is not in quite the right position, you have to start over and again edit
the code.

It is much easier if the user interface components are handled using resources.
The resource editor builds the data structure defining the form of the display. This
data structure gets loaded and interpreted at run-time, with all the subwindows
being created and placed at the specified points. Instead of dozens of statements
creating and placing individual subwindows, the program code will have just a
couple of lines like RecordWindow rw; rw->GetResource(1001).

The resource editor used to build the views required in dialogs will allow you to
move the various buttons, check boxes, edit-texts and other components around
until they are all correctly positioned. The editor may even simulate the behaviour
of the dialog so that you can do things like check the behaviour of "clusters of radio
buttons" (if you select one radio button, the previously selected button should be
deselected).

You will use the resource editor just after the initial project generation step in
order to build the main windows and any dialogs that you expect to use in your
program.

When you add an interactive element (button, checkbox, edit-text etc) to a
window you will usually be prompted for an associated "command number" (and,
possibly, an identifying name). These command numbers serve much the same role
as the window identifiers did in the RecordFile framework. When a control gets
activated, a report message gets generated that will have to be handled by some
other object. These report messages use the integer command numbers to indicate

Including headers

Precompiled headers

Command numbers
associated with

controls

Architects, Experts, and Wizards 1145

what action is being requested. The process is somewhat similar to that by which
changes to the EditNum subwindows in the StudentMarks program got reported to
the StudentRec object so that it could collect the new data values.

Associating commands and command handlers

The next stage in developing the initial outline for a program typically involves
establishing connections between a command number associated with a visual
control (or menu item) and the object that is to respond to the request that this
command number represents.

In the Windows environments, this is where you use the Class Expert (or Class
Wizard). In the Symantec environment, this is just another aspect of using the
Visual Architect.

The ideas of command handling are covered in more detail in Section 31.5. As
explained there, the operating system and framework will work together to convert
user actions (like key presses and mouse button clicks) into "commands" that get
routed to appropriate "command handler objects". Commands are represented by
little data structures with an integer command number and sometimes other data.

If you were using a framework to build something like the StudentMarks
program, you would have the following commands to deal with: 1) New Document,
2) Open Document, 3) Quit, 4) New Record, 5) Delete Record, 6) ViewEdit record,
7) Change name, 8) Change assignment 1, …. You would have to arrange that the
Application object dealt with commands 1…3; that the current Document object
dealt with commands 4…6, and the current Record object dealt with the
remainder.

Usually, you would need a separate member function in a class for each
command that instances of that class have to deal with. So, the Document class
would have to have NewRecord(), DeleteRecord() and ViewEditRecord()
member functions . There would also have to be some mechanism to arrange that a
Document object would call the correct member function whenever it received a
command to handle.

Once a command has reached the correct instance of the appropriate class it
could be dispatched to the right handler routine using a function like the following:

void StudentMarksDoc::HandleCommand(int commandnum)
{

switch(commandnum) {
case cNEW_REC: NewRecord(); break;

…
}

This was basically the mechanism used in the RecordFile framework example and
is essentially the mechanism used in Symantec's Think Class Library.

In the Windows environment, the idea is much the same but the implementation
differs. Instead of a HandleCommand() member function with a switch statement,
a Windows' "command handler" class will define a table that pairs command

Example of
Commands and
Command Handlers

Dispatching a
command to the
class's handler
function

1146 Frameworks

numbers with function identifiers. You can imagine a something like the
following:

Dispatch_table StuMarkDocTbl[] = {
{ cNEW_REC, StudentMarkDoc::NewRecord }
{ cDEL_REC, StudentMarkDoc::DeleteRecord }
{ cVIEW_REC, StudentMarkDoc::ViewEditRecord }

};

(It is not meant to be syntactically correct! It is just meant to represent an array
whose entries consist of the records pairing command numbers and function
names.) There will be code in the framework to search through such an array
checking the command numbers; when the number matching the received
command is found, the corresponding function gets called.

Now a substantial part of the code for these command handling mechanisms can
be standardized. Stub functions like:

void StudentMarkDoc::NewRecord()
{

// Put some code here
}

and the HandleCommand() function (or the corresponding table for a Windows
program) can all be produced once the generator has been told the command
numbers and the function names.

