8 Selection

8.1 MAKING CHOICES

Loop constructs permit the coding of afew simple numerical calculations; but most
programs require more flexibility. Different input data usually have to be
interpreted in different ways. As a very simple example, imagine a program
producing some summary statistics from lots of data records defining people. The
statistics required might include separate counts of males and females, counts of
citizens and resident-aliens and visitors, counts of people in each of a number of
age ranges. Although similar processing is done for each data record, the particular
calculation steps involved will depend on the input data. Programming languages
have to have constructs for selecting the processing steps appropriate for particular
data
The modern Algol family languages have two kinds of selection statement:

"if " statements
and

"switch" statements (or "case" statements)

There are typically two or three variations on the "if" statement. Usually, they
differ in only minor ways; thisis possibly why beginners frequently make mistakes
with "if"s. Beginnerstend to mix up the different variants. Since"if"s seem alittle
bit error prone, the "switch" selection statement will be introduced first.

switch statement

The C/C++ switch statement is for selecting one processing option from among a
choice of several. One can have an arbitrary number of choices in a switch
Statement.

Each choice has to be given an identifying "name" (which the compiler has to
be able to convert into an integer constant). In simple situations, the different

174

Selection

Parts of a switch
statement

choices are not given explicit names, the integer numbers will suffice. Usualy, the
choice is made by testing the value of avariable (but it can be an expression).

Consider a simple example, the task of converting a date from numeric form
<day> <month> <year>, e.g. 25 12 1999, to text December 25th 1999. The month
would be an integer data value entered by the user:

int day, nonth, year;
cout << "Enter date as day, nonth, and year" << endl;
cin >> day >> nmonth >> year;

The name of the month could be printed in a switch statement that used the value of
"month" to select the appropriate name. The switch statement needed to select the
month could be coded as:

swi tch(nont h) {

case 1:
cout << "January ";
br eak;

case 2:
cout << "February ";
br eak;

case 12:
cout << "Decenber ";
br eak;

}

A switch statement is made up from the following parts:

switch
The keyword swi t ch.
(nont h)

A parenthesised expression that yields the integer value that is used to make the
choice. Often, as in this example, the expression simply tests the value of a
variable.

{
The{ ' begin block' bracketing character.
case
The keyword case. Thismarksthe start of the code for one of the choices.

1

Switch statement 175

The integer value, as a simple integer or a named constant, associated with this
choice.

A colon, ': ', punctuation marker.

cout << "January ";

The code that does the specia processing for this choice.

br eak;

The keyword br eak that marks the end of the code section for this choice (or case).

case 2:

The code for the next case.

cout << "February ";
br eak; "

Similar code sections for each of the other choices.

}

Finaly, the} ‘end block’ bracket to match the{ at the start of the set of choices.
Be careful when typing the code of a switch; in particular, make certain that you
pair your case ... break keywords.
Y ou see, the following islegal code, the compiler won't complain about it:

case 1:
cout << "January ";
case 2:
cout << "February ";
br eak;

But if the month is 1, the program will execute the code for both case 1 and case 2
and so print "January February ".
C/C++ allows "case fall through" (where the program continues with the code " casefall through”
of a second case) because it is sometimes useful. For example, you might have a
program that uses a swi t ch statement to select the processing for a command
entered by a user; two of the commands might need almost the same processing
with one simply requiring an extra step :

/* Command 'save and quit' --- save data and cl ose up */
case 101:

SaveDat a() ;

/* CASE FALLTHROUGH REQU RED */

176 Selection

/* Command 'quit' --- close up */
case 100:

d oseWndow() ;

D sconnect Modend() ;

br eak;

(If you intend to get "case fall through", make this clear in acomment.)
Another example where case fall through might be useful is a program to print
the words of awell known yuletide song:

cout << "(n the " << day_of _chri stmas
<< " day of Christmas, " << endl;
cout << "My true |love gave to ne " <<endl;

swi t ch(day_of _christmas) {
case 12:

cout << "Twelve lords a |eaping";
case 11:

case 3:
cout << "Three French hens" << endl;
case 2:
cout << "Two turtle doves, " << endl;
cout << "and " << endl;
case 1:
cout << "A partridge in a pear tree";
};

The "case labels" (the integers identifying the choices) don't have to be in
sequence, so the following is just as acceptable to the compiler (though maybe
confusing to someone reading your code):

swi tch(nonth) {
case 4:
cout << "April ";
br eak;
case 10:
cout << "Cctober ";
br eak;

case 2:
cout << "February";
br eak;

}

In this simple example, it wouldn't be necessary to invent named constants to
characterize the choices — the month numbers are pretty intuitive. But in more
complex programs, it does help to use named constants for case labels. Y ou would
have something like:

Defining named #i ncl ude <i ostream h>
constants for case
|labels const int JAN = 1;

Switch statement 177

const int FEB

I
N

const int DEC

12;
voi d mai n()
int day, nonth, year;

swi tch(nonth) {

case JAN
cout << "January ";
br eak;

case FEB:
cout << "February ";
br eak;

case DEC
cout << "Decenber ";
br eak;

}
As well as printing the name of the month, the dates program would have to Another switch
print the day as 1st, 2nd, 3rd, 4th, ..., 31st. The day number is easily printed --- Statement

cout << day;

but what about the suffixes'st', 'nd', 'rd', and 'th'?
Obviously, you could get these printed using some enormous case statement

swi tch(day) {

case 1. cout << "st "; break;
case 2: cout << "nd "; break;
case 3: cout << "rd ", break;
case 4. cout << "th "; break;
case 5: cout << "th "; break;
case 6: cout << "th "; break;
case 7. cout << "th "; break;
case 21: cout << "st "; break;

case 22: cout << "nd "; break;

case 30: cout << "th "; break;
case 31: cout << "st "; break;

}

Fortunately, this can be simplified. There really aren't 31 different cases that Combining similar
have to be considered. There are three special cases: 1, 21, and 31 need 'st’; 2 and @5
22 need 'nd'; and 3 and 23 need 'rd'. Everything else uses 'th'.

