4 Why have "high-level"
languages?

4.1 LIMITATIONS OF ASSEMBLY LANGUAGE AND
ORIGINS OF HIGH LEVEL LANGUAGES

Chapter 2 introduced to the idea of a program as a sequence of instructions in the
memory of the computer.

It is possible for a programmer to write programs in this form. The programmer
writes an "assembly language" program. The source text of this program is
translated into binary by an assembler. The binary information representing
instructions is put into the computer's memory by aloader.

Generally, programmers avoid assembly language, working instead with one of
the numerous "high level languages”.

Assembly language programming has two main disadvantages:

e jtinvolvesfar too much detail;

e itisnecessarily specific to a particular make of computer.

The excessive detail comes from the requirement that the programmer choose the
exact sequence of instructions and data movement operations needed for each task.
Since different makes of computer have slightly different instruction sets, a
program written in terms of the instruction set for one computer cannot be used on
adifferent kind of computer.

As noted in Chapter 2, assembly language programs are built up from small
fragments of code that follow standard patterns ...

* Seguence pattern, instructions for evaluating an expression like
v=u+a®* t

« Loop pattern, dealing with a group of operations that must be executed severa
times

Problems with
assembly language
programming

High level languages

e Selection pattern, dealing with choices

« Subroutine pattern, breaking down a complex process into simpler sections.

It is easier if the programmer can use concise statements to specify the required
patterns instead of having to write the corresponding instruction sequences.

eg. this expression iseasier to read than this code
1)
V=U+A*T load t
npy a
add u
store v
2)
T=0.0 nove fzero, t
DO 10 1=1, 10 nove #1, i
DST = UT + O.5*A*T*T 1 100 conpare i, #10
WR TE(5, 500) T, DI ST jgt 1101
T=T+ 1.0 fload t
10 QONTI NUE 30 nore instructions

Assemblers made it possible for programmers to work in terms of readable text
defining instructions rather than bit patterns. The assembler program does the
translation task converting the text instructions into the bit patterns.

Compilers High-level language translators (compilers) allow programmers to write
statements. A compiler can translate a statement into an appropriate instruction
sequence (which can then be input to an assembler).

Just like assemblers, compilers rely on rules that define the allowed forms for
the different possible statements. The rules defining the form of an assembly
language are very simple:

. a line of an assenbly | anguage program can be
an optional |abel and an instruction
or
a variable nane and an initial data val ue

. an instruction can be
an i/o instruction
or
a data nanipulation instruction in the form

i nstruction-nanme operand
or

Trandation involved little more than looking up the instruction name in atable to
get the corresponding bit pattern.
Syntax rulesfor high The rules defining the form of a high level language are naturally a lot more
level languages complex than those for an assembler because we want a high level language to

Why have high level languages? 73

allow the direct use of more complicated constructs. These rules defining the
allowed forms in alanguage define the syntax of that language.

4.2 HIGH LEVEL LANGUAGES CONSTRUCTS
4.2.1 Statements

A language will typically allow for a number of different kinds of statement: Statement types

e assignment statements (define a new value for avariable in terms of some
expression that combines values of other variables, e.g. V=U+A*T)

» selection statements (provide something that allows the programmer to
indicate selection of one operation in a set of two or more alternatives)

e iteration statements (loop constructs)

* subroutine call statements

Most high-level languages still exhibit relics of their assembly language
ancestors. A program is still a sequence of statements that are normally executed
in sequential order (with appropriate adjustments for subroutines, loops and
selection statements). Each statement may expand to many instructions, but it is
still the same "instructionsin the machine" model of computations.

The people who invented a particular high-level language will have chosen the
forms of statements allowed in that language. The chosen forms will represent a
trade off among various factors. They have to alow programmers to express
complex constructs succinctly (and therefore they may be moderately complicated)
but at the same time they have to be ssmple for an automatic translation program to
recoghize and interpret.

The first few examples in this section use FORTRAN statements. FORTRAN FORTRAN
is about the oldest of the high level languages (first used in 1956) but it is still quite
widely used (the language has been updated afew times).

The forms of statements in the earliest dialects of FORTRAN are obviously
related to simple, standard patterns of machine instructions as would have been
familiar to assembly language programmers in the 1950s. (Some critics of the
continued use of FORTRAN point to the absurdity of still writing code for the
assembler used on an IBM704.) For example, the early FORTRAN dialect
provided programmers with a simple "arithmetic if" test as one of its few
conditiona constructs ...

c CHANGE MAXTEMP | F TEMP GREATER THAN CURRENT NAXTEMP
DI FF = MAXTEMP - TEWP
| F(DIFF) 150, 160, 160

150 MAXTEMP = TEMP

160 CONTI NUE

In FORTRAN, lines starting with a'C' were comment lines that a programmer
could use to explain what was being done in the code. The 'assignment statement’

74

High level languages

Productivity gains

on the second line (DI FF = .)) calculates the difference between the current
maximum temperature value and some newly calculated value. DI FF will be
positive if the current value of MAXTEMP is already larger than new value. This
code uses an 'arithmetic if' statement. The part | F(<vari abl e name>), like
| F(DI FF) ,had to be trandlated into a sequence of instructions that would test
whether the value of the variable was negative, equal to zero, or positive. The rest
of the 'arithmetic if' statement comprises three label numbers. These label numbers
identify the statement that should be executed if the value was negative, O, or
positive.

In the example program, if DI FF is negative, the MAXTEMP value must be
changed. This change is done by the code (starting at) statement 150. If DIl FFis
zero or positive, then MAXTEMP is equal or greater than the new value, and so no
change is needed. Rather than execute statement labelled 150, the CPU executing
the program can jump to statement 160.

The simple structure of the "arithmetic if" statement made it easy to define

1) rulesthat acompiler could use to recognize such a statement
and
2) asmall code template that the compiler could use to generate code, e.g.

| F(<vari abl e>) <l abel 1>, <l abel 2>, <l abel 3>

translate to

f1 oad <vari abl e> (loads real (float) nunber
into a CPU regi ster)

ftest (get "flags" set)

bl t <l abel 1> (if "less" flag set ,
branch to | abel 1)

beq <| abel 2> (if "equal" flag set ,
branch to | abel 2)

jnp <| abel 3> (otherwi se go to | abel 3)

The arithmetic if statement was one of the simplest in the FORTRAN language.
Other constructs, like DO . . . (the construct used to form iterative loops), required
much more elaborate code templates for their translation (as well as more
complicated recognition rules). The template for translating a DO ... construct
would have needed to use something like 20 assembly language statements
specifying the various instructions needed. These would have come in two groups;
one group at the start of the iterative code, the other group at the end.

These highlevel IF()... andDO ... constructs saved the programmers from
having to sort out al the specific instructions required, so giving them more time to
think about the best way of coding a problem.

Numerous empirical studies have shown that programmers generate about the
same number of lines of code per day irrespective of the language that they use. It
is a surprisingly low number of lines (lets say '50' to protect the programmers
dignity). If you program in assembly language, you get one instruction per line so
you are getting about 50 instructions per day. If you program in FORTRAN (or
another higher level language), your one line of code would generally trandate into

High level language statements 75

five or more instructions, so 50 lines of code meant that you were coding at rate
exceeding 250 instructions per day. High level languages give a big boost to
programmer productivity.

