
5 C++ development
environment

5.1 INTEGRATED DEVELOPMENT ENVIRONMENT

Usually it is necessary to learn how to use:

• a "command language" for a computer system, (e.g. Unix shell or DOS
commands)

• an editor (specialised word processor)

• a "make" system that organizes the compilation of groups of files

• a compiler

• a linking-loader and its associated libraries.

Fortunately, if you are working on a personal computer (Macintosh or PC) you will
usually be able to use an "Integrated Development Environment" (IDE).

An IDE packages all the components noted above and makes them available
through some simple to use visual interface.

On a Intel 486-, or Pentium- based PC system, you will be using either
Borland's C++ environment or Microsoft's C++. On a Macintosh system, you will
probably be using Symantec C++. These systems are fairly similar.

They employ a variety of different windows on the screen to present
information about a program (usually termed a "project") that you are developing.
At least one of these windows will be an editing window where you can change the
text of the source code of the program. Another window will display some kind of
summary that specifies which files (and, possibly, libraries) are used to form a
program. Figure 5.1 illustrates the arrangement with Symantec 8 for the Power PC.
The editing window is on the left, the project window is to the right.

5

Project

106 C++ development environments

Figure 5.1 Illustration of typical editing and project windows of an example
integrated development environment.

The figure illustrates the situation when the Symantec system has been asked to
create a new project with the options that it be "ANSI C++ with iostreams". Such
options identify things such as which input output library is to be used. The
environment generates a tiny fragment of C++ code to get you started; this
fragment is shown in the editing window:

#include <stdlib.h>
#include <iostream.h>

int main()
{

cout << "hello world" << endl;

return EXIT_SUCCESS;
}

The two #include lines inform the compiler about the standard libraries that this
program is to use. The code form "int main" to the final "}" is a skeletal main
program. (It is a real working program; if you compiled and ran it then you would
get the message "hello world" displayed.)

The project window lists the components of the program. Here, there is a folder
containing libraries and a single program file "main.cp".

The Borland environment would generate something very similar. One of the
few noticeable differences would be that instead of being separate windows on the
desktop, the project and editing windows would both be enclosed as subwindows
of a single large window.

Like spreadsheets, paint programs, and word processor programs, most of the
operations of an IDE are controlled through menu commands. There are a number
of separate menus:

Menu commands

Integrated development environments 107

• File: things like saving to file, opening another file, printing etc.

• Edit: cut-copy-paste editing commands etc.

• Search: finding words, go to line etc

• Project: things like "Run" (run my program!)

• Source: options like "check" and "compile"

The various environments have similar menu options though these are named and
organized slightly differently.

5.2 C++ INPUT AND OUTPUT

Because any interesting program is going to have to have at least some output (and
usually some input), you have to learn a little about the input and output facilities
before you can do anything.

In some languages (FORTRAN, Pascal, etc), the input and output routines are
fixed in the language definition. C and C++ are more flexible. These languages
assume only that the operating system can provide some primitive 'read' and 'write'
functions that may be used to get bytes of data into or out from a program. More
useful sets of i/o routines are then provided by libraries. Routines in these libraries
will call the 'read' and 'write' routines but they will do a lot of additional work (e.g.
converting sequences of digits into the appropriate bit pattern to represent a
number).

Most C programs use an i/o library called stdio (for standard i/o). This library
can be used in C++; but more often, C++ programs make use of an alternative
library called iostream (i/o stream library).

The i/o stream library (iostream) makes use of some of the "object oriented"
features of C++. It uses "stream objects" to handle i/o.

Now in general an object is something that "owns a resource and provides
services related to that resource". A "stream object" owns a "stream", either an
output stream or an input stream. An output stream is something that takes
character data and gets them to an output device. An input stream gets data bytes
from some input device and routes them to a program. (A good way of thinking of
them is as kinds of software analogues of hardware peripheral device controllers.)

