
4 

The Plessey System 250 

4.1 Introduction 

The second attempt to build a capability-based hardware 
addressing system was made by the Plessey Corporation in the 
United Kingdom. Plessey’s System 250 [England 72a, England 
741, examined in this chapter, was not only the first operational 
capability hardware system but also the first capability system 
sold commercially. 

Initially the Plessey 250 was not designed as a capability 
system. Maurice Wilkes of the University of Cambridge had 
learned about capabilities during several visits to the Univer- 
sity of Chicago and had included a capability description in his 
book on timesharing systems [Wilkes 681. Wilkes sent a draft 
of his book to Plessey’s Jack Cotton who incorporated capabil- 
ity concepts into the System 250. Because of the strong resem- 
blance between the System 250 and the Chicago effort, Bob 
Fabry (who had worked on the Chicago Magic Number Ma- 
chine) later acted as a consultant for Plessey. 

Unlike the systems examined thus far, the Plessey 250 was 
not intended to be a general-purpose timeshared computer. 
Instead, it was designed as a highly reliable, real-time control- 
ler for a new generation of computerized telephone switching 
systems [Cosserat 72, Halton 721. The reliability goal was very 
stringent: mean time between failures of 50 years [Hamer- 
Hodges 721. Meeting this goal required that the system be eas- 
ily configured, tested, and modified while operating in the 
field. Service improvements or performance upgrades would 
have to be performed while the system was operational. Such 65 



The Plessey System 
250 needs led to a multiprocessing design that allowed connection 

of many processors and memories, as well as traditional and 
specialized I/O devices. 

Although capabilities were used primarily for memory ad- 
dressing and protection in the Plessey 250, the designers 
viewed the capability mechanism as a means of restricting the 
effects of faulty hardware and software components. Fault iso- 
lation was a major concern in a multiprocessing environment 
where several processors had access to a shared memory. One 
faulty processor could potentially damage another processor’s 
computation. Capability addressing facilitated sharing among 
processors, while also restricting each processor’s domain to 
the segments for which it possessed capabilities. The Plessey 
250’s designers also found that capabilities were useful in 
structuring the operating system [England 72b, Cosserat 741. 
Layering and data abstraction were important aspects of the 
Plessey operating system design. 

4.2 System Overview 

The multiprocessing architecture of the Plessey 250 allows 
connection of up to eight processors with up to eight storage 
modules through separate per-processor data paths. Each stor- 
age module consists of up to 64K 24-bit words. Multiprocess- 
ing is symmetric, and any processor can perform any function 
if another processing component fails. Peripherals are con- 
nected and controlled through interfaces that allow the ad- 
dressing of devices as memory. That is, device registers can be 
read and written by standard LOAD and STORE instructions, and 
no special I/O instructions are needed. 

The Plessey 250’s hardware and operating system support a 
segmented memory space. A segment can contain capabilities 
or data, but not both. The system has a general register archi- 
tecture with eight 24-bit data registers (DO-D7) and eight 4% 
bit capability registers (CO-C7). To access data in a memory 
segment, a program must load one of the capability registers 
with a capability for that segment. Programs can freely copy 
capabilities between capability segments and capability regis- 
terk using standard hardware instructions. 

66 

4.3 Capability Addressing 

A Plessey 250 capability permits its possessor to access an 
object in the system, where an object is a logical or physical 
resource. The most basic object is a memory segment, and 



4.3 Capability 
hardware instructions can operate directly on segments Addressing 

through segment capabilities. Capabilities can be stored in ca- 
pability segments or capability registers, as noted above. For 
each program, one of its capability registers (C6 by convention) 
points to a Central Capability Block for the program. The Cen- 
tral Capability Block is a capability segment that is the root of a 
network of program-accessible segments. The closure of this 
network completely defines the program’s execution domain, 

A capability in the Plessey 250 has two formats, depending 
on whether it is stored in a capability segment or a capability 
register, as shown in Figure 4-1. When stored in a 4%bit capa- 
bility register, a capability contains three fields: 

l A base address, which contains the primary memory location 
of the segment. (The high-order bits specify the storage mod- 
ule or interface, and the low order bits specify the storage 
element within the module or interface.) 

l A limit, indicating the size of the segment. 
l An access rights field, specifying the type of operations per- 

mitted on the segment by the owner of the capability. (The 
six unary-encoded access rights are: execute, write data, read 
data, enter capability, write capability, read capability.) 

