
CSCI 4717 – Computer Architecture Project 1: Two-Stage Instuction Decoder

Due: Monday, September 21, 2006 at 11:59 PM
What to submit: You will be submitting a text file containing two C functions, fetchNextInstruction()
and executeInstruction(). Submit your project using the digital dropbox on Blackboard. The steps below
should help you if you have never used this feature of Blackboard before:

1. Begin by clicking on "Tools" and selecting "Digital Dropbox".
2. In the window that appears, click on the "Send file" button to send your C sourcecode file to me.
3. In some cases, a scrollbox will appear under the heading "Select Users". If this happens, highlight my

name from the list.
4. Be sure to name your file decoder _username where your z-account name is substituted for the word

"username".
5. Use the "Browse" button to retrieve your file from the hard drive.
6. Click "Submit" to send me the file.

By using the "Add file" button, you will not be submitting your work to me, only uploading it to your
account on Blackboard. I am sorry, but I will have to consider it late if you do not actually send me the
file. I will try to notify you when I receive your file.

Introduction
This assignment is to design a simple processor based on the simplified 2-step instruction cycle shown in
Figure 3.3 of our textbook. You will be creating two functions in software, one to simulate the fetch next
instruction cycle, fetchNextInstruction(), and one to simulate the execute instruction cycle,
executeInstruction(). Neither of these functions will have parameters nor will they return values. They
will operation on global data meant to simulate the registers and memory of the processor.

This simulated machine consists of four registers that will be represented in your software with four
global variables.

• PC -- Program counter (16 bit) used to hold the address of the next instruction to execute. It is
initialized to zero.

• IR -- Instruction register (8 bit) used to hold the current instruction being executed
• MAR -- Memory Address Register (16 bit) used to hold an address being used as a pointer, i.e., an

indirect reference to data in memory
• ACC -- Accumulator (8 bit) used to operate on data

Memory will be simulated with an array memory[65536].

The function fetchNextInstruction() will perform the following steps:

• Use the program counter (PC) as an index to retrieve an instruction from the array memory[].
• Store the retrieved instruction to the instruction register (IR).
• Determine from the instruction how much to increment PC so that it points to the next instruction

in memory[] and perform the increment.

The function executeInstruction() will examine IR to determine which operation to perform and it will
perform it on the data contained in the registers and in the array memory[].

CSCI 4717 Project 1 Page 2

Instruction (Opcode) Set
The following is a break down of the opcodes of the simple machine for which you are designing a
simulator. The data (operands) for each instruction will follow the opcode immediately in memory. It is
important to note that when using a16-bit operand (data or memory address), the byte immediately
following the opcode is the most significant byte of the address and the byte following that is the least
significant. This is referred to as "Big Endian".

The opcode for this machine will always be 8 bits. This means that the size of an instruction along with
its data could be 1 byte (an opcode that doesn't need an operand), 2 bytes (an opcode that uses 8-bit
immediate data, i.e., a constant), or 3 bytes (an opcode that uses an address as its operand or 16-bit
immediate data).

Mathematical Operations:
If the most significant bit of the opcode is 1, then the opcode represents a mathematical function. The
opcode may be followed by 0, 1, or 2 bytes of operands.

* -- The constant is passed to the processor as an 8- or 16-bit operand following the opcode
** -- The memory address is passed to the processor as a 16-bit operand following the opcode

1

Source:
00 – Indirect (MAR used as pointer)
01 – Accumulator ACC
10 – Constant*
11 – Memory** Destination:

00 – Indirect (MAR used as a pointer)
01 – Accumulator ACC
10 – Address register MAR
11 – Memory**

Function:
000 – AND
001 – OR
010 – XOR
011 – ADD
100 – SUB
101 – INC
110 – DEC
111 – NOT

OPCODE

OPCODE IMMED. DATA

8 bits

16 bits

OPCODE DATA (MSB)
24 bits

DATA (LSB)

OPCODE ADDRESS (MSB)
24 bits

ADDRESS (LSB)

CSCI 4717 Project 1 Page 3

Memory Operations:
If the most significant four bits are 0000, then the opcode represents a memory or data transfer operation.
When the “Method” bit is equal to 00, the opcode is followed by a 16-bit operand that serves as the
memory address. When the “Method” bit is equal to 01, the opcode is followed by an operand that serves
as a constant (8 bits for ACC and 16 bits for MAR). Otherwise, the value contained in index register
MAR is used as the memory address.

Branches/Jumps:
If the most significant five bits are 00010, then the opcode represents an unconditional or conditional
branch or jump. The opcode is always followed by a 16-bit operand that serves as the memory address.

Special Opcodes:

There are two additional opcodes included in the instruction set that represent special operations not
included in the list above. None of the special opcodes require operands.

