CSCI 1900 Discrete Structures

Conditional Statements

Reading: Kolman, Section 2.2

CSCI 1900 - Discrete Structures

Conditional Statements - Page 1

Conditional Statement/Implication

- "if *p* then *q*"
- Denoted $p \Rightarrow q$
 - p is called the antecedent or hypothesis
 - q is called the consequent or conclusion
- Example:
 - p: I am hungry
 - g: I will eat
 - p: It is snowing
 - q: 3+5 = 8

CSCI 1900 - Discrete Structures

Conditional Statements - Page 2

Conditional Statement/Implication (continued)

- In English, we would assume a causeand-effect relationship, i.e., the fact that p is true would force q to be true.
- If "it is snowing," then "3+5=8" is meaningless in this regard since p has no effect at all on q
- At this point it may be easiest to view the operator "

 " as a logic operationsimilar to AND or OR (conjunction or disjunction).

CSCI 1900 - Discrete Structures

Conditional Statements - Page 3

Truth Table Representing Implication

- If viewed as a logic operation, p ⇒ q can only be evaluated as false if p is true and q is false
- This does not say that p causes q
- Truth table

p	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

CSCI 1900 - Discrete Structures

Conditional Statements - Page 4

Examples where $p \Rightarrow q$ is viewed as a logic operation

- If p is false, then any q supports p ⇒ q is true.
 - False \Rightarrow True = True
 - False \Rightarrow False = True
- If "2+2=5" then "I am the king of England" is true

CSCI 1900 - Discrete Structures

Conditional Statements - Page 5

Converse and contrapositive

- The converse of p ⇒ q is the implication that q ⇒ p
- The contrapositive of p ⇒ q is the implication that ~q ⇒ ~p

CSCI 1900 - Discrete Structures

Conditional Statements - Page 6

Converse and Contrapositive Example

Example: What is the converse and contrapositive of p: "it is raining" and q: I get wet?

- Implication: If it is raining, then I get wet.
- Converse: If I get wet, then it is raining.
- Contrapositive: If I do not get wet, then it is not raining.

CSCI 1900 - Discrete Structures

Conditional Statements - Page 7

Equivalence or biconditional

- If p and q are statements, the compound statement p if and only if q is called an equivalence or biconditional
- Denoted $p \Leftrightarrow q$

CSCI 1900 - Discrete Structures

Conditional Statements - Page 8

Equivalence Truth table

 The only time that the expression can evaluate as true is if both statements, p and q, are true or both are false

p	Q	p⇔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	T

CSCI 1900 - Discrete Structures

Conditional Statements - Page 9

Proof of the Contrapositive

Compute the truth table of the statement $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$

p	q	$p \Rightarrow q$	~q	~p	~q ⇒~p	$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$
T	Т	T	F	F	Т	T
T	F	F	T	F	F	T
F	T	Т	F	Т	Т	T
F	F	Т	T	Т	Т	T

CSCI 1900 - Discrete Structures

Conditional Statements – Page 10

Tautology and Contradiction

- A statement that is true for all of its propositional variables is called a tautology. (The previous truth table was a tautology.)
- A statement that is false for all of its propositional variables is called a contradiction or an absurdity

CSCI 1900 - Discrete Structures

Conditional Statements - Page 11

Contingency

- A statement that can be either true or false depending on its propositional variables is called a *contingency*
- Examples
 - $-(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a tautology
 - $-p \land \sim p$ is an absurdity
 - $-(p \Rightarrow q) \land \sim p$ is a contingency since some cases evaluate to true and some to false.

CSCI 1900 - Discrete Structures

Conditional Statements - Page 12

Contingency Example

The statement (p \Rightarrow q) \land (p \lor q) is a contingency

p	q	$p \mathop{\Rightarrow} q$	$p \lor q$	$(p \Longrightarrow q) \land (p \lor q)$
T	Т	T	Т	T
T	F	F	Т	F
F	T	T	Т	T
F	F	T	F	F

CSCI 1900 - Discrete Structures

Conditional Statements - Page 13

Logically equivalent

- Two propositions are logically equivalent or simply equivalent if p ⇔ q is a tautology.
- Denoted p = q

CSCI 1900 - Discrete Structures

CSCI 1900 - Discrete Structures

Conditional Statements - Page 14

Conditional Statements - Page 16

Example of Logical Equivalence

Columns 5 and 8 are equivalent, and therefore, p "if and only if" \boldsymbol{q}

p	q	r	$q \wedge r$	p ∨ (q∧r)	$p \vee q$	$p \vee r$	$(p \lor q) \land$ $(p \lor r)$	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
T	T	T	T	T	T	T	T	T
T	T	F	F	Т	T	T	T	T
T	F	T	F	T	T	T	T	Т
T	F	F	F	Т	T	T	T	T
F	T	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F	T
F	F	T	F	F	F	T	F	Т
F	F	F	F	F	F	F	F	Т

CSCI 1900 – Discrete Structures

Conditional Statements - Page 15

Additional Properties $(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$ $p \quad q \mid (p \Rightarrow q) \mid \neg q \mid \neg p \mid (\neg q \Rightarrow \neg p) \mid (p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ T T F F F T T F F T F T T F T T T T T T CSCI 1900 - Discrete Structures Conditional Statements - Page 17