This 4%bit capability format, which includes a memory ad- 
dress and limit, is used only when capabilities are loaded into 
capability registers. When stored in a capability segment, a 
capability is 24 bits and contains only the access rights field 
and an index into a central system data structure, the System 
Capability Table (SCT). Each processor has an internal register 
that contains the address of the SCT. The SCT, which corre- 
sponds to the CAL-TSS Master Object Table, holds the base 
and limit information for all memory segments. In this way, 

8 16 

Rights SCT index Capability 

Base address Capabiiity 

Rights Limit 
register 

Figure 4-1: Plessey System 250 Capability Formats 67 



The Plessey System 
250 physical addressing information is centralized and relocation of 

segments is simplified. There is one SCT entry for each object 
in the system. Because access rights for an object are stored in 
the capabilities, different processes can possess capabilities 
permitting different access rights to the same segment. 

A program executes a LOAD CAPABILITY instruction to trans- 
fer a capability from a capability segment to a capability regis- 
ter. Figure 4-2 shows how the capability register is formed. 
The hardware first examines the SCT index in the specified 
capability in memory. This index selects the SCT entry for the 
segment, which is three words in size and contains a 24-bit 
checksum and some special flag bits in addition to the base and 
length fields. The 4%bit capability register is then constructed 
from the rights field in the capability and the base and limit 
information found in the selected SCT entry. The capability 
segment from which the capability is loaded must itself be ad- 
dressed by a capability register, as shown in the top left portion 
of Figure 4-2. 

When a program loads a capability register, the SCT index 
from the loaded capability is saved in a process-local data struc- 
ture called the Process Dump Stack. The dump stack is a two- 
part process data structure containing fmed space for copies of 
data and capability registers, and a stack used to save informa- 
tion on procedure invocations. When a program executes a 
STORE CAPABILITY instruction to move a capability from a regis- 
ter to a capability segment, the saved SCT index is used, along 
with the rights field in the register, to construct the capability 

68 Figure 4-2: Plessey System 250 Capability Loading 

Processor 
SCT register -r’ 

Process Capabiiity 
Segment 

1 
System Capabiiity 

Jab/e 



4.5 Inform and 
in memory. The Process Dump Stack is thus used to hold the Outform Capabilities 

SCT index for each capability stored in the eight capability 
registers. 

Because the SCT is shared by all of the processors, the relo- 
cation of a segment or the modification of any SCT entry must 
be synchronized. If several processors try simultaneously to 
modify a single SCT entry, the entry could be placed in an 
inconsistent state. In order to prevent this, the Plessey 250 has 
a facility to trap programs accessing a particular entry. Thus, a 
processor updating an SCT entry can prohibit other processors 
from using the entry until the modification is complete. 

4.4 Capability Register Usage 

Of the eight general-purpose capability registers, several 
have reserved uses. The first five capability registers, CO-C4, 
can be freely used by the program to address any memory 
segments to which the program has access. Register C5 points 
to a data structure used to store dynamically allocated elements 
associated with the current process execution. C6, as has been 
mentioned, contains a pointer to the process’s Central Capabil- 
ity Block. This block defines all of the instruction, data, and 
capability segments associated with the current process. Regis- 
ter C7 contains a capability for the currently executing code 
segment. 