In addition to getting improved programmer productivity, high-level languages
give you machine independence. There might have been other computers around
that didn't have a"test”" instruction, nor instructions like "branch if less flag set” (in
fact, the other CPU might not have had any status flags). A programmer using a
high level language like FORTRAN didn't have to bother about such differences;
the compilers took care of such details.

The "arithmetic if" statement illustrated earlier would have had to have a quite
different translation into machine instructions ...

| F(<vari abl e>) <l abel 1>, <l abel 2>, <l abel 3>

might, on the second machine, be trandated using the template

fl oad <vari abl e> (loads real (float) nurnber
into the CPU s float register)
spf a (skip, i.e. mss out next

instruction, if the float
register contains +ve val ue)

jnp <l abel 1> (deal with -ve case)
snf a (skip if register val ue non zero)
jmp <l abel 2> (deal with zero case)
jnp <l abl e3> (deal with +ve case)

If you had equivalent FORTRAN compilers on both computers, you weren't
bothered by such differences. You could rely on the compiler for a particular
machine to use a template with the appropriate set of assembly language statements
that used the correct instructions for that machine.

4.2.2 Datatypes and structures

A high-level language and its compiler do more than make it easier for the
programmer to code the data manipulation steps.

High-level languages allow a programmer to declare restrictions on how
particular data elements are to be used. After a compiler has read such
declarations, it will remember them and when it sees reference to variables later in
the code it will check whether the restrictions are being obeyed. Such checks
cannot be done in assembly language.

When writing in assembly language, a program can only define a variable as
"something" that occupied a particular location in memory. If part of the program
treats that variable asif it held areal number, and another part treats the variable as
an integer number, the assembler program won't detect any errors. It will produce
executable binary code which will give results that are ailmost certain to be
incorrect.

High level languages mostly use explicit variable declarations that define the
"type" of avariable (sometimes, a language may rely on a naming scheme where

Machine
independence

76

High level languages

the type of a variable can be inferred from its name). Thus, in some versions of
FORTRAN one could have declarations for variables like the following ...

REAL MAXTEMP, M NTEMP
I NTEGER TI ME

Such declarations were usually put at the start of a program (or subroutine) or
sometimes in the code at a point just before the place where a variable was first
used. Such declarations allowed the compiler to check that, for example,
MAXTEMP was always treated as a real number.

The original 1956 FORTRAN compiler also introduced mechanisms that
allowed a programmer to define "structure” in their data. "Data structures' allow a
programmer to express the fact that their may be some conceptual relationship
between different data variables.

Ideas of data structures have been developed substantially over the years, the
original FORTRAN idea was quite limited; it was simply a way of alowing the
programmer to express ideas about "arrays' (or "matrices'). Taking again the
example of an engineer writing a program to model heat flow along a metal beam.
It would be necessary to calculate temperatures at several points along the beam
and across the beam. For example a small study might need ten divisions along the
beam, with four positions across the beam at each division (Figure 4.1).

1 2 3 4 5 6 7 8 9 10

Figure 4.1 An array, or matrix, of places where an engineer wants to analyze
properties of a steel beam that gets represented as an array of
data values in a program.

The program would have to calculate forty different values; but the engineer
programmer really wouldn't want to think of these as being 40 different variables
(BEAML, BEAMR, ..., BEAMAO) because that would hides the nature of the physical
system that the program is supposed to model.

A programmer working in assembly language would not be able to specify
anything clearer than a need for space in memory to store 40 numbers. A
programmer using FORTRAN could specify an "array structure" that helped make
it clearer that these 40 numbers really did represent something involving 4 "rows"
of tenvalueseach ...

Data types and data structures 77

DI MENSI N BEAM 4, 10)

As well as helping to clarify the meaning of the data, such a declaration of an
"array structure" allowed simplifications of code. Rather than a whole set of
different formulae to calculate the value for BEAML, BEAMR etc, the program could
be written using nested loops and a single formula that calculated the value for
BEAM I, J) (with| andJ being variables that ran through the range of row and
column positions)...

DO 10 | =1, 4
DD 9 J=1 10
BEAMI,J) =

9 OONTINE

10 CONTINE

4.3 EVOLUTION OF HIGH LEVEL LANGUAGES

The original FORTRAN compiler of 1956 started a massive amount of
development work on "programming languages'. That early FORTRAN was a
vast improvement over assembly language, but was also limited and flawed.
Subsequent languages have tried to remove limitations, add expressive power, and

employ variations on the basic "sequence”, "iteration", "selection", and "subroutine
call" patternsthat provide fewer opportunities for errors.

Reducing opportunity for errors:

That FORTRAN arithmetic if statement is confusing; e.g. :

| F(NM) 150, 160, 170

If NUMis positive we go to statement 150, or would it be statement 170?

As the different pieces of code are scattered around in the text of the program,
and reached by jumps backwards and forwards, it is very difficult for someone to
read the code and get a clear idea of what is supposed to be happening.

The complete FORTRAN example given earlier was supposed to replace
MAXTEMP with some new value TEMP if thiswas larger. The FORTRAN was

DI FF = MAXTEMP - TEMP
| (DI FF) 150, 160, 160

150 MAXTEMP = TEMP

160 CONTI NUE

More modern languages (Pascal, C etc) allow a much clearer expression of the
sameidea: e.g. in Pascal one can have something like ...

i f (tenp>maxtenp) then naxtenp := tenp;

78

High level languages

This clearer style makes it much less likely that a programmer will make a mistake
when coding.

Greater expressive power:

The original FORTRAN only had "counting loops" e.g.:

DO 100 I=1, 25
(body of |oop doing sone work)
100 CONTI NUE

Thisisfineif you know that aloop has to be executed 25 times (with the variable |
counting from 1 to 25).
But often there are other conditions on which you want to iterate, e.g.:

¢ loop reading commands until user types 'quit’;
* repeatedly process successive data elements until a negative value is found;

Later languages have their own variations on the counting loop construct; in
most languages thiswill be a"for" loop, e.g. Pascal's

for i:=1to 25 do begin
end:

But the more modern languages will have other constructs such as "while" loops
and, maybe, "repeat” loops; e.g. a Pascal "while" loop to process non-negative
input values:

readln(val); (* read first value *)
whi | e(val >0. 0) do begin
(* code to process val ue *)
readl n(val); (* get user to input next value *)
end;

More data structures and more compile type checking

FORTRAN is pretty much limited to arrays of simple real (or integer) numbers.
Modern languages provide other built in types (e.g. character data for text
processing programs, "boolean” data — true/false values) and give the programmer
many more ways of building elaborate data structures from simple built in data
types.

A large part of the second and subsequent programming subjects in most
computing science courses are largely devoted to exploring the definition and use
of data structures.

Evolution of high level languages 79

The compilers (particularly those for advanced languages like C++) do lots of
checking to make certain that any structures defined by a programmer are used
only in appropriate ways.

4.4 FORTRAN

FORTRAN was the first of the high level languages. In 1956, IBM started
supplying a FORTRAN compiler to customers of its 704/709 series of computers
(these were machines intended for scientists and engineers).

The name FORTRAN came from "FORMula TRANslator" --- that is how the
developers thought of their compiler, it "translated" scientific and engineering
formulae into assembly language code that specified the appropriate sequence of
instructions. IBM didn't claim any exclusive right to the FORTRAN language and
fairly soon other computer manufacturers made their own FORTRAN compilers
(along with compilers for similar, but less successful languages as invented by
companies or universities).