An ostream object owns an output stream. The "services" an ostream object
provides include the following:

• an ostream object will take data from an integer variable (i.e. a bit pattern!)
and convert it to digits (and ± sign if needed) and send these through its output
stream to an output device;

• similarly, an ostream object can take data from a "real number" variable and
convert to a character sequence with sign character, digits, and decimal point
(e.g. 3.142, -999.9, or it may use scientific notation and produce a character
sequence like 1.70245E+43);

Input/output
capabilities defined
by libraries

stdio and iostream
libraries

Stream objects

ostream objects

108 C++ development environments

• an ostream object can take a message string (some character data) and copy
these characters to the output stream;

• an ostream object can accept directions saying how many digits to show for a
real number, how much space on a line to use, etc.

An istream object owns an input stream. The "services" an istream object
provides include the following ...

• an istream object can be asked to find a value for an integer variable, it will
check the input stream, miss out any blank space, read in a series of digits and
work out the value of the number which it will then put into the variable
specified;

• similarly, an istream object can be asked to get a "real number" variable, in
this case it will look for input patterns like 2.5, -7.9, or 0.6E-20 and sort them
out to get the value for the number;

• an istream object can be asked to read in a single character or a complete
multicharacter message.

It is unusual for an ostream object not to be able to deal with a request from a
program. Something serious would have had to have gone wrong (e.g. the output is
supposed to be being saved on a floppy disk and the disk is full). It is fairly
common for an istream object to encounter problems. For example, the program
might have asked for an integer value to be input, but when the istream object
looks in the input stream it might not find any digits, instead finding some silly
input entered by the user (e.g. "Hello program").

An istream object can't convert "Hello program" into an integer value! So, it
doesn't try. It leaves the bad data waiting in the input stream. It puts 0 (zero) in the
variable for which it was asked to find a value. It records the fact that it failed to
achieve the last thing it was asked to do. A program can ask a stream object
whether it succeeded or failed.

Another problem that an istream object might encounter is "end of file". Your
program might be reading data from a file, and have some loop that says something
like "istream object get the next integer from the file". But there may not be any
more data in the file! In this case, the istream object would again put the value 0
in the variable, and record that it had failed because of end-of-file. A program can
ask an istream object whether it has reached the end of its input file.

The first few programming exercises that you do will involve the simplest
requests to iostream objects … "Hey input stream object, read an integer for me.",
"Hey output stream object, print this real number." The other service requests
("Did that i/o operation work?", "Are we at the end of the input file?", "Set the
number precision for printing reals to 3 digits", ...) will be introduced as needed.

A program can use quite a large number of stream objects (the operating system
may set a limit on the number of streams used simultaneously, 10, 16, 200 etc
depends on the system). Streams can be attached to files so that you can read from
a data file and write to an output file.

The iostream library sets up three standard streams:

• cin standard input stream (reads data typed at keyboard)

istream objects

Error handling with
input and output

Response to bad
input data

"end of file"
condition

Simple use of streams

Standard streams

C++ Input and Output 109

• cout prints results in an "output window"

• cerr prints error messages in an "output window" (often the same
window as used by cout); in principle, this allows the programmer to create
error reports that are separate from the main output.

You don't have to 'declare' these streams, if your program says it wants to use the
iostream library then the necessary declarations get included. You can create
iostream objects that are attached to data files. Initially though, you'll be using
just the standard iostream objects: cout for output and cin for input.

Requests for output to cout look like the following:

int aCounter;
double aVal;
char Message[] = "The results are: ";
...
cout << Message;
cout << aCounter;
cout << " and ";
cout << aVal;
...

The code fragments starts with the declarations of some variables, just so we
have something with values to output.:

int aCounter;
double aVal;
char Message[] = "The results are: ";

The declaration int aCounter; defines aCounter as a variable that will hold an
integer value. (The guys who invented C didn't like typing, so they made up
abbreviations for everything, int is an abbreviation for integer.) The declaration
double aVal; specifies that there is to be a variable called aVal that will hold a
double precision real number. (C and C++ have two representations for real
numbers – float and double. double allows for greater accuracy.) The
declaration "char Message ..." is a bit more complex; all that is really
happening here is that the name Message is being associated with the text The
results....