The "Class Expert" (or equivalent) will have a set of dialogs that you use to
select a command number, pick the class whose instances are to handle that
command, and name the function that will handle the command. (For many
standard Windows commands, the name of the handler function is predefined.)

Once these data have been entered, the "Class Expert" will add the extra code
with function declarations, and stub definitions to the appropriate files. Macros are
used for the function dispatch tables; again, there are separate DECLARE and DEFINE
macros. If you looked at the contents of the files at this stage you would find
something along the following lines:

// Include precompiled framework header
#include "Framework.h"

class StudentMarkDoc : public Document {
DECLARE_CLASS(StudentMarkDoc, Document)

public:
…

protected:
void NewRecord();
void DeleteRecord();
void ViewEditRecord();
…

DECLARE_RESPONSE_TABLE(StudentMarkDoc)

};

Dispatch by table
lookup

StuDoc.h after Class
Expert has run

Architects, Experts, and Wizards 1147

#include "StuDoc.h"
#include "StudentRec.h"

DEFINE_CLASS(StudentMarkDoc)

DEFINE_RESPONSE_TABLE(StudentMarkDoc, Document)
COMMAND(cNEW_REC, NewRecord)
COMMAND(cDEL_REC, DeleteRecord)
COMMAND(cVIEW_REC, ViewEditRecord)

END_RESPONSE_TABLE

void StudentMarkDoc::NewRecord()
{

// Put some code here
}

In the Symantec Visual Architect, this is the point where all the project specific
files get created and then all the framework source files are copied into the project.

A Program that does Nothing – but does everything right

The code that is generated can be compiled and will run. The main window will be
displayed, a File/Quit menu option will work, a default "About this program …"
dialog can be opened. Your program may even be able to read and write empty
files of an appropriate type (file types are specified in the Application Expert phase
of this generation process).

It does all the standard things correctly. But of course all the real routines are
still just stubs:

void StudentMarkDoc::NewRecord()
{

// Put some code here
}

You must now start on the real programming work for your project.

StuDoc.cp after Class
Expert has run

31.3 GRAPHICS

The programs that you build using the frameworks work with the "windows"
supported by the underlying operating system (MacOS, Windows, or X-terminal
and Unix). Output is all done using the OS graphics primitives (of course
filestreams are still used for output to files).

The OS will provide a "graphics library" (strictly, the X-lib graphics library is
not part of the Unix OS). This will be a function library with one hundred or more
output related functions. These will include functions for drawing lines, arcs,
rectangles, individual characters, and character strings.

Library of graphics
functions

1148 Frameworks

Because these graphics functions are provided by the OS and not by the
development environment, they may not be listed in the IDE manuals. You can get
a list of the functions by opening the appropriate header file (Quickdraw.h on the
Macintosh, Windows.h on Windows). The environment's help system may contain
descriptions of the more frequently used graphics functions. Examples illustrating
the use of the graphics library are not normally included in the manuals for the
development environment. There are however many books that cover basic
graphics programming for Windows or for Macintosh (the ET++ library uses
graphics functions similar to those of the Macintosh, internally these are converted
into calls to X-lib functions).

The basic graphics calls shouldn't in fact cause much problem; they are all pretty
much intuitive. The function library will have functions like the following:

void MoveTo(short h, short v);
void Move(short dh, short dv);
void LineTo(short h, short v);
void FrameRect(const Rect *r);
void PaintRect(const Rect *r);
void PaintOval(const Rect *r);
void FrameArc(const Rect *r, short startAngle,

short arcAngle);
void DrawChar(short ch);
void DrawText(const void *textBuf, short firstByte,

short byteCount)

(If you look in the header files, you may encounter "extern Pascal" declarations.
These are actually requests to the C++ compiler to put arguments on the stack in
"reverse" order, as was done by a Pascal compiler. This style is largely an
historical accident relating to the earlier use of Pascal in both Macintosh and
Windows OSs.)

Although the basic functions are quite simple to use, there can be complications.
These usually relate to the maintenance of collections of "window attributes".