In addition to the eight program-accessible capability regis- 
ters, each processor has five special-purpose capability regis- 
ters. These registers hold capabilities that address the follow- 
ing segments: 

l The Process Dump Stack that contains backup register val- 
ues. 

l The System Capability Table that contains base/limit values 
for all storage segments in memory. 

l The Start-up Block used for restarting the system after fail- 
ures. 

l The System Interrupt Word that indicates what devices need 
attention. 

* The Normal Interrupt Block that contains device interrupt 
information. 

4.5 Inform and Outform Capabilities 

The Plessey 250 operating system provides a virtual seg- 
ment interface to programs; that is, a program can address its 
segments independent of whether they are located in primary 69 



The Plessey System 
250 

70 

or secondary memory. Secondary storage is totally transparent 
to the program. The operating system determines which seg- 
ments are held in primary memory and which are held on disk 
storage. When a program attempts to access a segment that is 
not in primary memory, a trap occurs and the operating system 
then loads the segment from disk. 

Each segment has an associated disk address that is assigned 
when the segment is created. A segment’s disk address is used 
as its unique identifier, because two segments cannot have the 
same disk address. When a program creates a new segment, 
the operating system assigns the secondary storage address for 
the segment, allocates an SCT entry for the segment, and re- 
turns a capability for the segment to the program. The operat- 
ing system initializes the SCT entry to indicate that no primary 
memory has been allocated. When the program first attempts 
to reference the segment, a trap occurs and the operating sys- 
tem allocates primary memory and stores the memory address 
in the SCT entry. 

Because all segments on the Plessey 250 are potentially 
long-lived, the SCT could grow to enormous size if it had to 
address every segment in existence. To constrain the size of the 
SCT and maintain high memory utilization, the Plessey operat- 
ing system allows SCT entries to be reallocated. At different 
points in its lifetime, an object may be addressed by different 
SCT entries. If a segment has not been referenced for a long 
period of time, the segment can be moved to secondary mem- 
ory (an operation known as pa&~&n), and its SCT entry can 
be used to address a newly created segment. Later, if the passi- 
vated segment is needed, it can be returned to primary mem- 
ory and an SCT entry (most likely a different one) is allocated. 

Reallocation of SCT entries is complicated by the fact that 
capabilities in memory contain SCT indices. If a segment’s 
SCT entry is reallocated while capabilities for that segment are 
still in use, those capabilities would erroneously address a 
different segment. Thus, an object’s SCT entry cannot be 
changed as long as capabilities that address the object are in 
memory. 

To allow SCT entries to be reallocated, the Plessey operat- 
ing system uses a different format for capabilities that are 
stored on disk. Capabilities in primary memory are known as 
inform or active capabilities; these capabilities contain an SCT 
index. Capabilities in secondary memory are known as outform 
or passive capabilities; each of these capabilities contains a 
unique identifier, which is the object’s disk address. When a 



4.6 Instructions and 
capability segment is moved from primary to secondary mem- Addressing 

ory (or the reverse), the operating system changes the form of 
all the capabilities in that segment. 

By changing capabilities from inform to outform, the oper- 
ating system reduces the number of active references to the 
SCT. When a segment is passivated, its SCT entry is retained 
as long as active capabilities exist for that segment. If a seg- 
ment stays passive for a long time, it is likely that the capabili- 
ties for that segment will eventually be passivated also, allow- 
ing the SCT entry to be reused. A special operating system 
process, called the garbage collector, periodically searches the 
capabilities in primary and secondary memory. The garbage 
collection process will cause an SCT entry to be deallocated if 
no active capabilities exist for that entry or will cause an object 
to be deleted if no capabilities exist at all for that object. 

4.6 Instructions and Addressing 

A Plessey 250 instruction occupies a 24-bit word and is rep- 
resented in one of two formats, as shown in Figure 4-3. The 
first bit of the instruction selects the instruction mode. Store 
mode instructions are used to access storage locations. The in- 
struction specifies a capability register addressing the segmenr, 
a 9-bit offset into the segment, and an optional index register 

1 5 3 3 3 9 

0 F D M C A Store Mode 

1 5 3 3 12 

1 F D M L Direct Mode 

F Function (operation code). 