In this code fragment, and other similar fragments, an ellipsis (…) is used to
indicate that some code has been omitted. Just assume that there are some lines of
code here that calculate the values that are to go in aVal etc.

cout << Message;
cout << aCounter;
cout << " and ";
cout << aVal;

These are the requests to cout asking it to output some values. The general
form of a request is:

Output via cout

Explanation of code
fragment

110 C++ development environments

cout << some value

(which you read as "cout takes from some value"). The first request is essential
"Please cout print the text known by the name Message." Similarly, the second
request is saying: "Please cout print the integer value held in variable aCounter."
The third request, cout << " and " simply requests output of the given text.
(Text strings for output don't all have to be defined and given names as was done
with Message. Instead, text messages can simply appear in requests to cout like
this.) The final request is: "Please cout print the double value held in variable
aVal."

C/C++ programmers don't like typing much, so naturally they prefer
abbreviated forms. Those output statements could have been concatenated
together. Instead of

cout << Message;
cout << aCounter;
cout << " and ";
cout << aVal;

one can have

cout << Message << aCounter << " and " << aVal;

cout will keep appending output to the same output line until you tell it to start
a new line. How do you tell it to start a new line?

Well, this is a bit system dependent. Basically, you have to include one or more
special characters in the output stream; but these characters differ depending on
whether your program is running on Unix, or on DOS, or on ... To avoid such
problems, the iostream library defines a 'thing' that knows what system is being
used and which sends the appropriate character sequence (don't bother about what
this 'thing' really is, that is something that only the guys who wrote the iostream
library need to know).

This 'thing' is called "endl" and you can include it in your requests to cout. So,
if you had wanted the message text on one line, and the two numbers on the next
line (and nothing else appended to that second line) you could have used the
following request to cout:

cout << Message << endl
<< aCounter << " and " << aVal << endl;

(You can split a statement over more than one line; but be careful as it is easy to
make mistakes when you do such things. Use indentation to try to make it clear
that it is a single statement. Statements end with semicolon characters.)

Input is similar in style to output except that it uses ">>" (the 'get from operator')
with cin instead of "<<" (the 'put operator') and cout.

If you want to read two integers from cin, you can write

int aNum1, aNum2;
...

Abbreviations

Basic formatting of
output lines

endl

Input from cin

C++ Input and Output 111

cin >> aNum1;
cin >> aNum2;

or

cin >> aNum1 >> aNum2;

In general you have

cin >> some variable

which is read as "cin gives to some variable".

5.3 A SIMPLE EXAMPLE PROGRAM IN C++

This example is intended to illustrate the processes involved in entering a program,
getting it checked, correcting typing errors, compiling the program and running it.
The program is very simple; it reads two integer values and prints the quotient and
remainder. The coding will be treated pretty informally, we won't bother with all
the rules that specify what names are allowed for variables, where variables get
defined, what forms of punctuation are needed in statements. These issues are
explored after this fairly informal example.

5.3.1 Design

You never start coding until you have completed a design for your program!
But there is not much to design here.

What data will we need?

Seems like four integer variables, two for data given as input, one for quotient and
the other for a remainder.

Remember there are different kinds of integers, short integers and long integers.
We had better use long integers so permitting the user to have numbers up to
±2000Million.

Program organization?

Main program could print a prompt message, read the data, do the calculations and
print the results – a nice simple sequence of instructions.

"Pseudo-code" outline

So the program will be something like:

112 C++ development environments

define the four integer variables;
get cout to print a prompt, e.g. "Enter the data values"

get cin to read the two input values

calculate the quotient, using the '/' divide operator
calculate the remainder, using the '%' operator

get cout to print the two results

This will be our "main" program. We have to have a routine called main and since
this is the only routine we've got to write it had better be called main.

Here the operations of the routine could be expressed using English sentences.
There are more elaborate notations and "pseudo-codes" that may get used to
specify how a routine works. English phrases or sentences, like those just used,
will suffice for simple programs. You should always complete an outline in some
form of pseudo code before you start implementation.