Each window displayed on the screen has many associated attributes. For
example, a window must have a defined depth (1-bit for black and white, or 8-bit
colour, or 16-bit colour etc). There will be default foreground (black) and
background (white) colours. There will be one or more attributes that define how
bitmaps get copied onto the screen; these "mode" (or "brush" or "pen") attributes
allow the program to chose whether to simply copy an image onto the screen or to
use special effects like using the pattern of bits in an image to invert chosen bits
already displayed on the screen. Other attributes will define how the characters are
to be drawn; these attributes will include one that defines the "font" (e.g. 'Times',
'Helvetica' – different fonts define differently shaped forms for the letters of the
normal "Roman" alphabet and, possibly, define different special characters),
another attribute will specify the size of characters. There will be attribute to
specify the thickness of lines. Still another will define the current x, y drawing
point.

These attributes are normally held in a data structure, the form of which is
defined by the graphics library. On the Macintosh, this will be a Port data

Window attributes

Ports, Graphics
Contexts, Device

Contexts

Graphics 1149

structure; the X-lib library refers to it as a "Graphics Context"; in the Windows
environments it is a "Device Context".

Macintosh and X programmers don't have any real problems with these
structures. A new Port (or equivalent) gets allocated for each window that gets
opened. A program can change a Port's attributes as needed. For Windows
programmers, things can sometimes get a bit complex. The Windows OS
preallocates some graphics related data structures; these must be shared among all
programs. Device context structures (normally accessed via framework defined
"wrapper" classes) may have to use shared information rather than allocating new
structures. Developers working on Windows will at some stage have to supplement
their IDE manuals with a textbook that provides a detailed presentation of
Windows graphics programming.

31.4 PERSISTENT DATA

If the data for your program are something simple like a list of "student records" (as
in the example in Chapter 30), you should not have any problems with input and
output. The automatically generated code will include stub routines like the
following (the function names will differ):

void StudentRecDoc::WriteTo(fstream& out)
{

// Put your code here
}

The code that you would have to add would be similar to that illustrated for the
ArrayDoc class in Chapter 30. You would output the length of your list, then you
would iterate down the list getting each StudentRec object to write its own data.

The input routine would again be similar to that shown for class ArrayDoc. The
number of records would be read, there would then be a loop creating StudentRec
objects and getting them to read themselves. After you had inserted your code, the
input function would be something like:

void StudentRecDoc::ReadFrom(fstream& in)
{

// Put your code here
// OK!
int len;
in.read((char*)&len, sizeof(len));
for(int i = 0; i < len; i++) {

StudentRec *r = new StudentRec;
r->ReadFrom(in);
fList.Append(r);
}

}

You would however have problems if you were writing a program, like that
discussed briefly in Chapter 23, where your data was a list of different

1150 Frameworks

CircuitElements. If you remember the example, class CircuitElement was an
abstract class; the objects that you would actually have would be instances of
subclasses like class Battery and class Resistor.

You could store the various Battery, Resistor, Wire etc objects in a single
list. This would be a "heterogeneous collection" (a collection of different kinds of
data element). Most of your code would work fine with this collection, including
the WriteTo() function which could be coded along the following lines:

void CircuitDoc::WriteTo(fstream& out)
{

int len = fList.Length();
out.write((char*) &len, sizeof(len));
ListIterator LI((&fList);
LI.Start();
while(!LI.IsDone()) {

CircuitElement* e =
(CircuitElement*) LI.CurrentItem();

e->WriteTo(out);
LI.Next();
}

}

The problems arise with the input. Obviously, the input routine cannot create
CircuitElement objects because CircuitElement is a pure abstract class. The
input routine has to create a Battery, or a Wire, or whatever else is appropriate for
the next data item that is to be read from the file.

If you have to deal with heterogeneous collections, you need some scheme
whereby objects that write themselves to file start by outputting some token that
identifies their class. Then you can have an input routine along the following lines:

void CircuitDoc::ReadFrom(fstream& in)
{

int len;
in.read((char*)&len, sizeof(len));
for(int i = 0; i < len; i++) {

Input of class token
Create instance 'e' of appropriate class
e->ReadFrom(in);
fList.Append(e);
}

}

This business about outputting class tokens when objects write themselves to
file, then inputting these tokens and interpreting them so as to create an instance of
the correct class, all involves a fair amount of code. But this code is now pretty
much standardized.

The standard code can be implemented by the framework. It will be called
something like the "Streamable" component, or "Persistent" component, or
"Storable" component. It requires a few extra functions in each class (e.g. a
function to write a "class token", which is normally a string incorporating the class
name). The framework may require extra macros in the class, e.g. a

Heterogeneous
collection

Input problems!