Since one of the reasons for using a high level language was machine
independence, it was recognized that different FORTRAN compilers would have to
be standardized so that all used exactly the same kinds of statements and data
declarations. Standardization initially involved semi-forma agreements among the
computer companies but later the US government's "American Standards
Association” became involved. By the late 1960s, there was a government
approved standard FORTRAN dialect (ASA FORTRAN V).

Standard FORTRAN was subsequently extended to incorporate ideas invented
for other languages.

Program organization

FORTRAN defined a program as consisting of a "main program” along with any
number of subroutine units.

Subroutines were divided into "functions' and standard "subroutines".
Functions were short routines that simply calculated a value e.g. finding the sine()
or cosing() of some angle given in radians.

Some compilers could handle afile (actually a deck of cardsin those days) that
contained more than one routine; but really each separate routine was thought of as
a separately compilable unit. This support for separate compilation encouraged the
development of libraries of FORTRAN subroutines that had been written to handle
subtasks that occurred frequently in engineering applications

A "linking loader" was used to put together a FORTRAN program from its
separately compiled parts and library routines, see Figure 4.2.

Standardization

I ndependent
compilation of
subroutines

Linking loader

80 High level languages

Fortran compiler generates assembly
language, then assembler generates
binary code.

Main program

Subroutine Beam

|
Function Convert ||||”||”|||||||‘||”|||||||‘||”||||||”||”|||||||Hm"""”"m"

Program in memory

Selected library
routines

Linking Loader

Figure 4.2 Linking a program from separately compiled and library files.

All the data variables used by a program were defined by declarations in the
main program, its functions, and its subroutines. The compiler and link-loader
worked together to choose fixed memory locations that would be used for these
variables. In early systems, the space reserved for variables was usually located just
after the code of a unit (see Figure 4.3). This "static" allocation scheme is a bit
restrictive and later languages offer alternative, more flexible but more complex
schemes.

Program in memory: Data_values shared by all routines
held in a "common™ area.
—

[IHHE=NE

Code for \ /

main program Code for separate subroutines
Local data for and functions, each followed
main program by their own local data areas

Figure 4.3 Simple arrangement of code and data areas in memory (as used
by early FORTRAN compilers and similar systems).

Although generally a good way of putting together a program out of parts, the
original FORTRAN scheme didn't allow for much checking for correctness. For

FORTRAN 81

example, a subroutine or function might need to be given a real number as input

(e.g. FUNCTI ON SI NE(X) wants areal value for X) but by mistake the programmer

writing the main program might have called the function asking it to work with an

integer value. Such an error would pass undetected, the program would be built

and would run but would give incorrect results. Later languages have explored

alternative ways of putting programs together, ways that do allow checks for

consistency.

Each individual unit (main program, subroutine, or function) would consist of ~Data declarations

data declarations and code statements. The data declarations named individual data

elements

REAL NAXTEMP Simple variables
I NTEGER TI ME

and structured composites of simple data elements (the arrays):
D MENSI ON BEAM 4, 10) Arrays
The statements included: Statements
e assignments:
DST = UT + 0. 5*A*T*T
* conditionals:
| F(MAX) 500, 510, 520
(there were several other forms of |F statement apart from this arithmetic IF),
e iterativeloops:
DO 100 I=1, 50

100 CONTI NUE
and
+ callsto subroutines:

CALL MODELHEATFLOWN

Arguments for routines:

Main programs and subroutines have to communicate.

A subroutine will have been written to take some data values as input and
perform various calculations that change those data. But which data elements does
aroutine work with?

82

High level languages

" Passing arguments
to a subroutine”

" Formatting" of
output

Sometimes, a subroutine will only work on one set of data. In this case these
data elements can be declared by the main program as being in some "common"
area available to all routines.

But often you want a routine (or function) to work on different data elements,
e.g. you might want to calculate the sines of several different angles (represented
by several different data elements in the main program). In these situations, the
calling program must have some way of telling the subroutine about the specific
data element(s) it isto work with.

There are many ways that a calling program can tell a subroutine what data to
work with (you will be meeting some of these alternative ways when you start
programming). The scheme used in FORTRAN relies on the main program telling
the subroutine where in memory the data can be found (it does this by "passing” the
addresses of the arguments to the subroutine or function).

For example, a subroutine for sorting elements in a vector with up to 100
elements would need to be told which array to sort and how many elements it
actually contained. Such a subroutine would specify thisin its header:

SUBRCUTI NE SCRT(DATA, N)
DI MENSI ON' DATA(100)

END

A main program might contain more than one call to this sort routine, with
different arguments in each call, so that it could get the contents of more than
vector sorted ...

DI MENSI ON HEI GHT(100), RANGE(100)

CALL SORT(HEl GHT, NOOUNT) pass address of
vect or HEl GHT and
variable NOOUNT to
sort subset of data
in vector

CALL SORT(RANGE, 60) pass address of
vect or RANGE, and
address of a conpiler
i nvented vari abl e set
to contain 60.

I/0 package

FORTRAN came with a fairly good library of input and output routines. These
allowed programs to save data to tape (and disk), to read previously saved data
from tape, to read "cards" with data, and to print results on aline printer.

The routines for reading "cards' and printing provided for elaborate
"formatting" of data (i.e. there was away of specifying the layout, or "format", of
data on a printed page).

FORTRAN 83

Use of language

For something that started as a little project to help engineers write assembly
languages on an early computer, FORTRAN has had an enormous success.

For those who have to code up engineering calculations, FORTRAN provides
just about everything needed and it is not hard for compilers to generate good
assembly language code. Consequently, the language is still widely used by
engineers. The CPUs for the "supercomputers' used for large engineering
calculations have often been designed with FORTRAN in mind. (Modified dialects
of FORTRAN are sometimes the only programming language for special parallel
supercomputers).

But for anything other than engineering calculations, FORTRAN is clumsy and
most programmers prefer to work with other more sophisticated languages.

4.5 BASIC

Basic was originally developed at Dartmouth University in the USA in the early
1960s.

It was intended to be a simplified version of FORTRAN-II (a revised
FORTRAN dialect of the early 1960s) that could be used for small programs
entered and run interactively on an early time-shared computer system. (It
simplified FORTRAN in a number of ways such as by ignoring the differences
between real and integer values, and by restricting the number of data variablesyou
could have.)

It was also an interpreted language. BASIC code was not translated into
assembly language and thence to loadable binary. The BASIC interpreter would
start by simply checking that it could recognize each statement in the program.
(The statements were similar in type to those of FORTRAN with assignments, | F
tests, loops, and "GOSUB" calls.) The program would then be run with the
interpreter stepping through the successive statements.

As each statement was reached, the interpreter would reanalyze it and then
immediately carry out the operations required. So, for a statement like:

110 LETV=U+A*T

the interpreter would get the value for variable U, save the value temporarily, get
the value of A, multiply by the value of T, add the saved temporary value and store
theresultin V.

An interpretive system is far less efficient than a compiled system. A BASIC
interpreter might have to execute tens of thousands of instructions to evaluate
something like V=U+A*T (whereas only about four or five instructions of compiled
code are required). So onewould never use an interpretive approach for large scale
numeric calculations.