The case statement can be simplified to:

switch (day) {
case 1:
case 21:

178

Selection

Default section of
switch statement

case 31:
cout << "st "
br eak;

case 2:

case 22:
cout << "nd ";
br eak;

case 3:

case 23:
cout << "rd "
br eak;

defaul t:
cout << "th "
br eak;

}

Where several cases share the same code, that code can be labelled with all
those case numbers:

case 1:

case 21:

case 31:
cout << "st "
br eak;

(You can view this as an extreme example of 'case fall through'. Case 1 --- do
nothing then do everything you do for case 21. Case 21 --- do nothing, then do
everything you do for case 31. Case 31, print "st".)

Most of the days ssimply need "th" printed. Thisis handled in the "default" part
of the switch statement.

switch (day) {

case 1:

case 21:

case 31:
cout << "st ";
br eak;

defaul t:
cout << "th ";
br eak;
}

The compiler will generate code that checks the value used in the switch test
against the values associated with each of the explicit cases, if none match it
arranges for the "default”" code to be executed.

A default clause in a switch statement is often useful. But it is not necessary to
have an explicit default; after al, the first example with the months did not have a
default clause. If a switch does not have a default clause, then the compiler
generated code will be arranged so as to continue with the next statement following
after the end of the switch if the value tested by the switch does not match any of
the explicit cases.

Switch statement 179

Usually a switch statement tests the value of an integer variable:
switch (month) {

and
swi tch (day) {

But it can test the value of any integer expression.
A program can have something like swi t ch(n+7) { ... } if thismakessense.

8.2 A REALISTIC PROGRAM: DESK CALCULATOR

Loop and selection constructs are sufficient to construct some quite interesting
programs. This example is still fairly simple. The program is to simulate the
workings of a basic four function calculator

O calculator

Specification:
The calculator program isto:

1 Display a"current value".

2 Support the operations of addition, subtraction, multiplication, and division,
operations are to be invoked by entering the character '+, *-', ', or /' in
response to a prompt from the program.

3 When an operator isinvoked, the program isto request entry of a second
number that is to be combined with the current value; when given a number,

180 Selection

the program is to perform the specified calculation and then display the new
current value.

4 The program isto accept the character 'C' (entered instead of an operator) asa
command to clear (set to zero) the "current value'.

5 The program isto terminate when the character 'Q' is entered instead of an
operator.

Example operation of required calculator program:

Programinitially displaying 0
pronpt for operator +
'+ character entered
pronpt for nunber 1.23
addi tion operation 0+1.23
current val ue di spl ayed 1.23
*

pronpt for operator
"*' character entered

pronpt for nunber 6.4

mul tiplication operation perforned
current val ue displ ayed 7.872
pronpt for operator C

cl ear operation
current val ue di spl ayed 0
pronpt for operator Q
program t er ni nat es

Design and Implementation

Preliminary design: Programs are designed in an iterative fashion. Y ou keep re-examining the problem
at increasing levels of detail.

Firstiteration Thefirst level issimple. The program will consist of
through the design

Process . someinitialization steps

¢ aloop that terminates when the 'Q' (Quit) command is entered.

Seconditeration The second iteration through the design process would elaborate the "setup” and
through the design "loop" code:

process

e someinitiaization steps:
set current value to 0.0
display current value
prompt user, asking for acommand character
read the command character

e loop terminating when "Quit" command entered
while command character is not Q for Quit do the following
(process command --- if input is needed ask for number then do
(operation
(display result
(prompt the use, asking for a command character
(read the command character

Desk calculator example 181

The part about prompting for a number and performing the required operation Thirditeration
still needs to be made more specific. The design would be extended to something tr;;%‘g‘ the design
like the following: P

set current value to 0.0

di splay current val ue

pronpt user, asking for a comrand character
read the command char act er

whi |l e command character is not Qfor Quit do
exam ne command char act er
'C set current nunber to zero
fini shed
S ask for a nunber,
read nunber,
do addition
fini shed
ask for a nunber,
read nunber,
do subtraction
finished
P! ask for a nunber,
read nunber,
do nultiplication,
fini shed
A ask for a nunber,
read nunber,
do di vi si on,
fini shed

di splay result
pronpt for another command,
read command char act er

The preliminary design phase for a program like this is finished when you've Detailed design
developed amodel of the various processing steps that must be performed.

Y ou must then consider what data you need and how the data variables are to be
stored. Later, you have to go through the processing steps again, making your
descriptions even more detailed.

Only three different items of data are needed: Data

* "the current displayed value" — thiswill be a double number;
* "the command character"— a character,

and

« another double number used when entering data.

These belong to the main program:
int main()

doubl e di spl ayed_val ue;
doubl e new entry;

182 Selection

char conmand_char act er;

Thewhile loop We can temporarily ignore the switch statement that processes the commands
and concentrate solely on the while loop structure. The loop isto terminate when a
'Q' command has been entered. So, we can code up the loop control:

whi | e (conmand_character '="'Q) {
/* switch stuff to go here */

/* get next command entered. */

cout << "Value : " << displayed_val ue << endl;
cout << "command>";

cin >> command_character;

}

The loop continues while the command character isNOT ' Q . Obviously we had
better read another command character each time we go round the loop. We have to
start the loop with some command character already specified.

Part of the setup code prompts for thisinitial command:

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

int main()
doubl e di spl ayed_val ue;
doubl e new entry;
char command_char acter;

di spl ayed_val ue = 0.0;

cout << "Calcul ator deno progranmt << endl
<< "ot << endl;

cout << "Enter a conmmand character at the '>' pronpt"
<< endl ;

cout << "Value : " << displayed_val ue << endl;
cout << "command>";
cin >> command_char acter;
whil e (command_character '="Q) {
/* Switch statenent to go here */

cout << "Value : " << displayed_val ue << endl;
cout << "command>";
cin >> command_char acter;

return O;

}

The code outlined works even if the user immediately enters the "Quit" command!