D Data register. 

M Data register to be used as address modifier (index). 

C Capability register. 

A Address offset. 

L Signed literal (if L= 0 then M defines the second register of a 
two-register instruction). 

Figure 4-3: System 250 Instruction Formats 71 



The Plessey System 
250 

72 

modifier. The primary memory address for the operation is 
calculated by adding the base address contained in the capabil- 
ity register to the sum of the 9-bit literal and the index register 
contents. This address is validated using the limit field in the 
capability; the type of access requested is verified against the 
capability access rights field. Direct mode instructions do not 
require memory access and are used for loading a 12-bit literal 
or for register-to-register operations. 

4.7 Protected Procedure Calls 

The Plessey 250 System, unlike most traditional computers, 
has no privileged mode of operation. The operating system 
relies only on the protected procedure mechanism for its pro- 
tection. This mechanism is available to any process and allows 
a process to add to the facilities supplied by the standard oper- 
ating system. 

A protected subsystem is built by creating a Central Capa- 
bility Block in which the subsystem will execute. The Central 
Capability Block serves the same function for the subsystem as 
for any process: it contains capabilities for code, data, and ca- 
pability segments available to the executing process. Some of 
the capabilities in the Central Capability Block are execute ca- 
pabilities for the procedures that implement subsystem serv- 
ices. To make these procedures accessible, the subsystem 
passes an enter capability for its Central Capability Block to 
appropriate users. The possessors of the enter capability can 
call any of the procedures defined by execute capabilities in the 
block, but cannot access capabilities in the block. 

To call a protected procedure, a process executes a CALL 
instruction, specifying an enter capability for a Central Capa- 
bility Block and an offset in that block. The offset must locate 
an execute capability for a procedure to be called. The CALL 
instruction saves the instruction pointer and registers C6 and 
C7 (defining the Central Capability Block and Current Code 
Block) on the Process Dump Stack. Register C6 is then loaded 
with a capability for the Central Capability Block specified in 
the call; the C6 capability is given read access, permitting the 
called procedure access to any of the objects addressed by the 
central block. Register C7 is loaded with the capability for 
the instruction segment containing the procedure specified in 
the call. 

Thus, the called procedure executes in its own domain as 
defined by its Central Capability Block. It is protected from 



the caller, and the caller is protected from the procedure. A 
. 4.8 Operating System 

Resource Management 

RETURN instruction restores the process to the previous domain 
by restoring the state of C6, C7, and the program counter from 
the stack. 

4.8 Operating System Resource Management 

The Plessey 250 operating system is constructed as a set of 
protected subsystems that manage various types of resources. A 
segment is one type of resource that users can create and ma- 
nipulate through capabilities. Other logical resources, such as 
files and interprocess communication ports, are also accessed 
by capabilities. Unlike segment capabilities, which are oper- 
ated on by hardware instructions, logical resource capabilities 
are enter capabilities that allow the user to request services for 
the resource. 

The resources supported by the Plessey 250 operating sys- 
tem are: 

l storage segment 
l process 
l user 
l job 
l text file 
l symbol directory 
l data stream 
l synchronizing flag 

The last resource type listed, the synchronizing flag, is used 
both for interprocess communication and for synchronization. 
Processes that share capabilities for a flag can send messages to 
the flag or wait for message reception. At any point, a flag can 
have either a message queue or a queue of processes waiting for 
new messages. Processes can also wait on multiple flags for one 
of several events to be posted. 

Users gain access to operating system services through a 
Central Facilities Block that contains enter capabilities for sys- 
tem resource allocation routines. Using these routines the 
caller can create any of the supported system resources. The 
creation routine returns an entry capability for the resource 
that can be used to manipulate it. 

