Name: _____

1. Derive the minimum SOP expression from the Karnaugh map below. Be sure to show all steps.

AB 0 1	Blue 2x2 Rectangle	Red 2x1 Rectangle	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B C	A B C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	$\begin{array}{cccc}1&1&1\\1&0&1\end{array}$	
10 1 1	$\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$	1 0 1	
+	1 0 1		

Since the only term that stays constant for the 2x2 blue rectangle is B = 0, then the product for that rectangle is simply \overline{B} . In the second rectangle, the red one, the terms that remain constant across all cells are A = 1 and C = 1. Therefore, the product for that rectangle is $A \cdot C$. This gives us the minimum SOP expression:

$$\overline{B} + A \cdot C$$

2. Derive the minimum SOP expression from the Karnaugh map below. Be sure to show all steps.

$AB \xrightarrow{00 01 11 10}$	Blue 2x2 Rectangle	Green 1x2 Rectangle	Red 2x1 Rectangle
	A B C D	A B C D	A B C D
01 0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1
11 0 0 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0	1 0 1 1
10 1 1 1 0	1 0 0 1		

Both A and D have values of 1 and 0 across the cells of the blue rectangle. Therefore, B and C are the terms that will be used to generate the product for the blue rectangle. Since both of them are a constant 0, both need to be inverted giving us $\overline{B} \cdot \overline{C}$. In the green rectangle, C takes on both values of 0 and 1 leaving A, B, and D as the constant terms across all the cells. Once again, all three are equal to the constant 0, therefore all three must be inverted giving us $\overline{A} \cdot \overline{B} \cdot \overline{D}$. The red rectangle has B dropping out leaving A, C, and D as constant 1's. This produces the product $A \cdot C \cdot D$. These three terms give us the minimum SOP expression:

$$\overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{D} + A \cdot C \cdot D$$