Pattern for a loop The pattern
processing input data

Desk calculator example 183

e setup code reads initial datavalue
« whileloop set to terminate when specific data value entered

e nextinput valueisread at the end of the body of the loop

isvery common. You will find similar while loops in many programs. _
Selection of the appropriate processing for each of the different commands can Switch statement
obviously be done with a switch statement:

swi tch (command_character) {

Each of the processing options is independent. We don't want to share any code
between them. So, each of the options will be in the form

case ...
stat enent s
br eak;

The case of a'Q' (quit command) is handled by the loop control statement. The
switch only has to deal with:

'C' clear command, set current value to zero;

'+' addition, ask for input and do the addition;

' subtraction, ask for input and do the subtraction;

"' multiplication, ask for input and do the multiplication;

‘" division, ask for input and do the division.

Each of these cases has to be distinguished by an integer constant and the switch
statement itself must test an integer value.

Fortunately, the C and C++ languages consider characters like 'C', '+' etc to be
integers (because they are internally represented as small integer values). So the
characters can be used directly inthe switch() { } statement and for caselabels.

swi t ch(command_character) {

case 'C:
di spl ayed_val ue = 0.0;
br eak;
case '+':
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue += new entry;
br eak;
case '-':

cout << "nunber>";

184

Selection

Removing invalid
charactersfrom the
input

cin >> new entry;
di spl ayed_val ue -= new entry;

br eak;

case '*':
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue *= new entry;
br eak;

case '/':
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue /= new entry;
br eak;

}

The code for the individual casesis straightforward. The clear case simply sets
the displayed value to zero. Each of the arithmetic operatorsis coded similarly —a
prompt for a number, input of the number, data combination.

Suppose the user enters something inappropriate — e.g. an ‘M' command (some
calculators have memories and 'M', memorize, and 'R’ recall keys and a user might
assume similar functionality). Such incorrect inputs should produce some form of
error message response. This can be handled by a "default” clause in the switch
statement.

defaul t:
cout << "D dn't understand input!";

If the user has does something wrong, it is quite likely that there will be other
characters that have been typed ahead (e.g. the user might have typed "Hello", in
which case the 'H' is read and recognized as invalid input — but the '€, 'I', 'I' and the
‘0" al remain to be read).

When something has gone wrong it is often useful to be able to clear out any
unread input. Theci n abject can betold to do this. The usual way istotell ci nto
ignore all characters until it finds something obvious like a newline character. This
is done using the request ci n. i gnore(...). The request has to specify the
sensible marker character (e.g. "\ n' for newline) and, also, a maximum number of
charactersto ignore; e.g.

cin.ignore(100,'\n");

This request gets "cin" to ignore up to 100 characters while it searches for a
newling; that should be enough to skip over any invalid input.

With the default statement to report any errors (and clean up the input), the
complete switch statement becomes:

swi t ch(command_character) {
case 'C:
di spl ayed_val ue = 0. 0;
br eak;
case '+ :
cout << "nunber>";

Desk calculator example 185

cin >> new entry;
di spl ayed_val ue += new entry;
br eak;
case '-':
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue -= new entry;
br eak;
case '*':
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue *= new entry;
br eak;
case '/’
cout << "nunber>";
cin >> new entry;
di spl ayed_val ue /= new entry;
br eak;
defaul t:
cout << "Didn't understand input!";
cin.ignore(100,'\n");
}

Since there aren't any more cases after the def aul t statement, it isn't necessary to
pair the def aul t with abr eak (it can't "fall through" to next caseif there is no next
case) But, you probably should put a br eak in anyway. You might come along
later and add another case at the bottom of the switch and forget to put the br eak
in.

8.3 IF

Switch statements can handle most selection tasks. But, they are not always
convenient.
Y ou can use a switch to select whether a data value should be processed:

/1 Update count of students who's assignnent narks
/1 and exam nation marks both exceed 25
swi tch((exam mark > 25) && (assignment_nark > 25)) {
case 1:
good_st udent ++;
br eak;
case O:
/1 Yuk, ignore them
br eak;

}

The code works OK, but it feels clumsy.

What about counting the numbers of students who get different grades? We
would need a loop that read the total course marks obtained by each individua
student and used this value to update the correctly selected counter. There would

186 Selection

be counters for students who had failed (mark < 50), got Ds (mark < 65), Cs (<75),
Bs(<85) and As. The main program structure would be something like:

int main()

int ACount =0, BGCunt =0, CCount =0,
D Count = 0, F Count = O;

int mark;

cin >> nark;

while(mark >= 0) {
code to select and update appropriate counter
cin>> nark; // read next, data termnated by -1

I/ print counts

}

How could the selection be made?
WEell, you could use a swi t ch statement. But it would be pretty hideous:

swi tch(nmark) {

case O:
case 1.
case 2:
case 49:
F_Count ++;
br eak;
case 50:
case 51:
case 64:
D _Count ++;
br eak;
br eak;
case 85:
case 86:
case 100:
A Count ++;
br eak;
}

Obvioudly, there has to be a better way.
if The alternative selection constructs use the if ...and if ... else
statements. A simple i f statement has the following form:

i f (bool ean expr essi on)
st at erent ;

Example:

If 187

if((exammark > 25) &% (assignment_mark > 25))
good_st udent ++;

Often, an i f will control execution of a compound statement rather than a
simple statement. Sometimes, even if you only require a simple statement it is
better to put in the { begin bracket and } end bracket:

if((exammark > 25) && (assignment_mark > 25)) {
good_st udent ++;

}
Thismakesit easier if later you need to add extra statements —

if((exammark > 25) && (assignment_mark > 25)) {

cout << "*":
good_st udent ++;
}

(also, some debuggers won't let you stop on a simple statement controlled by an i f
but will let you stop in a compound statement). Note, you don't put a semicolon
after the } end bracket of the compound statement; thei f clause ends with the
semicolon after a simple statement or with the } end bracket of a compound
Statement.