The actual representation of a resource is defined by the 
Central Capability Block pointed to by the enter capability re- 
turned to the user. The Central Capability Block contains exe- 
cute capabilities for procedures that manipulate the resource. 73 



The Plessey System 
250 

, 
Centrai Capabiiity 
Block for Resource 

Figure 4-4: Protected Procedure Resource Subsystem 

It also holds capabilities for segments that contain data struc- 
tures describing the state of the resource. For example, Figure 
4-4 shows a Central Capability Block created for a single file 
object. The Central Capability Block contains capabilities for 
file procedures and capabilities for file data segments. Note 
that a separate Central Capability Block will exist for each re- 
source (e.g., file) in the system; however, all resources of the 
same type will share the same code segments. 

74 

4.9 Input and Output 

The use of capabilities in the Plessey 250 I/O system is simi- 
lar to capability usage in storage accesses. Input/output de- 
vices are controlled by special device registers that exist in the 
physical address space. To access device registers, a process 
must have a capability for that memory space. For each device, 
one device driver process possesses capabilities for the device 
registers. This process can execute on any processor and still 
perform its I/O functions. 

Any processor must be able to handle device initiation and 
completion. Because of this requirement, standard interrupts 
are abandoned in favor of a polling scheme using shared mem- 
ory. Approximately every 100 microseconds, each processor 
examines certain I/O status words that are addressed through 
two of the five special capability registers (the System Inter- 
rupt Word and Normal Interrupt Block). The contents of these 
locations indicate whether or not any action needs to be taken 
and on behalf of what device. Other processors must be locked 
while the examination is made. 



4.10 Discussion 

Several facts make the Plessey System 250 an important 
computer system: 

1. It is the first functioning computer to use capability address- 
ing. 

2. It is the first capability-based computer produced by a com- 
mercial manufacturer. 

3. It is designed to meet critical real-time performance and reli- 
ability needs. 

4. It applies capabilities to a multiprocessor environment. 

The Plessey 250 is similar to both the Chicago Magic Number 
Machine and the CAL-TSS system. The use of capability reg- 
isters as user-loadable segment/base registers is borrowed from 
the Chicago project, while its addressing resembles the CAL- 
TSS mechanism. When combined, these features result in a 
capability design with the following attributes: 

1. When stored in user segments, capabilities do not contain 
physical addresses, but instead contain an index into a cen- 
tral mapping table. 

2. Capabilities can be stored on disk and are converted to a 
different form when copied to disk. 

3. A segment is represented by a unique identifier, which al- 
lows conversion between inform and outform capabilities. 

Because capabilities in primary memory do not contain 
physical mapping information, they are small and can be com- 
pactly stored. Only when a capability is loaded into a register 
is it expanded to full 4%bit form. The disk address and disk 
number for a segment provide a unique name for the segment. 
Capabilities stored on disk contain a unique name, while capa- 
bilities stored in primary memory contain a table index. 
Plessey addressing differs from the CAL-TSS scheme, in 
which both the capability and the Master Object Table entries 
contain a segment’s unique identifier. 

Primary memory addresses are only stored in the SCT and 
in the capability registers of executing processes. When an exe- 
cuting process is pre-empted, its capability registers are not 
saved. The Process Dump Stack contains the SCT index and 
access rights for each capability register, from which the regis- 
ter can be regenerated when the process is activated. There- 
fore, to relocate a memory segment, the operating system need 
only search the System Capability Table and the current proc- 
ess capability registers for any active segment addresses. 

4.10 Discussion 

75 



The Plessey System 
250 The decision to handle virtual segments and provide a 

mechanism for storing capabilities on disk greatly simplified 
the design task and avoided many problems encountered in the 
CAL-TSS system. The system does not need special naming 
mechanisms for short-term objects that have second-rate sta- 
tus. All objects are potentially long-lived. Allowing long-lived 
objects makes garbage collection a necessity, and the Plessey 
system has a background process responsible for deallocating 
storage for segments with no remaining capabilities to address 
them. 