But an interpreter has some advantages. Interpreters avoid the complexity of
the separate compilation, assembly, and link-loading steps that are needed by a

I nterpreted
languages

Costs of an
interpretive system

Advantages of an
interpretive system

84

High level languages

BASIC popular asan
introductory
language

A language for
symbolic
computations

compiled language. Interpreters can often detect "syntax errors' (where a
statement is not recognizable) immediately after the user types in a line of the
program; the errors can be identified and the user gets a chance to correct them.
Often, interpreters can provide extensive run-time checks so if something goes
wrong while a program is executing, it doesn't just stop, instead, the interpreter
generates some explanation as to what is likely to be wrong. Again, this makes it
simpler for the programmer to find and correct errors.

Such advantages seemed to make BASIC an attractive environment for students
and school children to learn how to program. For along time (from 1962 until the
mid 1980s) BASIC was used in introductory courses but it gradually fell from
favour. The structure of BASIC was based on FORTRAN, and it shared
FORTRAN's faults of error prone constructs, and a style of code with too many
jumps back and forth between labelled statements. Programs written in this style
are difficult to get to work correctly, and even more difficult to maintain.

Most programmers prefer working with programming languages (mainly from
the Algol family) that have more structure in their basic loop constructs,
conditionals etc. (Modern dialects of BASIC have adopted some of these
structured programming constructs.)

4.6 LISP

Lisp is another very different example of an interpretive language. Lisp first
appeared in 1960, a product of research on "Artificial Intelligence" being carried
out at Massachussetts I nstitute of Technology.

Lisp is not alanguage for writing programs that do calculations --- it is intended
for "symbolic computation”. What is"symbolic computation"?
A numerical computation:
Calculate the value of the polynomial when x = 3.8

x4 - 7x3+ 4x2 + 2x - 11

A symbolic computation:
Differentiate the polynomial
5x4 - 7x3 + 4x2+ 2x - 11

In the case of numeric computation, the programmer has simply to code up the
formula so that the computer can work out the answer:

X =38
(

VAL = (((5*X - 7)*x + 4)*x + 2)*x -11

Lisp 85

For a symbolic computation, the programmer must create a much more
complicated program that can read in some representation of the polynomial and
produce output that represents the polynomial's derivative:

20x3 - 21x2 + 8x + 2

(Most students will get to use a program called Mathematica that does this kind of
symbolic calculation. Mathematica is a descendant of alarge Lisp program called
Mathlab; the current version of Mathematica may have been written in C rather
than Lisp.)

Lisp was invented to handle all kinds of non-numeric calculations. Aswell as

"mathematical applications' like symbolic differentiation and integration, Lisp has
been used to write programs that:

translate English to Spanish or to other natural languages,
"understand” children's stories,

interpret photos of rooms and pick out desks, chairs, doors etc,
execute rules that diagnose microbial infections

check architectural drawings to make certain they comply with local
government ordinances

solve those "analogy” problemsyou get in 1Q tests

infer rules that capture regularitiesin set of data

Dynamic data structures

It is very difficult to determine in advance what data elements are going to be
needed in the kind of application where Lisp isused. Examples:

the number of terms needed varies with the polynomial given asinput
the number of chairs, doors, desks etc varies with the picture used as input

the number of inferences made while determining the cause of a patient's
infection depends on both the data that define the patient's clinical history and
on the organism causing the infection (some are easy to identify and don't
involve many rules, others require lots of rulesto discriminate among less
common types of organism)

Instead of having all the data variables allocated before the program started, a Freestorage

Lisp program started with alarge collection of "free storage”. This "free storage” is
allocated dynamically --- pieces being used as and when a program needs them.
Whenever a Lisp program needs a new data element, it takes pieces of the free
space and uses them to build up the data structure required.

Other languages subsequently copied Lisp and provided their own forms of

dynamic storage (though most copies are actually less cleverly implemented than
the original scheme used in Lisp).

86

High level languages

DOD requiresa
standard data
processing language

4.7 COBOL

COBOL isyet another language from around 1960. Its name stands for "COmmon
Business Oriented Language" and it is intended primarily for applications like
record keeping and accounting.

Businesses had been using files of record cards to keep track of customers since
the late 1890s. These record cards were processed using electromechanical sorting
machines, tabulators (which printed data in tabular form on sheets of paper), and
more complex accumulators (that added up numeric values recorded on the
punched cards). Computers started to be used for such record keeping applications
and accounting from about 1949. The general public probably first heard of
computers when a Univac computer appeared on television in 1952 while being
used to predict the result of the US presidentia election.

Initially, commercial applications programs had to be written in assembly
language. Of course, assembly language was just as unsuitable for commercial
applications as it was for engineering calculations. So high level languages started
to be invented for commercial work.

In the late 1950s, each computer manufacturer was developing their own
commercial/business data processing language. The US's Department of Defence
was buying computers from many manufacturers. It needed "business’ programs
(e.g. programs to do the army's payroll, programs to keep track of munitions in
warehouses, etc). It wanted its programmers to be able to write programs that
could run on any of its computers. Consequently, it was not pleased to find that the
languages were different! The DOD sponsored a consortium of computer
manufacturers to come up with a common language — COBOL.

On the whole, COBOL is not an interesting or attractive language. Itisclumsy.
It isverbose. It has a poor subroutine structure. But it did do one thing very well:
it allowed programmers to define "data records"' and provided support for files of
records on tapes and disks.

Business data processing and "records"

Typical business processing applications need to keep track of things like
"customers”, or "employees', or "hospital patients' etc. Each such thing is
characterized by many separate data values, e.g. for a hospital patient one might
need:

patient's name, patient's given names, age, sex,
insurance number, account number,

date of admission, ward number, bed number,
doctor in charge, reason for admission,

info on surgery required

bill

These many different values al are parts of the same thing.

COBOL 87

If these data were represented by separate variables in a program, one would
lose track of the fact that they belonged together. COBOL (and some of its defunct
predecessors) allowed programmers to define "records' (they were inspired by
"record cards' that businesses had previously used to keep track of things like
customers).

A programmer could declare a record, naming and defining the types of
congtituent fields. So a "patient record" might be defined as having a 'name’ field
(with space for 30 characters), a 'given names field (space for 60 characters),
account number (an integer with 6 digits), a ward number (integer with 2 digits),
and so forth.

Given a declaration of such a patient record, a COBOL compiler would then
allow the programmer to have variables of type "PATI ENT". The compiler would
arrange for the variable to be represented by a block of memory sufficiently large
to hold all the constituent data fields of a patient. The language then allowed the
programmer to refer to data fields within a particular PATI ENT record (this helped
make it clear that related data fields did belong together).

Aswell as having PATI ENT records in memory, a COBOL programmer could
specify that the program needed to use afile of such records held on tape or disk.
The compiler would provide lots of support for operations like reading a complete
record from file into memory and writing updated records back to files.

The idea of a "record" grouping together related data is very useful in most
applications, not just business data processing. Modern languages like Pascal, C,
and C++ incorporate the idea of records. You will start to use records (simple
things like "patient" records) towards the end of your first programming course and
spend considerable time on more elaborate record structures in many of your later
COUrSEesS.

4.8 ALGOL

1960 again! A good year for programming languages, Lisp, COBOL and Algol-60.

FORTRAN had just happened. No-one designed it. Its developers had simply
sat down to write a "Formula Translator" that would simplify the work of those
writing programs to do scientific or engineering calculations. It had no style, no
elegance.

A number of mathematicians wanted something better: a language for
expressing algorithms, al kinds of algorithms including recursive ones. After an
abortive effort in 1958, in 1960 a group of mathematicians came up with a design
for an ALGorithmic Language.