The if ... else .. control statement allows you to select between two if ... else
alternative processing actions:

i f (bool ean expressi on)
st at enent ;
el se
st at enent ;

Example:

if(gender _tag == "'F)
f emal es++;

el se
nal es++;

Y ou can concatenate i f ... el se control statements when you need to makea if ... elseif
sel ection between more than two alternatives: s

i f (mark<50) {
F_Count ++,
cout << "another one bites the dust" << endl;
}

el se

i f (mark<65)

D _Count ++,
el se

i f (mark<75)
C_Count ++;

el se

... elseif

188 Selection

i f (nmark<85)
B Count ++;
el se {
A Count ++;
cout << "FFExx << endl

}

You have to end with an el se clause. The statements controlled by different i f
clauses can be either simple statements or compound statements as required.
Nested ifsand related You need to be careful when you want to perform some complex test that
problems - genends on more than one condition. The following code is OK:

i f(mark<50) {
F_Count ++;
if((exammark == 0) && (assi gnnment_count < 2))
cout << "Check for cancelled enrollment" << endl;
}

el se
i f (mar k<65)

D Count ++;
el se

Here the { and } brackets around the compound statement make it clear that the
check for cancelled enrollments is something that is done only when considering
marks less than 50.

The { } bracketsin that code fragment were necessary because the nmar k<50
condition controlled several statements. Suppose there was no need to keep a count
of students who scored less than half marks, the code would then be:

i f (mark<50) {
if((exammark == 0) && (assignnent_count < 2))
cout << "Check for cancelled enrollment" << endl;
}

el se
i f (nmar k<65)

Some beginners might be tempted to removethe { } bracketsfrom the mar k<50
condition; the argument might be that since there is only one statement "you don't
need a compound statement construction”. The code would then become:

Buggy code! i f (mar k<50)
if((exammark == 0) && (assignment_count < 2))
cout << "Check for cancelled enrollnment" << endl;

el se
i f (nmar k<65)

Now, you have a bug.
Anif statement can exist on its own, without any el se clause. So, when a

compiler has finished processing an i f statement, it gets ready to deal with any
kind of subsequent statement assignment, function call, loop, switch, If the

If 189

compiler encounters the keyword el se it has to go back through the code that it
thought that it had dealt with to see whether the preceding statement wasani f that
it could use to hang this el se onto. Anel se clause gets attached to an
immediately preceding i f clause. So the compiler'sreading of the buggy codeis:

i f(mark<50)
if((exammark == 0) && (assignnment_count < 2))
cout << "Check for cancelled enrollnent" << endl;

el se
i f(mar k<65)

D _Count ++,
el se

This code doesn't perform the required data processing steps. What happens now is
that students whose marks are greater than or equal to 50 don't get processed — the
first conditional test eliminates them. A warning message is printed for students
who didn't sit the exam and did at most one assignment. The count D_Count is
incremented for al other students who had scored less than 50, after all they did
score less than 65 which is what the next test checks.

It is possible for the editor in a development environment to rearrange the layout
of code so that the indentation correctly reflects the logic of any ifs and elses. Such
editors reduce your chance of making the kind of error just illustrated. Most
editors don't provide this level of support; it is expected that you have some idea of
what you are doing.

Another legal thing that you shouldn't do is use the comma sequencing operator
inan if:

/1 If book is overdue, disable borrow ng and
/'l increase fines by $3.50
i f(Overdue(book _return_date))

can_borrow = 0, fine += 3.50;

Sure thisislegal, it just confuses about 75% of those who read it.

Abbreviations again: the conditional expression

Y ou might expect this by now — the C and C++ languages have lots of abbreviated
forms that save typing, one of these abbreviated forms exist for the i f statement.
Often, you want code like:

/1 1f Self Enployed then deduction is 10%of entry in box 15
/1 else deduction is $450.
i f(Employ_Status =="'S")
deduction = 0. 1*b15;
el se
deduction = 450.0

or

190

Selection

Caution —watch out

/1 1f new tenperature exceeds naxi num
/!l recorded, update the maxi mum
if(tenperature > naxi num

maxi num = t enper at ur e;

or

[/ print label "male" or "fenale" as appropriate
if(gender_tag == 'f')
cout << "Fenal e :
el se
cout << "Ml e R

All can be rewritten using a conditional expression.
This hasthe form

(bool ean expression) ? result_if_true : result_if_false

The conditional expression has three parts. The first part defines the condition that
isto be tested. A question mark separates this from the second part that specifies
the result of the whole conditional expression for the case when the condition
evaluates to true. A colon separates this from the third part where you get the
result for cases where the condition is false.

Using this conditional expression, the code examples shown above may be
written as follows:

// 1f Self Employed then deduction is 10%of entry in box 15
/1 else deduction is $450.
deduction = (Enploy_Status =='S) ?

0. 1*b15 :

450. 0;

maxi num = (tenperature > naximun) ?
tenperature

nmaxi mum
cout << ((gender_tag == 'f') ? "Fenale : " : "Male : ");
Note: remember to use == as the equality test operator and not the =

for typosrelated 10 oo anment operator! The following islegal code:

cout << ((gender_tag = 'f') ? "Fenale : " : "Male : ");

but it changes the value of gender _t ag, then confirms that the new value is non
zero and prints"Femal e @ ",

Terminating a program 191

8.4 TERMINATING A PROGRAM

Sometimes, you just have to stop. Theinput is junk; your program can do no more.
It just hasto end.

The easy way out isto use afunction defined in stdlib. This function, exit (),
takes an integer argument. When called, the exi t () function terminates the
program. It tries to clean up, if you were using files these should get closed. The
integer givento exi t () gets passed back as the return status from the program
(likethe O or EXI T_SUCCESS value returned by the main program). A typical IDE
will simply discard this return value. It is used in scripting environments, like
Unix, where the return result of a program can be used to determine what other
processing steps should follow. The normal error exit value is 1; other values can
be used to distinguish among different kinds of error.

Several of the later examples use callsto exit () asan easy way to terminate a
program if the data given are found to be invalid. For example, the square root
program (7.2.2) could check the input data as follows:

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>

int main()

const doubl e SMALLFRACTION = 1. OE-§;

doubl e x;
doubl e r;
cout << "Enter nunber : "
cin > x;
if(x <=0.0) {
cout << "W only serve Positive nunbers here."
<< endl ;
exit(1);

8.5 EXAMPLE PROGRAMS

8.5.1 Calculating some simple statistics

Problem:

Y ou have a collection of dataitems; each dataitem consists of a (real) number and

acharacter (m or f). These data represent the heights in centimetres of some school
children. Example data:

140.5 f
148 m
137.5 m
133 f

exit() function

192

Selection

Watch out for the
fine print

"sentindl" data

129.5 m
156 f

Y ou have to calculate the average height, and standard deviation in height, for the
entire set of children and, also, calculate these statistics separately for the boys and
thegirls.