Test data

If you intend to develop a program, you must also create a set of test data. You
may have to devise several sets of test data so that you can check all options in a
program that has lots of conditional selection statements. In more sophisticated
development environments like Unix, there are special software tools that you can
use to verify that you have tested all parts of your code. In an example like this,
you would need simple test data where you can do the calculations and so check
the numerical results of the program. For example, you know that seven divided by
three gives a quotient of two and a remainder of one; the data set 7 and 3 would
suffice for a simple first test of the program.

5.3.2 Implementation

#including headers for libraries

Our program is going to need to use the iostream library. This better be stated in
the file that contains our main program (so allowing the compiler to read the
"header" file for the iostream library and then, subsequently, check that our code
using the iostream facilities correctly).

The file containing the program had better start with the line

#include <iostream.h>

This line may already be in the "main.cp" file provided by the IDE.

A simple example program: implementation 113

main() routine

In some environments (e.g. Unix) the main() routine of a C/C++ program is
expected to be a function that returns an integer value. This is because these
environments allow "scripting". "Scripts" are "programs" written in the system's
job control language that do things like specifying that one program is to run, then
the output files it generated are to be input to a second program with the output of
this second program being used as input to a third. These scripts need to know if
something has gone wrong (if the first program didn't produce any output there isn't
much point starting the second and third programs).

The integer result from a program is therefore usually used as an error indicator,
a zero result means no problems, a non-zero result identifies the type of problem
that stopped the program.

So, usually you will see a program's main() routine having a definition
something like:

int main()
{

... definitions of variables

... code statements
return 0; return statement specifying 'result' for

script
}

The code "int main()" identifies main as being the name of a function (indicated
by the () parentheses), which will compute an integer value. The main function
should then end with a "return" statement that specifies the value that has been
computed and is to be returned to the caller. (Rather than "return 0;", the code
may be "return EXIT_SUCCESS;". The name EXIT_SUCCESS will have been
defined in one of the header files, e.g. stdlib's header; its definition will specify
its value as 0. This style with a named return value is felt to be slightly clearer than
the bare "return 0;").

The integrated development environments, like Symantec or Borland., don't use
that kind of scripting mechanism to chain programs together. So, there is no need
for the main() routine to return any result. Instead of having the main routine
defined as returning an integer value, it may be specified that the result part of the
routine is empty or "void".

In these IDE environments, the definition for a main() routine may be
something like:

void main()
{

... definitions of variables

... code statements
}

The keyword void is used in C/C++ to identify a procedure (a routine that, unlike a
function, does not return any value or, if you think like a language designer, has a
return value that is empty or void).

Integer value
returned by main()

void

114 C++ development environments

Generally, you don't have to write the outline of the main routine, it will be
provided by the IDE which will put in a few #include lines for standard libraries
and define either "int main()" or "void main()". The code outline for main()
provided by Symantec 8 was illustrated earlier in section 5.1.

Variable definitions

The four (long) integer values (two inputs and two results) are only needed in the
main routine, so that is where they should be defined. There is no need to make
them "global" (i.e. "shareable") data.

The definitions would be put at the start of the main routine:

int main()
{

long aNum1;
long aNum2;
long aQuotient;
long aRemainder;
…

Naturally, because C/C++ programmers, don't like unnecessary typing, there is an
abbreviated form for those definitions ...

int main()
{

long aNum1, aNum2, aQuotient, aRemainder;
…

The C/C++ languages don't have any particular naming conventions. But, you
will find it useful to adopt some conventions. The use of consistent naming
conventions won't make much difference until you get to write larger programs in
years 2 and 3 of your course, but you'll never be able to sustain a convention unless
you start with it.

Some suggestions:

• local variables and arguments for routines should have names like aNum, or
theQuotient.

• shared ("global") variables should have names that start with 'g', e.g. gZeroPt.
• functions should have names that summarize what they do, use multiple words

(run together or separated by underscore characters _)

There will be further suggestions later.
This is a subtle point of terminology, reasonably safe to ignore for now! But, if

you want to know, there is a difference between variable "definition" and
"declaration". Basically, in C++ a declaration states that a variable or function
exists, and will be defined somewhere (but not necessarily in the file where the
declaration appears). A definition of a function is its code; a definition of a
variable identifies what storage it will be allocated (and may specify an initial
value). Those were definitions because they also specified implicitly the storage

Choice of variable
names

Variable
"definitions" and

"declarations"

A simple example program: implementation 115

that would be used for the variables (they were to be 'automatic' variables that
would be stored in main's stack frame).