Algol redlly was conceived of mainly as amathematical device. It was meant to
allow mathematicians to express complex agorithms: algorithms for mathematical
tasks like "inverting matrices', finding "eigenvalues of matrices’, solving linear
equations, calculating recursive functions. It wasn't really thought of as a practical
programming language, for example, the original version didn't bother to define
any mechanism for input of data or output of results. But it was mathematically
elegant.

Record data
structures

Record files

A mathematicians

toy?

88

High level languages

Recursive functions?
|

A problem using
recursion

Algol was too elegant to be used simply as alanguage appearing in mathematics
journals. So, people started to try to implement it as a programming language. A
few of these implementations were successful and Algol was used a bit as a
programming language in the '60s. Although not wildly successful as a practical
language, Algol did serve as a starting point for most subsequent developments of
new programming languages.

Stack based function calls and recursion

Algol couldn't use the simple mechanisms that FORTRAN could employ to
organize data storage and function calls. Instead, it had to have a more complex
mechanism based on a "stack" storage structure. This was because Algol had to
handle "recursive" functions; the mathematicians insisted on having these. At the
time, this need for a stack all seemed obscure, unnecessarily complex and difficult;
but now it is the standard. All modern languages use this approach rather than the
older smpler static scheme of FORTRAN.

You are unlikely to have had to deal with many recursive functions in your
earlier studies of maths. (quite possibly, you'll not have encountered any recursive
functions). There are relatively few simple examples of recursive functions (and
most of these are unrepresentative because they relate to problems where there are
aternative iterative solutions). Real recursive functions turn up in obscure areas of
mathematics and, somewhat oddly, in the context of tasks like finding a route
through a maze or a way around a network of nodes and edges. Many of the more
elaborate data structures now used in computing actually represent things like
networks, and so you will be meeting some more realistic recursive functions when
you start to write programs that use such structures.

The following is a slightly contrived example of a problem that can be solved
using a recursive function.

Y ou have to print the value of a positive integer that represents a result from
your program. Unfortunately you are using a language whose inventor failed to
provide any output mechanism other than the function "putchar(<character>)"
which prints a character (e.g. the character 'A’, or the digit character '3' or whatever
else you want). So, you are going to have to find a way of generating the digit
characters that represent your number and getting these printed using the provided
put char () routine. For example, if your humber is three hundred and twelve,
you'll need to call put char () to print adigit '3', then another call to print digit '1',
and finally acall to get digit 2.

How could you get the digits?

Getting the low order digit is not hard. The circuits in the CPU that do division
can aso give you the remainder value from adivision:

e.g. 78 divided by ten |eaves renainder 8
312 divided by ten |eaves renai nder 2

Programming languages will have "operators' that allow you to ask for this
remainder. e.g. in C (and C++) you could have

Algol 89

remai nder = nunber % 10;

Doing the remainder (%) operation gives you a numeric value in the range 0..9.
You still have to get a printable digit character --- '0', '1', ‘2, ..., '8, '9". Therewould
be many ways of doing this (and they aren't really important in this example). One
way might be to use your remainder value to select the right digit from an array of
characters (char is C's abbreviation for character)...

char digits[] ={ '0', '1', '2, '3, "4, '5, 6,
I7I’ I8l, lgl };
réﬁ;ai nder = nunber % 10;

char correctdigit = digits[remai nder];
put char(correctdigit);

So, you know that it is easy to print the last digit of the number.

You could deal with printing a complete number by getting someone else to
print al the leading digits, then you could print the last digit.

What would the leading digits be? Well, they will be the digits that represent
your number divided by ten .e.g. you get given the value seven thousand, eight
hundred and twenty four to print, you can do a remainder and see that the last digit
should be a'4' but you'll need someone to print the rest — the digits that represent
the number seven hundred and eight two.

That solvesit! We can get the problem solved by a employing bureaucracy of
people each of whom follows the same data processing rules, see Figure 4.4.

In an Algol-based language you can define recursive routine that simulate the
workings of such a bureaucracy (the following is simply an Algol-ish pseudocode,
the statements don't exactly match any real language):

recursi ve routine PrintPosNunber (i nteger Nunber)

begi n
i f (Nunber<10) then PrintDi git(Nunber);
el se begin
i nteger quotient;
i nt eger remai nder;
quotient = Nunber / 10;
renmai nder = Nunber % 10;
Pri nt PosNunber (quoti ent);
PrintD git(renainder);
end;
end;

A routine has a name, e.g. Pri nt PosNunber (for print positive number), and an
"argument list" (a specification of the data it needs to be given).

recursi ve routine PrintPosNunber (i nteger Nunber)

Here, only one integer data value has to be given to the function.

90

Hi

gh level languages

Rul

1.

2.

3.

es:

Fi nd quotient and renai nder when
di vi di ng nunber by ten.

I'f quotient is non-zero, give it to a
col l eague to deal with and wait for

col | eague to finish.

Take renmi nder value (0..9) and choose
appropriate digit character ('O

'9") to print. Print character.

I've been given the number
754 to print.
| appy rule 1.

| get quotient 75 and remainder

4

| obey rule 2, | ask a colleague to
deal with the value 75; I'll sleep

till he has finished.

"Ah, he has finished.
| obey rule 3, | print the digit

I've been given the number

75 to print.

| appy rule 1.

| get quotient 7 and remainder
5.

| obey rule 2, | ask a colleague to
deal with the value 7; I'l sleep > I've been given the number

till he has finished. 7 to print.

| appy rule 1.

| get quotient 0 and remainder
7.

| obey rule 3, | print the digit '7".

4

Ah, he has finished.

4/ | obey rule 3, | print the digit '5".

',

Outputl 754

Figure 4.4 A "recursive" problem solving process.

The code checks for the easy case first (always a good idea for recursive

routines):

begi n

i f(Nunber <10) then PrintD git(Nunber);

If the number is less than ten, it can be converted directly to a digit character and
this character can be output using the given put char () routine. This would be
routine, "PrintDigit." (Usually, it is better to have lots of little

done by an auxiliary

routines rather than one complex routine that does all the work.)

If the number exceeds ten, it has to be broken down to get a quotient and a

remainder.

i nteger quotient;
i nt eger renai nder;

Algol 91

quotient = Nunmber / 10;
remai nder = Nunber % 10;

The quotient has to be passed in arecursive cal for its digits must be printed
first.

Pri nt PosNunber (quoti ent);

Once the quotient has been dealt with, this routine can print the digit corresponding
to the remainder.

PrintD git(remainder);
end;

At the point where the first character is printed, there will be many versions of
PrintPosNumber running. In fact, there will be one PrintPosNumber for every digit
in the decimal representation of a number. A five digit number, like sixteen
thousand one hundred and nine will need five PrintPosNumbers working; an eleven
digit number would need eleven versions. Each version has to keep track of its
own "Number", "Quotient" and "Remainder" and needs some place in memory to
store these values. Thisiswhere a"stack" getsinvolved.

A compiler for Algol (or any similar language) generates code for (recursive)
routines that allows them to claim space from a "stack" as they start and then to
release this space when they finish. The stack itself is simply a big chunk of a
program's main memory that has been reserved for this purpose.

Routines reserve space for their input arguments ("Number" in the example) and
local variables ("Quotient" and "Remainder"). A little more space is needed for
'housekeeping' purposes (like remembering a return address when another routine
has to be called). The stack space reserved by aroutine is called a "stack frame".
Figure 4.5 illustrates the frames on the stack at the moment where the first digit is
about to be printed (same example data as Figure 4.4).