Specification:

1. Theprogram isto read height and gender values from ci n. The data can be
assumed to be correct; there is no need to check for erroneous data (such as
gender tags other than 'f' or 'm' or a height outside of a 1 to 2 metre range).

The data set will include records for at least three boys and at least three girls;
averages and standard deviations will be defined (i.e. no need to check for zero
counts).

2. Theinput isto be terminated by a"sentinel” data record with aheight 0 and an
arbitrary m or f gender value.

3. When the terminating sentinel data record is read, the program should print the
following details: total number of children, average height, standard deviation
in height, number of girls, average height of girls, standard deviation of height
of girls, number of boys, average height of boys, standard deviation of height
of boys.

Note that this specification excludes some potential problems.

Suppose the specification did not mention that there would be a minimum
number of boys and girlsin the data set?

It would become your responsibility to realize that there then was a potential
difficulty. If all the children in the sample were boys, you would get to the end of
program with:;

nunber_girls 0
sumgirls_heights 0.0

and would need to work out
average girl _height = sumgirls_heights / nunber _girls;

Execution of this statement when nunber _girls was zero would cause your
program to be terminated with arithmetic overflow. You would have to plan for
more elaborate processing with i f statements "guarding” the various output
sections so that these were only executed when the data were appropriate.

Remember, program specifications are often drawn up by teams including
lawyers. Whenever you are dealing with lawyers, you should watch out for nasty
details hidden in the fine print.

The specification states that input will be terminated by a "sentinel" data record
(dictionary: sentinel — 1) soldier etc posted to keep guard, 2) Indian-Ocean crab

Example: calculating some simple statistics 193

with long eye-stalks; this use of sentinel derives from meaning 1). A sentinel data
record is one whose value is easily recognized as special, not a normal valid data
value; the sentinel record "guards' the end of input stopping you from falling over
trying to read data that aren't there. Use of a sentinel data record is one common
way of identifying when input is to stop; some alternatives are discussed in Chapter
9 where we use files of data.

Program design

First, it is necessary to check the formulae for calculating averages (means) and
standard deviations!

Means are easy. You simply add up all the data values as you read them in and
then divide by the number of datavalues. In this case we will get something like:

aver age_hei ght = sum hei ghts / nunber_children;

The standard deviation is alittle trickier. Most people know (or at least once knew
but may have long forgotten) the following formula for the standard deviation for a
set of values xi.

2

DI

STVTNTT

S standard deviation

N number of samples

X samplei

X average vaue of samples

i.e. to work out the standard deviation you sum the squares of the differences
between sample values and the average, divide this sum by N-1 and take the square
root.

The trouble with that formulais that you need to know the average. It suggests
that you have to work out the value in atwo step process. First, you read and store
all the data values, accumulating their total as you read them in, and working out
their average when all are read. Then in a second pass you use your stored data
values to calculated individual differences, summing the squares of these
differences etc.

Fortunately, there is an alternative version of the formula for the standard
deviation that lets you calculate its value without having to store all the individual
data elements.

Preliminary design

194

Selection

This formula requires that as well as accumulating a sum of the data values (for
calculating the average), we need to accumulate a sum of the squares of the data
values. Once al the data values have been read, we can first work out the average
and then use this second formulato get the standard deviation.

Firstiteration If we are to use this second formula, the program structure is roughly:

through design

process initialize count to zero, sumof values to zero

and sum of squares to zero
read in the first data el enent (height and gender flag)
while height # 0

i ncrement count

add height to sum

add square of height to sumof squares

read next data el ement

cal cul ate average by dividing sumby nunber
use second formula to cal cul ate standard deviation

Of course, we are going to need three counts, three sums, three sums of squares
because we need to keep totals and individual gender specific values. We also
need to elaborate the code inside the loop so that in addition to updating overall
counts we selectively update the individual gender specific counts.

Second iteration We can now begin to identify the variables that we will need:

through design
prcl)Dc%s three integers children, boys, girls
ata t hree doubl es cSum bSum gSum
t hree doubl es cSuntg, bSunBg, gSuntq
doubl e hei ght
char gender _tag
doubl e aver age
doubl e standar d_dev

The averages and standard deviations can be calculated and immediately printed
out; so we can reuse the same variables for each of the required outputs.
Loop code The code of the loop will include the selective updates:

while height # 0
i ncrement count
add height to sum
add square of height to sumof squares
i f(fenale)
update girls count, girls sum girls sunfq
el se
updat e boys count, boys sum boys sunBq
read next data el ement

and the output section needs elaboration:

Output code cal cul ate overall average by dividing cSumby children
use second fornula to cal cul ate standard devi ation
using values for total data set

Example: calculating some simple statistics 195

Qut put details for all children

calculate girls'

average by dividing gSumby girls
use second formula to cal cul ate standard devi ati on

using values for girls data set

Qutput details for girls

..simlarly for boys

Some simple data would be needed to test the program. The averages will be easy
to check; most spreadsheet packages include "standard deviation" among their
standard functions, so use of a spreadsheet would be one way to check the other

results if hand calculations proved too tiresome.

Implementation

Given afairly detailed design, implementation should again be straightforward.
The program needs the standard sqrt () function so the math library should be

included.

