Name: \qquad

1. Derive the minimum SOP expression from the Karnaugh map below. Be sure to show all steps.

Blue 2x2 Rectangle

A	B	C
0	0	0
0	0	1
1	0	0
1	0	1

Red 2x1 Rectangle

Since the only term that stays constant for the 2×2 blue rectangle is $B=0$, then the product for that rectangle is simply \bar{B}. In the second rectangle, the red one, the terms that remain constant across all cells are $\mathrm{A}=1$ and $\mathrm{C}=1$. Therefore, the product for that rectangle is $A \cdot C$. This gives us the minimum SOP expression:

$$
\bar{B}+A \cdot C
$$

2. Derive the minimum SOP expression from the Karnaugh map below. Be sure to show all steps.

Both A and D have values of 1 and 0 across the cells of the blue rectangle. Therefore, B and C are the terms that will be used to generate the product for the blue rectangle. Since both of them are a constant 0 , both need to be inverted giving us $\bar{B} \cdot \bar{C}$. In the green rectangle, C takes on both values of 0 and 1 leaving A, B, and D as the constant terms across all the cells. Once again, all three are equal to the constant 0 , therefore all three must be inverted giving us $\bar{A} \cdot \bar{B} \cdot \bar{D}$. The red rectangle has B dropping out leaving A, C, and D as constant 1's. This produces the product $A \cdot C \cdot D$. These three terms give us the minimum SOP expression:

$$
\bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot \bar{D}+A \cdot C \cdot D
$$