The Plessey 250 uses capabilities to simplify multiprocess- 
ing. All processors in the system share a single primary mem- 
ory space. A single table shared by all processors, the System 
Capability Table, contains primary memory addresses for all 
segments. Because a process’s address space is defined by capa- 
bilities that refer indirectly to this table, a process can address 
its segments from any processor. No special action is required 
on the part of a processor to initialize a process’s memory envi- 
ronment . 

Capabilities also aid software error detection. Each process 
possesses capabilities for only those segments absolutely 
needed for its function. A process cannot address data outside 
of its domain; therefore, any errors are limited to that domain. 
Errors are frequently caught by the addressing mechanism, 
either as illegal accesses or segment length violations. 

A new concern created by capability addressing is the main- 
tenance of capability integrity. On a standard virtual memory 
system, for example, a l-bit error in the transmission of a 
process virtual address is not likely to affect data outside the 
scope of the process. An error in the transmission of a capabil- 
ity, however, can affect any process in the system. Thus, all 
hardware involved in holding or transferring capabilities must 
be error-checked carefully. 

76 

The Plessey System 250 combines hardware and software 
support to provide a uniform view of system resources. All 
resources are addressed by capabilities; hardware executes op- 
erations directly on segment resources while software executes 
operations on other resources. From a program’s point of view, 
all resources are addressed and manipulated in the same way. 
In the Plessey resource model, each resource in the system is 
represented by a Central Capability Block and addressed by an 
entry capability. The Central Capability Block defines the data 
segments that contain the state of the resource and the proce- 
dures that can manipulate the resource. Procedures are shared 
among all instances of objects of the same type. The entry 



4.11 For Further 
capability to a resource’s capability segment permits calling of Reading 

the resource manipulation procedures, but prohibits direct 
access to the resource data segments. 

Because the operating system is implemented as a collection 
of resources and protected procedures, it is relatively easy to 
extend the operating system in a uniform manner. New pro- 
tected procedures can be created and addressed through the 
System Capability Table. Such procedures can make new types 
of resources available to programs. 

As implemented, the Plessey 250 protected procedure call 
has one weakness. Although a protected procedure call causes 
a domain change, the called procedure still has access to any 
capabilities left in registers CO through C4 by the caller. Like- 
wise, the capabilities left in these registers by the called proce- 
dure when it returns are available to the caller, presenting a 
potential security violation. The tradeoff is one of perform- 
ance, because the registers are an efficient mechanism for pass- 
ing parameters between a calling and called procedure. Proce- 
dures concerned with information leakage can explicitly clear 
these registers; however, that is an unusual burden to place on 
the caller of a procedure. 

Finally, the Plessey 250 system integrates capability usage 
into the I/O system in a consistent manner. This is possible 
because of the memory-like nature of the I/O interface and 
because of the requirement for processor-independent I/O. 
However, since I/O devices are forced to be slaves, their power 
is limited and additional strain is placed on the processors 
using them. 

The Plessey System 250 was not meant to be a general- 
purpose multi-user computer system but, rather, was intended 
for a very specific product area. The targeting of the product to 
a limited role probably provided the key to any success the 
System 250 has had-its simplicity. The Plessey 250 uses a 
small number of simple mechanisms to provide for protection 
from and isolation of failure. The Plessey System 250 is still in 
use today in military communications systems in the United 
Kingdom. 

4.11 For Further Reading 

The principal descriptions of the Plessey System 250’s hard- 
ware and software are provided by [England 72b, England 741 
and [Cosserat 741. Several papers on Plessey 250 can be found 

-h T_he_Proceedings of the International Conference on Computer 
Communications, October 1972, and in The Proceedings of the 
International Switching Symposium, June 1972. 77 