#i ncl ude <i ostream h>

#i ncl ude <mat h. h>

int main()
t
int
doubl e
doubl e

doubl e
char

children, boys, girls;
cSum bSum gSum
cSunBg, bSunsg, gSuntg;

hei ght ;
gender _t ag;

children = boys = girls = 0;
cSum = bSum = gSum = 0. 0;
cSunsq = bSunBq = gSunsq = 0.0;

cin >> hei ght >> gender _tag;

while(height '=0.0) {

chi | dren++;

cSum += hei ght ;

cSunBg += hei ght *hei ght ;

if(gender_tag == 'f') {

el se {

girls++;
gSum += hei ght ;
gSunBg += hei ght *hei ght ;

boys++;
bSum += hei ght ;

Conditional updates
of separate counters

196

Selection

Variables declared in
the body of the block

Expression passed as
argument for
function call

Test run

bSunsq += hei ght *hei ght ;

}
cin >> height >> gender _t ag;
}
doubl e aver age;
doubl e standard_dev;

cout << "The sanpl e included " << children
<< " children" << endl;

average = cSum/ children;

cout << "The average height of the childrenis "
<< aver age;

standard_dev = sqgrt(
(cSungq - chil dren*aver age*average) /
(children-1));

cout << "cm with a standard deviation of " <<
standard_dev << endl;

cout << "The sanple included " << girls
<< " girls" << endl;

average = gSum/ girls;
cout << "The average height of the girls is
<< aver age;

standard_dev = sqrt(
(gSuntq - girl s*average*average) /
(girls-1));

return O;

}

Note, in this case the variablesaver age and st andar d_dev were not defined at the
start of mai n()'s block; instead their definitions come after the loop at the point
where these variables are first used. This is typical of most C++ programs.
However, you should note that some people feel quite strongly that all variable
declarations should occur at the beginning of ablock. You will need to adjust your
coding style to meet the circumstances.

Function sqrt () hasto be given a double value for the number whose root is
needed. Thecall to sqgrt() caninvolve any expression that yields a double as a
result. The calls in the example use the expression corresponding to the formula
given above to define the standard deviation.

When run on the following input data:

135 f
140 m
139 f

Example: calculating some simple statistics 197

151.5 f
133
148
144
146
142
144
0

3337733

The program produced the following output (verified using a common spreadsheet
program):

The sanpl e i ncluded 10 children

The average height of the children is 142.25cm with a
standard devi ation of 5.702095

The sanpl e included 5 girls

The average height of the girls is 143.1cm wth a standard
devi ation of 6.367888

The sanpl e included 5 boys

The average height of the boys is 141.4cm with a standard
devi ati on of 5.549775

The standard deviations are printed with just a few too many digits. Heights
measured to the nearest half centimetre, standard deviations quoted down to about
Angstrom units! The number of digits used was determined simply by the default
settings defined in the iostream library. Since we know that these digits are
spurious, we really should suppress them.

There are a variety of ways of controlling the layout, or "format", of output if
the defaults are inappropriate. They work, but they aren't wildly convenient. Most
modern programs display their results using graphics displays; their output
operations usually involve first generating a sequence of characters (held in some
temporary storage space in memory) then displaying them starting at some fixed
point on the screen. Formatting controls for sending nice tabular output to line
printers etc are just a bit passe.

Here we want to fix the precision used to print the numbers. The easiest way is
to make use of an extension to the standard i ost r eamlibrary. The library file
i omani p contains a number of extensions to standard iostream. Here, we can use
set preci sion(). If youwant to specify the number of digits after the decimal
point you can include set pr eci si on() inyour output statements:

cout << setprecision(2) << val ue;

This would limit the output to two fraction digits so you would get numbers like
12.25 rather than 12.249852. If your number was too large to fit, e.g. 35214.27, it
will get printed in "scientific" format i.e. as 3.52e4.

Once you'vetold cout what precision to use, that is what it will use from that
point on. This can be inconvenient. While we might want only one fraction digit
for the standard deviations, we need more for the averages (if we set
set preci si on(1), the an average like 152.643 may get printed as 1.5e2). Once
you've started specifying precisions, you are committed. Y ou are going to have to
do it everywhere. You will need code like:

Dubioustrailing
digits!

Formatting

iomanip

precisionisa
" sticky" format
setting

198

Selection

cout << "The average height of the childrenis "
<< setprecision(3) << average;

standard_dev = sqgrt(
(cSuntq - chil dren*aver age*average) /
(children-1));

cout << "cm with a standard deviation of " <<
setprecision(1l) << standard_dev << endl;

cout << "The sanple included " << girls <<
" girls" << endl; // integer, no precision

(Youmust #i ncl ude <i omani p. h> if you want to useset pr eci si on().) Onthe
whole, it is best not to bother about these fiddly formats unless you really must.

8.5.2 Newton's method for roots of polynomials
Problem:

Y ou have to find the root of a polynomial; that is given some function of x, like
13.5*x4 - 59*x3- 28*x2 + 16.5*x + 30, you must find the values of x for which this
isO.

The method is similar to that used earlier to find sguare roots. You keep
guessing, in a systematic controlled way, until you are happy that you are close
enough to a root. Figure 8.1 illustrates the basis for a method of guessing
systematically. You have to be given two values of x that bracket (lie on either
side of) a root; for one ("posX") the polynomial has positive value, the value is
negative for the other ("negX"). Your next guess for x should be mid-way between
the two existing guesses.

If the value of the polynomial is positive for the new x value, you use this x
value to replace the previous posX, otherwise it replaces the previous negX. You
then repeat the process, again guessing halfway between the updated posX, negX
pair. If the given starting values did bracket a single root, then each successive
guess should bring you alittle closer.

Specification:

1. Theprogramisto find aroot of the polynomial 13.5*x4 - 59*x3- 28*x2 +
16.5*x + 30.

2. Theprogram isto take as input guesses for two values of x that supposedly
bracket aroot.

Finding roots of polynomials 199

Next guess
between existing
guesses

Given starting guesses
bracketing a root

Figure 8.1 Principles of root finding!

3. Theprogram isto verify that the polynomial does have values of opposite sign
for the given x values. If the polynomia has the same sign at the two given
values (no root, or a pair of roots, existing between these values) the program
isto print awarning message and then stop.

4. Theprogram isto use the approach of guessing a new value mid way between
the two bracketing values, using the guessed value to replace one of the
previous values so that it always has a pair of guesses on either side of the root.