Although invented for the somewhat atypical case of recursive routines, the
stack based scheme for allocating memory proved to be much more useful than
expected.

FORTRAN's static allocation scheme for arranging space for variables tends to
waste space. Often aroutine will need lots of local variables, but these only really
need to have space allocated while that routine is being executed. If space is
allocated statically as in a simple FORTRAN system, then its reserved for the
entire time that the program is running. If all routines were to get their space
allocated automatically on the stack when they started, and they freed the stack
space automatically as they finished, then the space need for a routine's local
variables would only be reserved while the routine was executing.

Most current languages copy Algol and make use of a stack for organizing the
memory needs of routines. The stack is also used for the housekeeping work of
keeping track of the sequence of subroutine calls, return addresses etc. This
"system's stack" is al handled by runtime support routines and extra bits of code
inserted by the compiler. Programmers don't really notice its being there, it is all
automatic. (Infact, stack based storage is often called "automatic storage”.)

Stack

Stack frames for
arguments and local
variables

Stacks have
advantages over
"static" allocation

" Automatic" storage

92 High level languages

| Nunber_=_754 _ || Stack
quotient =75 | frame 1
Lecqr sive routine PrintPosNumber(integer Nunber) remai nder = 4
egiI fn(Number <10) then PrintDigit(Nunmber);
el se begin
integer quotient; Nunber = 75
i nteger renﬁi%er;/ 0 ----t-'--f---7---
t t = er ; =
SE?mIi ﬁgerN:nbll{lunber % 10; o ?ggﬁ:-ﬁ-g-er- -- -5- - StaCk
t t t); =
Finbotiromingenys) |-IETEIEEL 2 frame 2
end; s
end;
| Number_=_7 ____
.............. Stack
frame 3
Stack

Figure 4.5 Stack during execution of recursive routine.

Nested structure

A FORTRAN program was always thought of as being made up from separately
compiled files that got linked together. As noted earlier (section 4.4), this scheme
has advantages like making it easy to develop subroutine libraries, but also
disadvantages like the compiler being unable to check whether the calls to other
routines were correct with respect to arguments etc.

An Algol program was a single composite entity. It contained inside itself a
"main” routine and all the other functions and subroutines ("procedures’) that it
needed. With an Algol program you would have something like the following:

pr ogr am denvo; Pr ogr am header and
var decl arati on of shared
i nteger count; data vari abl es

procedure Heat Fl ow(.);

begi n Definitions of subroutines
and functions

end;

Algol 93

procedure PrintResults;
begi n

end;
begi n Mai n program
Heat Fl ow(.) :

PrintResul ts;
end.

With only a single program file, the compilation process was simpler than that
for FORTRAN. Figure 4.6 illustrates the approach.

Source code

J

Binary

Loading into memory (no libraries to link,
simply a fixed set of input, output and
maths routines added by the compiler.

11111
11111

. 1
11111

1111

- | Algol u
_E | compiler ——
= then
assembler Stack
ﬂﬂmﬂﬂﬂmﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂg
»~ Code . ,-° Data variables stored
on stack

(code of "run-time"
support routines
added by compiler)

Figure 4.6 Algol style compilation and loading processes.

This organization of a program made it possible for the compiler to do more Compile time checks
checking of the code. A procedure declaration or function declaration had to
specify details of the data values that that procedure would need to be given to
work with (like the integer Number in the PrintPosNumber() function above).
Later in the code, there would be callsto that procedure. The compiler could check
that these calls provided appropriate data values.

Nesting could be taken further. A procedure declared within the main program
could have other procedures and functions declared within it. These enclosed
functions would be auxiliary routines used only within the procedure wherein they
were defined. Usually there were limits on the extent of nesting, you couldn't
define a procedure inside a function inside a procedure inside another function

94

High level languages

AlgolwW

Pascal compiler and
its P-code interpreter

This nesting scheme was meant to encourage and help programmers break down
complex processing steps into lots of small functions that could be grouped
together. However, it did make things more difficult for compiler writers to handle
the source code and some aspects of the scheme forced the generation of less
efficient machine code. Although some of the Algol family languages continue
using nested declarations, other descendants of Algol (e.g. C and C++) have
abandoned nested procedures.

Use of language

Never a great success as a practical programming language, Algol's importance is
that it was the starting point from which most of the modern programming
languages have evolved.

4.9 THE "ALGOL FAMILY"
49.1 Algolw, Pascal, and Modula2

Niklaus Wirth, a Swiss computer scientist, is responsible for these members of the
Algol family.

Along with a number of others at Stanford, Wirth developed AlgolW about
1965. Although it was meant to become a practical programming language for
writing things like operating systems, compilers, etc., AlgolW was never taken
further than a first limited version. This version was well suited to teaching
programming, but was only available for IBM-360 compulters.

Wirth returned to Switzerland about 1970. In Switzerland, he only had access
to aCDC computer, so he couldn't use AlgolW. He revised the language and wrote
a compiler that generated partially interpreted code. The interpreter for this "P-
code" was easy to implement in assembly language and versions were prepared for
many different computers. This meant that the new language, Pascal, was soon
widely available. But it was afairly limited implementation and its main use was
still teaching.

Modula2 was Wirth's third revision. It tidies up a few problem areas of Pascal
and includes some minor extensions.

Although these languages have many small differences, they are basically the
same, so the most commonly used, Pascal, can serve as an example.

Wirth used Algol as the base for these languages, so they have a nested
structure, and they utilize stacks for organizing "automatic" memory space. Wirth
omitted a number of features originally present in Algol that had proven difficult to
use. He aso improved the language with:

¢ more built in data types
e better control structures for iteration and selection

* programmer defined records

AlgolW, Pascal, and Modula2 95

e dynamic storage structures

More built in data types

Algol had only had real and integer numbers. It is often useful to have other data Boolean, character,
types: "booleans’ (variables that have the values TRUE or FALSE), characters (and SIfing, and set data

groups of characters, or "strings", that can represent words or sentences), and types

"sets". All these were provided in AlgolW and its successors.

Control structures

Of course, these languages have counting loops e.g..: Statements defining
iterative (loop)

for i:=1 to 10 do begin structures
N stuff to be done ten times
end;

But they have other loop constructs such as "while" loops ...

readl n(val ue) ; Gets first data val ue from user
whi | e(val ue>0) do begin

Process positive data val ues

readl n(val ue) ; Reads next val ue entered by user
end;

For selection, there is an "if ... then ..." statement that can be used to choose Selection statements
whether an action is (or is not) performed:

i f (current>maxfound) then
maxfound : = current; updates 'maxfound if necessary

Thereisan "if ... then ... else ..." statement for selecting between two alternatives:

if(sex ="'F) then fenales : = fenal es+1;
el se mal es : = mal es+1;

Such statements can be concatenated to select from among more than two
alternatives:

if(age < 1) then infants := infants+1;

el se

if(age < 16) then children := children+l,;
el se adults := adul t s+1;

96

High level languages

Programmer defined
"record structures'

Dynamic data
structures

The" heap"

But there is an aternative statement for dealing with multiway selection that is
often more convenient e.g.:

case Mont hNunber of

1 witeln("January has 31 days");
2: witel n("February usually has 28 days");
12: vvrl tel n("Decenber has 31 days");
end;
Records

AlgolW added record structures (inspired by the records used earlier in languages
like COBOL); these records were further refined in Pascal and Modula2. So, if a
programmer wanted to represent a "patient” in a program handling hospital records,
it was possible to define such arecord:

type
patient = record
name : array [1..30] of char;
age : integer;
sex : char;
ward : integer;

end;

and then have variables of type patient (and also files of patient records).