Solution: class
identifying tokens in

the file

Framework support

Persistent data 1151

DECLARE_STREAMABLE macro call in the class declaration and a matching
DEFINE_STREAMABLE in the implementation. A class using the mechanism may
also have to inherit from some Streamable base class. (Details differ between
frameworks; read your framework manuals.)

There is a second problem related to input and output of complex structures.
This one is actually rather harder to deal with; but, again, a "standard" solution has
been found. This standard solution should be built into your framework's code.

The problem relates to pointer data members in networks. Figure 31.1
illustrates a simplified version of a "network" data structure for a word processor
program. The document has a list of "paragraph" objects. A paragraph has two
pointer data members; one links to a "style" object and the other to a block of text.
Each paragraph has its own text, but different paragraphs may share the same style
object.

Document::fList

Style: Header, font
Helvetica, size 12

Style: MainText,
font Times, size 10

Style: Code, font
Courier, size 9

31.4 Persistent Data

If the data … … differ):

void StudentRecDoc::Do … … }

The code that … … own data.

Paragraph
object

Figure 31.1 Example of "network" data structure with pointers.

You can't have anything like the following code:

class Paragraph {
DECLARE_CLASS(Paragraph)
DECLARE_STREAMABLE

public:

Pointers

1152 Frameworks

…
void WriteTo(fstream& out)
…

private:
char *fText;

Style *fStyle;
}

void Paragraph::WriteTo(fstream& out)
{

Save "Paragraph" class token
out.write((char*)&fText, sizeof(fText));
out.write((char*)&fStyle, sizeof(fStyle));

}

That Paragraph::WriteTo() function does not save any useful data. Two
addresses have been sent to a file. Those memory addresses will mean nothing
when the file gets reread.

The following is slightly better, but still not quite right:

void Paragraph::WriteTo(fstream& out)
{

Save "Paragraph" class token
long len = strlen(fText);
out.write((char*)&len, sizeof(len));
out.write(fText, len);
fStyle->WriteTo(out);

}

This would save the character data and, assuming Style objects know how to save
their data, would save the associated styles.

However, you should be able to see the error. The Style record named
"MainText" will get saved twice. When the data are read back, the second and
fourth paragraphs will end up with separate styles instead of sharing the same style
record. The word processor program may assume that paragraphs share styles so
that if you change a style (e.g. the "MainText" style should now use 11 point) for
one paragraph all others with the same style will change. This won't work once the
file has been read and each paragraph has its own unshared style record.

What you want is for the output procedure to produce a file equivalent to the
following:

Object 1: class Paragraph
20
31.4 Persistent Data
Object 2: class Style

Header Helvetica 12
End Object 2

End Object 1
Object 3: class Paragraph

286
If the data …):

This is an incorrect
implementation

Persistent data 1153

Object 4: class Style
MainText Times 10

End Object 4
End Object 3
Object 5: class Paragraph

69
void … }
Object 6: class Style

Code Courier 9
End Object 6

End Object 5
Object 7: class Paragraph

The code … data.
See Object 4

End Object 7

When the output has to deal with an object that has already been saved, like the
style object for the "MainText" style, a reference back to the earlier copy is all that
gets sent to file.

If a file in this form is read, it is possible to reconstruct the original network.
Now getting all of this to work is relatively complicated. It involves modified

stream classes that may seem generally similar to the familiar fstream classes but
which perform additional work. It is these modified streams that know how to deal
with pointers and know not to save an object more than once.

The code is pretty much standardized and should be in your framework's
"Streamable" component. You will have to read the reference manuals for your
framework and the related tutorial examples to see how you are supposed to deal
with pointer data members in your objects.

The framework's support for streamability may also include definitions of
overloaded operator functions. These will allow you to write code in the form:

outfile << fStyle;

rather than

fStyle->WriteTo(outfile);

Operator functions

31.5 THE EVENT HANDLERS

Basics of Event Handling

Programs written for personal computers, and Unix/X-windows, are "event driven".
User actions like keystrokes and mouse clicks are picked up by the operating

system. This generates "event" data structures that it queues for processing by the
currently running program. Event data structures contain a number of data fields.
One will be an integer event code (distinguishing keystroke event, left/right mouse
button event etc). The interpretation of the others data fields depends on the event.
The data structure for a mouse event will contain x, y coordinate information, while
a key event has data to identify which key.