5. The program isto print the current estimate for the root at each cycle of the
iterative process.

6. Theloop isto terminate when the guess is sufficiently close to aroot; this
should be taken as meaning the value for the polynomial at the guessed x is
less than 0.00001.

Program design

A first iteration through the design process gives a structure something like the Preliminary design
following:

pronpt for and read in guesses for the two bracketing x
val ues

calculate the values of the function at these two xs

if signs of function are sane
print warni ng message
exit

initialize neg with x value for which polynomal was -ve

200

Selection

Detailed design

initialize posX with x value for which pol ynom al was +ve

pi ck an x m dway between posX and negX
eval uate pol ynomal at x

whi |l e val ue of polynom al exceeds limt
print current guess and pol ynom al val ue
if value of polynonmial is negative
repl ace negX by | atest guess
el se repl ace posX by | atest guess
set x mdway between updated posX, negX pair
eval uate pol ynomal at x

print final guess

The data? Rather a large number of simple variables this time. From the
preliminary design outline, we can identify the following:

posX, negX the bracketing val ues

gl, 02 the initial guesses for bracketing val ues
X the current guess for the root

funl, fun2 the values of the polynomal at gl and g2
fun3 the value of the polynonial at x

al of these would be doubles and belong to the main routine.

How to evaluate the polynomial ?

Really, we want afunction to do thisl After al, the polynomial is"afunction of
x". But since we can't yet define our own functions we will have to have the code
written out at each point that we need it. Exercise 2 in Chapter 7 presented some
alternative ways of evaluating polynomial functions. Here, we will use the crudest
method! The value of the polynomial for a specific value of x is given by the
expression:

13. 5*pow(x, 4) - 59*pow(x, 3) - 28*pow(x,2) + 16.5*x + 30

What is the simplest way of checking whether funl and fun2 have the same
sign?

Y ou don't need a complex boolean expression like:

(((funl < 0.0) && (fun2 < 0.0)) ||
((funl > 0.0) & (fun2 > 0.)))

All you have to do is multiply the two values; their product will be positive if both
were positive or both were negative.

Implementation

The implementation is again straightforward. The code would be;

Finding roots of polynomials 201

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <mat h. h>

int main()

{
doubl e posX, negX;
doubl e funl, fun2, fun3;

cout << "Enter guesses that bracket a root" << endl;

doubl e g1, g2;

cin >> g1,

cin >> g2;

doubl e x = g1;

funl = 13.5*pow(x, 4) - 59*pow(X, 3)- 28*pow X, 2)
+ 16. 5*x + 30;

X = g2

fun2 = 13. 5*pow(x, 4) - 59*pow(X, 3)- 28*pow X, 2)
+ 16. 5*x + 30;

if((funl*fun2) > 0.0) {
cout << "Those val ues don't appear to bracket a"
" root" << endl;
exit(1);

}
negX = (funl < 0.0) ? g1 : 02;
posX = (funl > 0.0) ? g1 : g2;

x = 0.5*(negX + posX);
fun3 = 13.5*pow(x, 4) - 59*pow X, 3)- 28*pow(X, 2)
+ 16. 5*x + 30;
whi | e(fabs(fun3) > 0.00001) {
cout << x << ", " << fun3 << endl;
if(fun3 < 0.0) negX = x;
el se posX = x;
x = 0.5*(negX + posX);
fun3 = 13. 5*pow(x, 4) - 59*pow(x, 3)- 28*pow X, 2)
+ 16.5*x + 30;
}

cout << "M final guess for root
cout << X << endl ;

<< endl ;

return BEXI T_SUGCCESS;
}

Convince yourself that the code does initialize posX and negX correctly from the
guessesgl and g2 withits statements:

negX = (funl < 0.0) ? gl : g2;
posX = (funl > 0.0) ? gl : 02;

202

Selection

I nitialize minima and
maxima with actual
data

8.6 WHAT IS THE LARGEST? WHAT IS THE
SMALLEST?

In example 8.5.1, the statistics that had to be calculated were just mean values and
standard deviations. Most such problems also require identification of minimum
and maximum values.

Suppose we needed to find the heights of the smallest and tallest of the children.
The program doesn't require much extension to provide these statistics. We haveto
define a couple more variables, and add some code in the loop to update their
values:

int main()
i nt children, boys, girls;
doubl e cSum bSum gSum
doubl e cSuntg, bSunBg, gSunbg;
doubl e hei ght ;
char gender _t ag;
doubl e smal l est, tallest;

children = boys = girls = 0;

cin >> hei ght >> gender _tag;

whi l e(height '= 0.0) {
chi | dren++;
cSum += hei ght;
cSunBg += hei ght *hei ght ;

smal |l est = (height < snallest) ?
hei ght :
smal | est ;

tallest = (height > tallest) ?
hei ght :
tallest;

Of course, weneed snal | est and tall est tohavesomeinitial values. The
initial valueof tal | est would have to be less than (or equal) to the (unknown)
height of the tallest child, that way it will get changed to the correct value when the
data record with the maximum height isread. Similarly, smal | est should initially
be greater than or equal to the height of the smallest child.

How should you chose the initial values?

Generally when searching for minimum and maximum values in some set of
data, the best approach is to use the first data value to initialize both the minimum
and maximum values:

cin >> height >> gender_t ag;

Extreme values in data 203

smallest = tallest = height;

while(height '=0.0) {
chi | dren++;

This initialization guarantees that initial values are in appropriate ranges.

It would have been a little harder it we had needed the heights of the smallest
boy and of the smallest girl. These can't both be initialized from the first data
value. The first value might represent a small boy, smaller than any of the girls but
not the smallest of the boys; if his height was used to initialize the minimum height
for girls then this value would never be corrected.

If you can't just use the first data value, then use a constant that you "know" to
be appropriate. The problem specification indicated that the children were in the
height range from 1 metre to 2 metres; so we have suitable constants:

/] Children should be taller than 100 cm
/1 and |l ess than 200 cm

const double LowLimt = 100;

const double HLimt = 200;

smallest = HLimt;
tallest = LowLimt;

cin >> hei ght >> gender_tag;
whi | e(height !'=0.0) {

Note: smal | est getsinitialized with Hi Li mi t (it isto start greater than or equal
to smallest value and Hi Li mi t should be safely greater than the minimum);
similarly tal | est getsinitialized with LowLi mi t .