Dynamic ("heap based") data structures

The AlgolW language group also adopted ideas from Lisp. In these languages, it is
possible to create structures "dynamically” when a program finds that they are
necessary (just likein Lisp where lists and other structures are built as needed).

Another area of memory is reserved for these dynamic structures (it is called the
heap). Space for dynamic structures can be requested in this area. Dynamic
structures remain in existence until explicitly freed (when the space they occupied
should be released).

Limitations

Pascal never quite made it as a full scale programming language (and Modula2 is
of quite minor importance).

"Pascal is inefficient." This was often given as a reason for not using Pascal.
The first compilers for Pascal were usually written to run quickly but to generate
simple non-optimized code. (The standard compiler that generated interpreted
code was used to move Pascal to a new machine. Once it was running on that the
new machine, the code generation parts were changed to produce real assembly

AlgolW, Pascal, and Modula2 97

language rather than interpreted P-code.) Usually, Pascal was adopted first for
teaching, and students typically spend much more time running the compiler than
ever running their own programs so efficiency of programs wasn't that important.
The nested procedural structure does entail some run-time overheads that reduce
efficiency, but this is not that major a problem. It is possible to get Pascal
compilersthat generate efficient code; it isjust that most compilers don't try.

A more serious problem with Pascal related to the issue of separate compilation.
The standard Algol structure of a single program with no separately compiled parts
is far too restrictive. In fact it had to be abandoned. Practical programming
projects need to make use of subroutine libraries and need to have schemes for
separate compilation of program parts followed by linking (as in FORTRAN).
Most implementations of Pascal allowed for separate compilation, but thisinvolved
extensions to the language that were non-standard (the standard has finally been
revised to accommodate separate compilation). Compilers from different suppliers
tended to provide such extensions in slightly different ways, so limiting the
interoperability of Pascal code.

If you have separately compiled parts, then you have the problem of the
compiler not being able to check consistency of these parts. This problem was
solved in the extended Pascal dialects (and Modula2) using an approach devel oped
earlier for BCPL and C (see section 4.9.3).

Another common complaint about Pascal was that "Pascal makes you say
'please™. The Pascal language has rather strict rules on how you use data and
limits on the extent to which you can do things like find the addresses of data
elements. These rules and limits are very helpful to beginners who tend to misuse
data and to do things with addresses that really shouldn't be done! But in more
advanced work, programmers often need to build up complex network structures
that involve address data. In Pascal, code becomes a little verbose because
everywhere data are used in a slightly non-standard way the programmer has to
indicate that this was intentional ("saying 'please’ to the compiler"). Many
programmers didliked this style.

492 ADA

ADA isarather specialized descendant of Pascal.

The ADA language was designed for the US Department of Defence for
"embedded systems" (control programs in everything: fighter aircraft, radar units,
automated warehouses, ...).

The style of the language is vaguely reminiscent of Pascal, and like Pascal the
compiler incorporates lots of analysis and checking to try to detect errors in a
source program. But ADA adds much to Pascal: support for separate compilation,
features to allow for multiprocessors, communications, mechanisms for handling
run-time errors. The extensions are so humerous as to make the ADA language
one of the larger, more complex languages now in use.

Defence related projects are often required to use ADA, but the language is
otherwise not that popular.

98

High level languages

BCPL —a limited
language designed
for writing software
systems

Thelanguage" B"

Caution, C, handle
with care

Down to the
hardware level!

The programmer is
alwaysright

49.3 BCPL, C, AND C++

Way back around 1963, an attempt was made to define a Combined Programming
Language (CPL) that would somehow combine the "best" features of an
algorithmic language like Algol and a data processing language like COBOL. This
exercise proved to be too ambitious and was abandoned. (Later in the 1960s, IBM
sponsored another attempt along these lines, combining features from FORTRAN,
Algol, and COBOL; this project was completed and resulted in the language PL 1.)

Martin Richards, a junior in the CPL project, invented BCPL (Basic CPL) a
much simpler language with a much more specific aim. BCPL wasn't intended to
be good at everything. Its aim was simply to be a good language for writing
system's software (things like compilers, editors, components of operating systems
etc). BCPL was moderately successful in thisrole. It did have limitations (e.g. no
real numbers, but why would you want real numbers if you are writing something
like a"device driver" (code to control a peripheral device)?).

The BCPL compiler was written largely in BCPL (with just a bit of assembly
language code that could be easily changed). It translated BCPL statements into
instruction sequences using little templates that were defined in terms of the
instructions available on a particular kind of computer. If you changed these
templates a BCPL compiler on one machine could generate code for a different
kind of computer. This made the BCPL language easy to transport and quite a
number of organizations had people using BCPL in the late 1960s.

Kernighan and Ritchie at ATT laboratories had a BCPL compiler. They
decided to rework the language, removing limitations, adding a few features, while
keeping the main idea of a language that would be good for writing system's
software. Their first attempt (the language "B") was simply a minor reworking,
simplification, and shortening of BCPL. Their second version was"C".

Just alittle language to call their own. Something suited to a couple of gifted,
experienced programmers working on their own high tech projects. But C escaped.
The world's first computer virus. C got out from the ATT laboratories and infected
machines all over the world before it was ever made safe for the average
programmer.

C was designed to be a language that would be suitable for writing system's
software, like the core parts of an operating system. The code generated by the
compiler had to be very efficient if the language was to be used in this way.
Anything a compiler would have difficulties with was dropped. Consequently, in
some respects the language is simpler than other Algol family languages that have
retained the relatively complex nested program structures.

If C was to be used for writing things like "device driver code" (the code that
actually interacts with the peripheral controllers), then it had to allow the
programmer get down the hardware level and manipulate bits in specific registers
and in particular memory addresses. This gives the programmer considerable
power, and lots of responsibility.

The most dangerous design aspect of C was the requirement that the compiler
should always assume that the programmer was always right. Even if a compiler
could detect a probable error in a program, it should just go ahead and generate the

BCPL, C, and C++ 99

code. After al, the programmer was going to be one of the ATT team (Thompson,
Ritchie, or Kernighan) and they'd know what they were doing. They wouldn't need
acompiler to second guess them or try to hold their hand and protect them..

All this makes C a rather dangerous tool for the average programmer. (If the
Pascal compiler keeps making you say "please”, a C compiler keeps making you
say "sorry".) The power and the danger have attracted programmers and C is now
one of the three main languages (C for programmers, FORTRAN for engineers,
COBOL for accountants).

Actually, the ANSI standard for C put a lot of compile time checks into the
language, so taming it alittle.

C program structure

C programs are typically built from multiple, separately compilable source files,
and functions taken from libraries. The program generation processisillustrated in
Figure 4.7.

C compiler generates assembly
language, then assembler
generates binary code.

Library
L
% 5t
100
040
Selected library
main program an routines
some functions
L
= o044
— 100
= 040 \>

Linking Loader

Program in memory data areas —

heap and
stack

more functions

several more
functions

Figure 4.7 Compiling, assembling, and link-loading a C program.
This structure gives C the same advantages as FORTRAN

e itiseasy to build up libraries of functions that can be used in many programs;

« alarge program can be split into small parts with different programmers
working on each part;

100

High level languages

Header files

Using header
information for
compile time checks

#include

" Standard" header
files

« the editing/compilation process tends to be efficient, you only need to
recompile the file(s) containing code that has changed.