Sketch of code

The code consists mainly of i/o operations:

int main()
{

long aNum1, aNum2, aQuotient, aRemainder;
cout << "Enter two numbers" << endl;
cin >> aNum1 >> aNum2;

aQuotient = aNum1 / aNum2;
aRemainder = aNum1 % aNum2;

cout << "The quotient of " << aNum1 << " and "
<< aNum2 << " is " << aQuotient << endl;

 cout << "and the remainder is " << aRemainder << endl;
return EXIT_SUCCESS;

}

Explanation of code fragment

int main()
{

…
}

The definition of the main() routine starts with int main and ends with the final
"}". The { } brackets are delimiters for a block of code (they are equivalent to
Pascal's begin and end keywords).

long aNum1, aNum2, aQuotient, aRemainder;

Here the variables are defined; we want four long integers (long so that we can deal
with numbers in the range ±2000million).

cout << "Enter two numbers" << endl;

This is the first request to the cout object, asking it to arrange the display of the
prompt message.

cin >> aNum1 >> aNum2;

This is a request to the cin object, asking it to read values for two long integers.
(Note, we don't ask cin whether it succeeded, so if we get given bad data we'll just
continue regardless.)

aQuotient = aNum1 / aNum2;
aRemainder = aNum1 % aNum2;

116 C++ development environments

These are the statements that do the calculations. In C/C++ the "/ operator"
calculates the quotient, the "% operator" calculates the remainder for an integer
division.

cout << "The quotient of " << aNum1 << " and "
<< aNum2 << " is " << aQuotient << endl;

 cout << "and the remainder is " << aRemainder << endl;

These are the requests to cout asking it to get the results printed.

return EXIT_SUCCESS;

This returns the success status value to the environment (normally ignored in an
IDE).

You should always complete a sketch of the code of an assignment before you
come to the laboratory and start working on the computer!

Code entry and checking

The code can be typed into an editor window of the IDE. The process will be fairly
similar to text entry to a word processor. The IDE may change font style and or
colour automatically as the text is typed. These colour/style changes are meant to
highlight different program components. So, language keywords ("return, int, long,
...") may get displayed in bold; #include statements and quoted strings may appear
in a different colour from normal text. (These style changes help you avoid errors.
It is quite easy to forget to do something like put a closing " sign after a text string;
such an error would usually cause numerous confusing error messages when you
attempted to run the compiler. But such mistakes are obvious when the IDE uses
visual indicators to distinguish program text, comments, strings etc.)

You will learn by bitter experience that your computer will "crash" if you type
in lots of code without saving! Use the File/Save menu option to save your work at
regular intervals when you are entering text.

When you have entered the code of your function you should select the
"Compile" option from the appropriate menu (the compile option will appear in
different menus of the different IDEs). The IDE may offer an alternative "Syntax
check" option. This check option runs just the first part of the compiler and does
not go on to generate binary code. It is slightly quicker to use "Syntax check"
when finding errors in code that you have just entered.

You will be surprised when you compile your first twenty line program. The
compiler will report that it has processed something between 1000 and 1500 lines
of code. All those extra lines are the #included header files!

The compiler will identify all places where your code violates the "syntax rules"
of the language. For example, the program was entered with the calculation steps
given as:

aQuotient = aNum1 / aNum2

IDEs use font styles
and colours to

distinguish elements
in the code

Save often!