Y ou don't have to define the named constants; you could simply have:

smal | est = 100;
tall est = 200;

but, as noted previously, such "magic numbers' in the code are confusing and often
cause problems when you need to change their values. (Y ou might discover that
some of the children were aspiring basket ball players; your 200 limit might then be
insufficient).

In this example, the specification for the problem provided appropriate values
that could be used to initialize the minimum and maximum variables. Usually, this
is not the case. The specification will simply say something like "read in the
integer data values and find the maximum from among those that ...". What data
values? What range? What is a plausible maximum?

Very often beginners guess.

They guess badly. One keeps seeing code like the following:

m n_val
max_val

10000;
0;

Initialize from
constants
representing extreme
values

Don't go guessing
limits

204

Selection

Limits.h

Unsigned values

cin >> val >> code_char;
whi | e(code_char '="q") {
mn_val = (val <mn_val) ? val : nin_val;

Who said that 10000 was large? Who said that the numbers were positive? Don't
guess. If you don't know the range of valuesin your data, initialize the "maximum"
with the least (most negative) value that your computer can use; similarly, initialize
the "minimum" with the greatest (largest positive) value that your computer can
use.

The system's values for the maximum and minimum numbers are defined in the
header file limits.h. This can be #included at the start of your program. It will
contain definitions (as #defines or const data definitions) for a number of limit
values. The following tableis part of the contents of alimits.h file. SHRT_MAX is
the largest "short integer" value, LONG_MAX is the largest (long) integer and
LONG M N (despite appearances) is the most negative possible number (-
2147483648). If you don't have any better limit values, use these for initialization.

#define SHRT_ M N (~32767)

#def i ne SHRT_MAX 32767

#def i ne USHRT_MAX OxFFFF
#define LONG M N (~2147483647L)
#def i ne LONG_MAX 2147483647L
#def i ne ULONG VAX OX FFFFFFFFL

Once again, things aren't quite standardized. On many systems but not all, the
limits header file also defines limiting values for doubles (the largest, the smallest
non-zero value etc).

The list given above included limit values for "unsigned shorts" and "unsigned
longs'. Normally, one-bit of the data field used by an integer is used in effect for
the + sign; so, 16-bits can hold at most a 15-hit value (numbers in range -32768 to
+32767). If you know that you only need positive integers, then you can reclaim
the "sign bit" and use all 16 bits for the value (giving you arange 0...65535).

Unsigned integers aren't often used for arithmetic. They are more often used
when the bit pattern isn't representing a number — it is a bit pattern where specific
bits are used to encode the true/false state of separate data values. Use of bit
patterns in this way economises on storage (you can fit the values of 16 different
boolean variables in a single unsigned short integer). Operations on such bit
patterns are illustrated in Chapter X.

The definitions for the "M N" values are actually using bit operations. That
character in front of the digitsisn't aminus sign; it is ~ ("tilde") — the bitwise not
operator. Why the odd bit operations? All will be explained in due time!

EXERCISES

Loops and selection statements provide considerable computational power. However, the
range of programs that we can write is still limited. The limitation is now due mainly to a

Exercises 205

lack of adequate data structures. We have no mechanism yet for storing data. All we can do
is have a loop that reads in successive simple data values, like the children's heights, and
processes each data element individually combining values to produce statistics etc. Such
programs tend to be most useful when you have large numbers of simple data values from
which you want statistics (e.g. heights for all year 7 children in your state); but large
amounts of data require file input. There are just afew exercises here; one or two at the end
of Chapter 9 are rather similar but they use file input.

1. Implement aworking version of the Calculator program and test its operation.

2. Extend the calculator to include a separate memory. Command 'm' copies the contents
of the display into the memory, 'M' adds the contents of the display to memory; similar
command 'r' and 'R’ recall the memory value into the display (or add it to the display).

3. Write aprogram that "balances transactions on a bank account” and produces a financial
summary.

The program is to prompt for and read in theinitial value for the funds in the account. It
isthen to loop prompting for and reading transactions.
Transactions are entered as a number and a character, e.g.

128.35
79.50
10.60
66.67

9.80

213.50
84.30
66.67

o = — = c

— =k —

The character codes are:

debits (expenditures):

utilities (electricity, gas, phone)
food

rent

clothing

entertainment

transport

work related

miscellaneous

IJs~"00 = ~c

credits (income)

j job
p parents
| loan

Credit entries should increase available funds, debit entries decrease the funds.
Entry of the value O (zero) is to terminate the loop (the transaction code with a 0 entry
will be arbitrary).

206

Simple use of files

When the loop has finished, the program is to print the final value for the funds in the
account. It isalso to print details giving the total amounts spent in each of the possible
expenditure categories and also giving these values percentages of the total spending.
The program should check that the transaction amounts are all greater than zero and that
the transaction codes are from the set given. Data that don't comply with these
requirements are to be discarded after a warning message has been printed; the program
isto continue prompting for and processing subseguent data entires.

Extend the childrens' heights program to find the heights of the smallest boy and the
smallest girl in the data set.

Modify the heights program so that it can deal correctly with data sets that are empty (no
children) or have children who all are of the same gender. The modified program
should print appropriate outputs in all cases (e.g. "There were no girls in the data
given").

Write a program to find a root(for polynomial of a given maximum degree 4, i.e. a
function of theform c4 x4 + ¢3 x3 + ¢2 x2 + ¢c1 x + cO for arbitrary values
of the coefficients c4, ¢3, c2, c1, and c0.

The formulafor evaluating the polynomial at agiven value of x is

va = (((c4* x + c3)*x + c2)*x + c1)*x + c0

The program is to prompt for and read the values of the coefficients.

The program should then prompt for a starting x value, an increment, and afinal x value
and should tabulate the value the polynomial at each successive x value in the range.

This should give the user an idea of where the roots might be located.

Finally, the program should prompt for two x values that will bracket a root and is to
find the root (if any) between these given values.