C provides a mechanism that a programmer can use to get the compiler to check
the consistency of separately compiled parts of a program (you aren't forced to use
this mechanism al the time, a C compiler will allow you to make as many mistakes
as you want).

The source code for C routines is stored in files, usually these will have names
that end in .c; e.g. Filel.c, and File2.c. A second file, a "header" file, may be
associated with each .c file; e.g. File2.c can have an associated header file File2.h.
A header file contains information describing the routines (and any shareable data
structures) that are defined in the associated .c file. Libraries, that contain very
large numbers of functions, will have associated header files that describe their
contents.

Suppose the main program in Filel.c uses functions from File2.c and you want
the compiler to check that it is using them correctly. You can put aline into Filel.c
that tells the C compiler to read File2.h so that it knows what is defined in File2.c.

This instruction to the compiler would say something like:

#include "File2. h"

and would appear on aline near the start of Filel.c.

When it encounters a#i ncl ude statement, a C compiler reads the information
in the file specified and records details for later reference. If it later finds
references to things defined in File2.c, it uses the information it saved to check that
routines are being used correctly.

You will get used to seeing #i ncl ude statements at the start of most files of C
code. Usually, these will be 'including' header files that describe things in the
standard libraries of input/ output routines or the mathematical functions.

A C source file will contain a number of routines ("functions" that compute
values, and "procedures’ that perform tasks). There may aso be some definitions
of data variables that can be shared by many routines (asin FORTRAN). One of
the filesforming a program hast contain afunction called "main". Thisisthe main
program that contains the calls to all the other routines; the compiler arranges for
this routine to be started when the program gets loaded into memory.

#i ncl ude <stdlib. h> I ncl ude standard header files

int SharedCounter; Define any shared data

void Sort(int a[], int n)
{ Define functions

}
int LoadDat a()

BCPL, C, and C++ 101

{
}

int main()
Provi de a nain program

}

Each individual routine (function or procedure) is built up from sequences of
statements: assignment statements for calculations, conditional statements for
selecting among choices, iterative statements for loops, and "subroutine call”
statements that invoke other routines.

All the modern (post-AlgolW) languages have essentially the same kinds of
statement. There are differences in layout and in the keywords used, but the
statements are essentially the same. Those in C are typically alittle more concise
than the equivalent statementsin other languages like Pascal .

So, C has "for" loop and "while" loops; it has "if (...) ..." statements, and "if (...)
... €lse .." statements; it has a multiway selection statement ("switch() { ... }").
Once you've learnt any one of these Algol family languages, you've redly learnt
them all!

The data types are again similar. There are the standard integer and real
numbers, and characters. Unlike Pascal, C doesn't define any standard "boolean”
or "set" datatypes (but it is easy to define your own if you need these data types).

C has record structure definitions similar to those in Pascal (maybe slightly
more flexible than those in Pascal). Of course a different syntax is used to define
record structures.

C allows the programmer to chose how storage space is allocated to variables.

One can have static data like FORTRAN. Space for static data is organized by
the compiler and linker-loader and is allocated before the program starts and
remains allocated the entire time that the program is running.

As an Algol-family language, C uses stack-based "automatic" storage for most
variables.

C also has dynamic storage with the program requesting space for structures
that are built as the program runs (and freeing the space when the structures are no
longer necessary).

In your first programming subject, you won't bother that much about the
different kinds of storage, you will mainly use automatic storage. It isin your
second programming subject that you will need to use all the different kinds of
storage.

C++

You will actually be learning C++ rather than standard C.

C dates from around about 1970. C++ started as a dialect of C around about
1980, it has been revised twice since then. But they are still very similar languages
(in fact, acorrect C program should be acceptable to a C++ compiler).

Statements

Standard data types

Record structures

Static variables

Automatic variables

Dynamic, heap-
based, variables

102

High level languages

Simula

Objects

Smalltalk

Reusable component
libraries

Eiffel

The C++ language aimed to achieve three things:

e tobeabetter C

e tosupport "abstract data types"

¢ to permit the use of a programming technique known as "object oriented
programming" (OOP).

A better C? C++ was designed to permit more compile time checking and also
to offer aternatives to various features of C that were known to be common
sources of programming errors.

"Abstract data types' — these will be the main topic of your second
programming course, they are a kind of elaboration of the idea of a record
structure.

OOP —see next section of Simula, Smalltalk, and Eiffel.

4.9.4 SIMULA, SMALLTALK, AND EIFFEL

These are the principal specialized "Object Oriented" languages.

Simula was developed in the mid-1960s as a language for simulations
(simulations of anything you wanted: modelling aircraft movements at an airport,
modelling the spread of a disease in a population of individuals, modelling the
activities in an automated car wash, ...)

Simula was based on Algol-60 but added a variety of constructs that were
needed for simulation work. Essentially, it allowed the programmer to create in the
computer a set of "objects" (each of which owned some resources and had
specified behaviours) that modelled things in the real world. Once the objects had
been created, the Simula run-time system could mimic the passage of time and
could allow the programmer to track interactions among the objects.

The Smalltalk language was developed by the very innovative research group at
Xerox's Palo Alto Research Centre (the same group as invented the prototype for
the "Macintosh/Windows' OS and interface). Smalltalk offers a different way of
thinking about programming problems.

Usually, each problem is treated as if it were totally new. The problem gets
analyzed, broken down into subtasks, and then new code is written to handle each
of these subtasks. Smalltalk encourages an alternative view; instead of writing new
specia purpose code, try to find a way of building up a solution to a problem by
combining reusable components.

The reusable components are Smalltalk objects. A Smalltalk system provides
hundreds of different kinds (classes) of "off the shelf " reusable components.
Actualy, Smalltalk is an interpretive system (a bit like Lisp) and the language is
not strictly in the Algol family.

In some respects, Eiffel is the best programming language currently available.
It takes advantage of the experience gained with earlier languages like Simula,
Pascal, Smalltalk, ADA and others.

It is a compiled language (so Eiffel programs are much more efficient than
interpreted Smalltalk programs). The basic idea is the same as Smalltalk, i.e. the
best way to construct programsis to build them out of reusable objects.

Simula, Smalltalk, Eiffel 103

Although in many respects very good, Eiffel isrestrictive. It enforces the use of
an Object Oriented (OO) style. You have to learn severa styles, not just OO. For
this reason, you are learning C++ because it supports conventional procedural style
aswell as OO.

EXERCISES

1 Began programming on the electromechanical computing devices used in the 1940s by
the US Navy to generate gunnery tables. Reputedly invented the term "bug" for a
programming error after having had to remove a crushed moth that was jamming one of
the relaysin this computer. Rose to be a high ranking US Navy officer. Prime mover in
the standardisation efforts that lead to the development of the COBOL programming
language.

Identify this person and write a more complete biography.

2 Implemented one of the first (if not the very first) Algol compiler. Created the first
operating system that was designed on a layered model with akernel providing low level
services, and surrounding layers that added functionality. Proponent of structured
programming techniques and critic of earlier coding styles with their cris-crossing flows
of control induced by indiscriminate use of "GOTQ" statements. Tried to convince
programmers that they needed alittle discipline.

Identify this person and write a more compl ete biography.

104 High level languages