Events

1154 Frameworks

As well as these primary input events, there are others like an "update window"
event. The OS will itself generate this type of event. An "update window" event
gets sent to a program when the viewable area of an associated window is changed
(for instance, another window, possibly belonging to some other program, has been
closed letting the user see more of the window associated with the "update" event.

The program picks these events up and interprets them. At the heart of all these
programs you will find an event loop like the following:

do {
GetNextEvent(anEvent);
HandleEvent(anEvent);

} while(!fFinished);

Function "GetNextEvent()" will be provided by the operating system. It
actually switches control from the current program to the operating system. The
operating system will check the event queue that it has maintained for the program.
If there is an event queued, the OS copies the information into the data structure
passed in the call and causes a return from the function call. The program can the
continue with the execution of its own "HandleEvent()" function.

If there are no events queued for a program, the call to "GetNextEvent()" will
"block" that program. The OS will mark the program as "suspended" and, if there
is another program that can run, the OS may arrange for the CPU to start executing
that other program. When some input does arrive for the blocked program, the OS
arranges for it to resume. (The OS might occasionally generate an "idle event" and
return this to an otherwise "blocked" program. This gives the program the chance
to run briefly at regular intervals so as to do things like flash a cursor.)

The framework will have this "main event loop" in some function called from
Application::Run(). The function Application::HandleEvent() will per-
form the initial steps involved in responding to the user's input.

These initial steps involve first sorting out the overall type of event (key, mouse,
update, …) and then resolving subtypes. A mouse event might be related to
selecting an item from a menu, or it could be a "click" in a background window that
should be handled by bringing that window to the front, or it could be a "click" that
relates to the currently active window. A key event might signify character input
but it might involve a "command" or "accelerator" key, in which case it should
really be interpreted in the same way as a menu selection.

This initial interpretation will determine how the event should be handled and
identify the object that should be given this responsibility. Sometimes, the
handling of the low-level event will finish the process. Functions can return,
unwinding the call stack until the program is again in the main event loop asking
the OS for the next event.

For example, if the Application receives an "update window" event it will also
get a "window identifier" as used by the OS. It can match this with the OS window
identifiers that it knows are being used by its windows and subwindows, and so
determine which of its window objects needs updating. This window object can be
sent an "update" or "paint" request. The receiving window should deal with this
request by arranging to redraw its contents. Processing finishes when the contents
have been redrawn.

"Main event loop"

Operating system's
function

GetNextEvent()

Application::
HandleEvent()

Example, dealing
with a simple "update

event"

Event Handlers 1155

Conversion of low-
level events to higher

level commands

More typically, the objects that are given the low-level events to handle will turn
them into "commands". Like "events", these commands are going to be represented
by simple data structures (the most important, and only mutually common data field
being the identifying command number). "Commands" get handed back to the
Application object which must route them to the appropriate handler.

For example, if the Application object determines that the low level event was
a mouse-down in a menu bar, or keying of an accelerator key, it will forward details
to a MenuManager object asking it to sort out what the user wants. The
MenuManager can deal with an accelerator key quite easily; it just looks up the key
in a table and returns a "command" data structure with the matching command
number filled in. Dealing with a mouse-initiated menu selection takes a little more
time. The MenuManager arranges with the OS for the display of the menu and waits
until the user completes a selection. Using information on the selection (as
returned by the OS) the MenuManager object can again determine the command
number corresponding to the desired action. It returns this to the Application
object in a "command" data structure.

A mouse click in a control window (an action button, a scroll bar, or something
similar) will result in that window object executing its DoClick() function (or
something equivalent). This will simply create a command data structure, filling in
the command number that was assigned to the control when it was built in the
resource editor.

The Application then has the responsibility of delivering these command data
structures (and, also, ordinary keystrokes) to the appropriate object for final
processing.

Normally, there will be many potential "handlers" any one of which might be
responsible for dealing with a command. For example, the application might have
two documents both open; each document will have at least one window open;
these windows would contain one or more views. Views, windows, documents and
even the application itself are all potentially handlers for the command.

The frameworks include code that establishes a "chain of command". This
organization simplifies the process of finding the correct handler for a given
command.