Compile and "Syntax
check" menu options

#include files add to
cost of compilations

Compilation errors

A simple example program: implementation 117

aRemainder = aNum1 % aNum2;

(The code is incorrect. The statement setting a value in aQuotient doesn't end in a
semicolon. The compiler assumes that the statement is meant to continue on the
next line. But then it finds that it is dealing with two variable names, aNum2 and
aRemainder, without any operator between them. Such a construct is illegal.)
When this code was compiled, the Symantec compiler generated the report

File “main.cp”; Line 11
Error: ';' expected

The IDE environments all use the same approach when reporting the compilation
errors. Each error report actually consists of commands that the IDE can itself
interpret. Thus, the phrase File "main.cp"; can be interpreted by Symantec's IDE as
a command to open an editing window and display the text of the file main.cp (if
the file is already displayed in a window, then that window is brought in front of all
other windows). The second part of the error report, Line 11, is a directive that the
IDE can interpret to move the editing position to the appropriate line. The rest of
the error report will be some form of comment explaining the nature of the error.

If you do get compilation errors, you can select each error report in turn
(usually, by double clicking the mouse button in the text of the error message).
Then you can correct the mistake (quite often the mistake is on a line just before
that identified in the report).

Generally, you should try to correct as many errors as possible before
recompiling. However, some errors confuse the compiler. An initial error message
may be followed by many other meaningless error messages. Fixing up the error
identified in the first message of such a group will also fix all the subsequent errors.

If your code compiles successfully you can go ahead and "Build" your project.
The build process essentially performs the link-loading step that gets the code of
functions from the libraries and adds this code to your own code.

During the build process, you may get a "link error". A link error occurs when
your code specifies that you want to use some function that the IDE can not find in
the libraries that you have listed. Such errors most often result from a typing error
where you've given the wrong function name, or from your having forgotten to
specify one of the libraries that you need.

Running the program

You can simply "Run" your program or you can run it under control from the IDE's
debugger. If you just run the program, it will open a new window for input and
output. You enter your data and get your results. When the program terminates it
will display some message (e.g. via an "Alert" dialog); when you clear ("OK") the
dialog you are returned to the main part of the development environment with its
editor and project windows.

Running under the control of a debugger takes a little more setting up.
Eventually, the IDE will open a window showing the code of your main program
with an arrow marker at the first statement. Another "Data" window will also have

Error messages are
commands that select
source code lines
with errors

Building a project

Link errors

Debugger

118 C++ development environments

been opened. You can then control execution of your program, making it proceed
one statement at a time or letting it advance through a group of statements before
stopping at a "breakpoint" that you set (usually by clicking the mouse button on the
line where you want your program to stop).

Figure 5.2 illustrates the windows displayed by the Symantec 8 debugger. The
left pane of the window summarizes the sequence of function calls;. In this case
there is no interesting information, the data simply show that the program is
executing the main program and that this has been called by one of the startup
routines provided by the IDE environment. (In Borland's IDE, this "stack
backtrace" information is displayed in a separate window that is only shown if
specifically requested by menu command.)

The right pane of the window shows the code of the procedure currently being
executed. The arrow marks the next statement to be executed. Statements where
the program is to stop and let the debugger regain control are highlighted in some
way (Symantec uses diamond shaped check marks in the left margin, Borland uses
colour coding of the lines). If you execute the program using the "Step" menu
command you only execute one statement, a "Go" command will run to the next
breakpoint.

Figure 5.2 Display from a debugger.

The contents of variables can be inspected when the debugger is in control.
Typically, you select the variable with the mouse, its value will be displayed in the
separate Data window (it may be necessary to use a "Data" or "Inspect" menu
command).

You should learn to use the debugger starting with your very first programming
exercises. Initially, using the debugger to step through a program one statement at
a time helps you understand how programs get executed. Later, you will find the
debugger very useful for eliminating programming errors. It is easy to have
programming errors such as defining a collection (array) with four data elements
and then coding a loop slightly wrongly so that the program ends up checking for a
fifth data element. Such code would be syntactically correct and so would be
accepted by the compiler, but would either "bomb out" when run or would generate

Stack backtrace

Code of current
procedure

A simple example program: implementation 119

an incorrect result. It is very hard to find such an error if all you know is that the
program "bombs". It is relatively easy to find such errors if you are able to use the
debugger to stop the program and check what is going.

120 C++ development environments