• 000110002 – NOP (No operation. fetchNextInstruction() should simply increment PC by one to
the next instruction)

• 000110012 – Halt (Stops processor)

0

Register:
0 – Accumulator ACC
1 – Index register MAR

Function:
0 – Store (STOR)
1 – Load (LOAD)

0

Method:
00 – Operand is used as address
01 – Operand is used as a constant
10 – Indirect (MAR used as pointer)

0 0

0

Type of branch:
000 – BRA (Unconditional branch/branch always)
001 – BRZ (Branch if ACC = 0)
010 – BNE (Branch if ACC != 0)
011 – BLT (Branch if ACC < 0)
100 – BLE (Branch if ACC < 0)
101 – BGT (Branch if ACC > 0)
110 – BGE (Branch if ACC > 0)

0 0 1 0

CSCI 4717 Project 1 Page 4
Sample Framework
The code below represents a basic framework for the simulator. It includes the prototypes for
fetchNextInstruction() and executeInstruction() along with the global definitions for each of the machine's
registers. Note that the numeric types char and int differ across different platforms, so be sure to perform
a bit-wise AND after every mathematical operation to clear the unused bits, i.e., AND ACC with 0xff and
MAR with 0xffff to clear upper bits. The loop below continuously calls fetchNextInstruction() and
executeInstruction() until the PC register points at a HALT instruction.

#define HALT_OPCODE 0x19

void fetchNextInstruction(void);
void executeInstruction(void);

unsigned char memory[65536];
unsigned char ACC=0;
unsigned char IR=0;
unsigned int MAR=0;
unsigned int PC=0;

int _tmain(int argc, _TCHAR* argv[])
{

// Execution loop. Continue fetching and executing
// until PC points to a HALT instruction
 while(memory[PC]!=HALT_OPCODE)
 {
 fetchNextInstruction();
 executeInstruction();
 }
 return 0;
}

Sample Machine Code
You may want to test your code too. (It'd be nice to see if it worked, right?) You should be able to
quickly create assembly language routines that you can compile into machine language to run on your
simulator. Okay, so the instruction set is not that robust, but there are some things you can do.

For example, the code below adds the values stored in memory locations 0x1000, 0x1001, and 0x1002,
takes the two's complement, and stores the result in 0x1003.

LOAD ACC, [0x1000]
ADD ACC, [0x1001]
ADD ACC, [0x1002]
XOR ACC, 0xff
INC ACC
STOR ACC, [0x1003]
HALT

LOAD ACC, [0x1000] and therefore, the most significant four bits are 00002. The function is a load, so
the next bit is 1. ACC is what is being loaded, so the sixth bit is a 0. The operand is a 16-bit address, so
the method is 00. This gives us the opcode and operand for the first instruction: 0x08, 0x10, 0x00.

CSCI 4717 Project 1 Page 5
The next instruction, ADD ACC, [0x1001], is a mathematical operation so the most significant bit is a 1.
It is an ADD function, so the next three bits are 011. The destination is ACC, so 01 follows. The source
is a memory address which is identified by 11. This makes the opcode and operand for the next
instruction 0xb7 0x10 0x01. The following instruction, ADD ACC, [0x1002], is the same except for the
memory address. This gives us the opcode and operand for the third instruction: 0xb7 0x10 0x02.

There is no instruction to do a 2's complement, so we need to flip the bits and add one. We flip the bits
doing a bitwise XOR with all 1's. This too is a math function, so the instruction opcode begins with 1.
XOR is 010. The destination is ACC which is 01. The source is a constant, 10. This gives us the
following opcode and operand: 0xa6 0xff. The increment doesn't require an operand, so the source is
ignored (I'd just set it to 00). This gives us an opcode 0xd4.

Finally, use the data transfer command STOR to store the result at 0x1003. The operand and opcode
0x00 0x10 0x03. This gives us the initialization values for memory starting at address 0.

memory[0] = 0x08;
memory[1] = 0x10;
memory[2] = 0x00;
memory[3] = 0xb7;
memory[4] = 0x10;
memory[5] = 0x01;
memory[6] = 0xb7;
memory[7] = 0x10;
memory[8] = 0x02;
memory[9] = 0xa6;
memory[10] = 0xff;
memory[11] = 0xd4;
memory[12] = 0x00;
memory[13] = 0x10;
memory[14] = 0x03;
memory[15] = 0x19;

Questions
As part of your project, answer the following questions. You may discuss the concepts with others in the
class, but each of you must submit your answers in your own words.

1. What opcode will blank memory initialized to 0x00 look like to the processor?
2. Of the 256 possible opcodes we can get from and 8-bit opcode, how many are not being used in

our instruction set, i.e., how many instructions could we add for future expansions of our
processor?

3. What would we need to add to our simulator to be able to include the following instructions:
compare ACC with a constant, PUSH to or PULL from the stack, and take the 2's complement of
ACC?

4. If executeInstruction() were divided into two parts, decode and execute, what additional global
resources would be needed for your simulator?

5. Make suggestions for ways to further subdivide the executeInstrucion() function.