At any particular time, there will be a current "target" command handler object
that gets the first chance at dealing with a command. This object will be identified
by a pointer data member, CommandHandler *fTarget, in the Application
object. Usually, the target will be a "View" object inside the frontmost window.

The Application starts the process by asking the target object to deal with the
command (fTarget->DoCommand(aCommand);). The target checks to determine
whether the command aCommand is one that it knows how to deal with. If the target
is the appropriate handler, it deals with the command as shown in earlier examples.

If the target cannot deal with the command, it passes the buck. Each
CommandHandler object has a data member, CommandHandler *fNextHandler,
that points to the next handler in the chain. A View object's fNextHandler will
identify the enclosing Window (or subwindow). A Window that is enclosed within
another Window identifies the enclosing Window as its "next handler". A top level
window usually identifies the object that created it (a Document or Application)

MenuManager turns
a mouse event into
command

A "control" window
turns a mouse event
into a command

"Command Handler
Chain"

"First handler",
"Target", or
"Gopher"

Passing the buck

1156 Frameworks

as its next handler. Document objects pass the buck to the Application that
created them.

The original target passes the command on: fNextHandler->DoCommand(
aCommand). The receiving CommandHandler again checks the command, deals
with it if appropriate, while passing on other commands to its next handler.

For example, suppose the command is cQUIT (from the File/Quit menu). This
would be offered to the frontmost View. The View might know about cRECOLOR
commands for changing colours, but not about cQUIT. So the command would get
back to the enclosing Window . Window objects aren't responsible for cQUIT
commands so the command would get passed back to the Document. A Document
can deal with things like cCLOSE but not cQUIT. So, the command reaches the
Application object. An Application object knows what should happen when a
cQUIT command arrives; it should execute Application::DoQuit().

Keyed input can be handled in much the same way. If an ordinary key is typed,
the fTarget object can be asked to perform its DoKeyPress() function (or
something equivalent). If the target is something like an EditText, it will consume
the character; otherwise, it can offer it to the next handler. Most CommandHandler
classes have no interest in keyed input so the request soon gets back to the end of
the handler chain, the Application object. It will simply discard keyed input (and
any other unexpected commands that might arrive).

The initial target changes as different windows are activated. Most of the code
for dealing with these changes is implemented in the framework. A programmer
using the framework has only a few limited responsibilities. If you create a Window
that contains several Views, you will normally have to identify which of these is the
default target when that Window is displayed. (The user may change the target by
clicking the mouse within a different View.) You may have to specify your chosen
target when you build the display structure in the resource editor (one of the dialogs
may have a "Target" field that you have to fill in). Alternatively, it may get done at
run time through a function call like Application::SetTarget(Command
Handler*).

In most situations, an input event gets handled and the program soon gets back
to the main event loop. However, drawing actions are an exception.

A mouse down event in a Window (or View) that supports drawing results in that
Window taking control. The Window remains in control until the mouse button is
released. The Window will be executing a loop in which it picks up mouse
movements. (Operating systems differ. There may be actual movement events
generated by the OS that get given to the program. Alternatively, the program may
keep "polling the mouse", i.e. repeatedly asking the OS for the current position of
the mouse.) Whenever the mouse moves, a drawing action routine gets invoked.
(This loop may have to start with some code that allows the Window to specify that
it wants to "capture" incoming events. When the mouse is released, the Window
may have to explicitly release its hold on the event queue.)

Most of this code is framework supplied. The application programmer using the
framework has to write only the function that provides visual feedback during the
drawing operation and, possibly, a second function that gets called when drawing
activity ends. This second function would be responsible for giving details of the

Defining the initial
target

Exceptions to the
normal event handler

pattern

Drawing routines

Event Handlers 1157

drawn item to the Document object so that this can add the new item to its list of
picture elements.

CommandHandler classes

The frameworks provide the CommandHandler class hierarchy. Class Command
Handler will be an abstract class that defines some basic functionality (your
framework will use different function names):

class CommandHandler : public ? {
…

public:
void SetNextHandler(CommandHandler* newnext)

{ fNextHandler = newnext; }
…
void DoCommand(…);
void HandleCommand();
…
void DoKeyPress(char ch)

{ fNextHandler->DoKeyPress(ch); }
protected:

CommandHandler *fNextHandler;
};

The SetNextHandler() function is used, shortly after a CommandHandler gets
created, so as to thread it into the handler chain. Command handling may use a
single member function or, as suggested, there may be a function, DoCommand(),
that determines whether a command can be handled (passing others up the chain)
while a second function, HandleCommand(), sorts out which specialized command
handling function to invoke.

The frameworks have slightly different class hierarchies. Generally, classes
Application, Document, and Window will be subclasses of CommandHandler.
There will be a host of specialized controls (button, scroll bar, check box etc) that
are also all derived from CommandHandler. There may be other classes, e.g. some
frameworks have a Manager class that fills much the same role as Document
(ownership of the main data structures, organization of views and windows) but is
designed for programs where there are no data that have to be saved to file (e.g. a
game or a terminal emulator program).

The framework code will handle all the standard commands like "File/New",
"File/Save As…". The developer using the framework simply has to provide the
effective implementations for the necessary functions like DoMakeDocument().

All the program specific commands (e.g. a draw program's "add line", "recolor
line", "change thickness" commands etc) have to be integrated into the framework's
command handling scheme. Most of these extra commands change the data being
manipulated; a few may change parameters that control the display of the data. The
commands that change the data should generally get handled by the specialized
Document class (because the Document "owns" the data). Those that change
display parameters could be handled by a View or Window.

Framework handles
standard commands

Application specific
command handling
added to Document
and View classes

1158 Frameworks

The Class Expert program (or equivalent) should be used to generate the initial
stubs for these additional command handling routines. The developer can then
place the effective data manipulation code in the appropriate stub functions.

With the overall flow of control largely defined by the framework, the concerns
of the development programmer change. You must first decide on how you want to
hold your data. In simple cases, you will have a "list" of data elements; with this
list (a framework supplied collection class) being a data member that you add to the
document. Then, you can focus in turn on each of the commands that you want to
support. You decide how that command should be initiated and how it should
change the data. You then add the necessary initiating control or menu item; get
the stub routines generated using the "Class Expert"; finally, you fill in these stub
routines with real code.

On the whole, the individual commands should require only a small amount of
processing. A command handling routine is invoked, the data are changed, and
control quickly returns to the framework's main event loop. Of course, there will
be exceptions where lengthy processing has to be done (e.g. command "Recalculate
Now" on a spreadsheet with 30,000 formulae cells).

31.6 THE SAME PATTERNS IN THE CODE

The frameworks just evolved. The Smalltalk development environments of the
early 1980s already provided many of the framework features. The first of the
main family of frameworks was MacApp 1.0 (≈1986). It had the low level event
handling, conversion of OS events into framework commands, and a command
handler hierarchy of a fairly standard form. Subsequently, framework developers
added new features, and rearranged responsibilities so as to achieve greater utility.

Recently, some of those who had helped develop the frameworks reviewed their
work. They were able to retrospectively abstract out "design patterns". These
"design patterns" define solutions to similar problems that frequently reoccur.

The last section has just described a pattern – "Chain of Responsibility". The
arrangements for the command handler chain were originally just something
necessary to get the required framework behaviour. But you can generalize. The
"Chain of Responsibility" pattern is a way of separating the sender of a request
from the object that finally handles the request. Such a separation can be useful. It
reduces the amount of "global knowledge" in a program (global knowledge leads to
rigidity, brittleness, breakdown). It increases flexibility, other objects can be
inserted into the chain of responsibility to intercept normal messages when it is
necessary to take exceptional actions.

Another pattern, "Singleton", was exploited in Chapter 29 for the WindowRep
class. The ADCollection and BTCollection classes of Chapter 29 illustrate the
Adapter pattern.

These "design patterns" are a means for describing the interactions of objects in
complex programs. The published collections of patterns is a source of ideas.
After all, it documents proven ways of solving problems that frequently reoccurred
in the frameworks and the applications built on those frameworks.

Pattern: Chain of
Responsibility

Patterns 1159

As you gain confidence by programming with your framework you should also
study these design patterns to get more ideas on proven problem solving strategies.
You will find the patterns in "Design Patterns: Elements of Reusable Object-
Oriented Software" by E. Gamma, R. Helm, R. Johnson, and J. Vlissides (Addison-
Wesley).

EXERCISES

1 Use your framework to implement a version of the StudentMarks program. Employ a
(framework provided) list or a dynamic array class for the collection.

