CSCI 1900
Discrete Structures

Integers
Reading: Kolman, Section 1.4
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Divisibility

If one integer, n, divides into a second
integer, m, without producing a remainder,
then we say that “n divides m”.

Denoted n | m

If one integer, n, does not divide evenly
into a second integer, m, i.e., m=n
produces a remainder, then we say that “n
does not divide m”

Denoted nfm
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Some Properties of Divisibility

 If n| m, then there exists a g such that m = gxn
» The absolute values of both g and n are less than
the absolute value of m, i.e., |n| <|m| and |g| < |m|
* Examples:
4] 24: 24 = 4x6 and both 4 and 6 are less than 24.
5 135: 135 = 5x27 and both 5 and 27 are less than 135
» Simple properties of divisibility (proofs on page 21)
—Ifalbanda|c,thenal(b+c)
—Ifalbanda|c,whereb>c,thena|(b-c)
—Ifalbora]|c,thena]bc
—Ifalbandb|c,thenalc
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Prime Numbers

« A number p is called prime if the only
positive integers that divide p are p and 1.

» Examples of prime numbers: 2, 3, 5, 7, 11,
and 13.

» There is a science to determining prime
numbers. The following slides present
some computer algorithms that can be
used to determine if a number n>1 is
prime.
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Basic Primer Number Algorithm

1. First, check if n=2. Ifitis, nis prime.
Otherwise, proceed to step 2.

2. Check to see if each integer k is a divisor
of n where 1<k<(n-1). If none of the
values of k are divisors of n, then n is
prime
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Better Prime Number Algorithm

Note that if n=mk, then either m or k is less
than Vn. Therefore, we don't need to check
for values of k greater than Vn.

1. First check if n=2. Ifitis, nis prime. Otherwise,
proceed to step 2.

2. Check to see if each integer k is a divisor of n
where 1<k<vn. If none of the values of k are
divisors of n, then n is prime
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Even Better Prime Number Algorithm

Note that if k | n, and k is even, then 2 | n.

Therefore, if 2 does not divide n, then no even

number can be a divisor of n. (Ifa|band b | c,

thena|c)

1. First check if n=2. Ifitis, nis prime. Otherwise,
proceed to step 2.

2. Checkif 2 | n. If so, nis not prime. Otherwise,
proceed to step 3.

3. Check to see if each odd integer k is a divisor of n
where 1<k<Vn. If none of the values of k are
divisors of n, then n is prime.
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Even? Better Prime Number Algorithm

Note that if k | n, and d | k, then d | n.
Therefore, if d does not divide n, then no
multiple of d can be a divisor of n.

1. First check if n=2. Ifitis, nis prime.
Otherwise, proceed to step 2.

2. Useasequencek=2,3,5,7,11, 13,17,
... up to Vn to check if k | n. If none are the
values of k are divisors of n, then n is
prime. (Note that list is a list of prime
numbers!)
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Factoring a Number into its Primes

« Dividing a number into its multiples over and
over again until the multiples cannot be divided
any longer shows us that any number can
eventually be broken down into prime numbers.

« Examples:
9=33=32
24=83=2223=233
315=3.105=3-3-35=3:3.5:7 = 325.7

« Basically, this means that any number can be
broken into multiples of prime numbers.
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Factoring into Primes (continued)

Each row of the table below presents a different number
factored into its primes. The numbers in the columns
represent the number of each particular prime can be
factored out of each original value.

2 3 5 7 11 13 17

540| 2 3 1 0 0 0 0

85| 0 0 1 0 0 0 1

96| 5 1 0 0 0 0 0

315 0 2 1 1 0 0 0
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Factoring into Primes (continued)

 Every positive integer n > 1 can be broken
into multiples of prime numbers.

enN= plk1p2k2p3k3p4k4 ...pSkS
P <Py <P3<Py<..<pg
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Methods for Factoring

* 2| n > If least significant digit of n is divisible
by 2 (i.e., nis even), then 2 divides n

« 3| n - If the sum of all the digits of n down
to a single digit equals 3, 6, or 9, then 3
divides n. For example, is 17,587,623
divisible by 3?

1+7+5+8+7+6+2+3=39
3+9=12
1+2=3-> YES! 3divides 17,587,623
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Methods for Factoring (continued)

* Does 7 divide n?

— Remove least significant digit (one’s place)
from n and multiply it by two.

— Subtract the doubled number from the
remaining digits.

— If result is divisible by 7, then original number
was divisible by 7

— Repeat if unable to determine from result.
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Methods for Factoring (continued)

» Does 11 divide n?

— Starting with the most significant digit of n,
adding the first digit, subtracting the next digit,
adding the third digit, subtracting the fourth,
and so on. If the result is O or a multiple of 11,
then the original number is divisible by 11.

— Repeat if unable to determine from result.
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Methods for Factoring (continued)

Examples of checking for divisibility by 7
1876 >187-12=175>17-10=7 Vv

* 4,923 > 492 -6 =486 > 48 - 12 = 36 x

e 34,461 > 3,446 — 2 = 3,444 >
344-8=336>33-12=21V
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Methods for factoring (continued)

Examples of checking for divisibility by 11

e 285311670611 > 2-8+5-3+1-1+6
-74+40-6+1-1=-11Vv

e 279048 >2-7+9-0+4-8=0V
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Methods for Factoring (continued)

 Does 13 divide n?
— Delete the last digit (one’s place) from n.

— Subtract nine times the deleted digit from the
remaining number.

— If what is left is divisible by 13, then so is the
original number.

— Repeat if unable to determine from result.
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General Observation of Integers

* If nand m are integers and n > 0, we can
write m = gn + r for integers q and r with
0<r<n.

* For specific integers m and n, there is only
one set of values for g and for r.

 If r =0, then m is a multiple of n, i.e.,, n | m.
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Examplesof m=qn +r

* If nis 3 and mis 16, then 16 = 5(3) + 1 so
g=5andr=1

e If nis 10 and mis 3, then 3 = 0(10) + 3 so
g=0andr=3

e Ifnis5and mis-11, then — 11 =-3(5) +
4so0q=-3andr=4
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Greatest Common Divisor

e Ifa,b,and k are in Z+, and k | aand k | b,
we say that k is a common divisor.

* If d is the largest such k, d is called the
greatest common divisor (GCD).

« dis a multiple of every k, i.e., every k
divides d.
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GCD Example

Find the GCD of 540 and 315:

e 540=22.33.5

e 315=32.5.7

e 540 and 315 share the divisors 3, 32, 5, 3-5, and

32.5 (Look at it as the number of possible ways
to combine 3, 3, and 5)

e The largest is the GCD - 32.5 = 45
e 315+45 =7 and 540+45=12
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Theorems of the GCD

Assume d is GCD(a, b)

* d=sa+tb for some integers s and t. (s and t are
not necessarily positive.)

« If c is any other common divisor of a and b, then

c|d

If d is the GCD(a, b),thend|aandd|b

* Assume d is the GCD(a, b). Ifc|aandc| b,
thenc|d

» There is a horrendous proof of these theorems
on page 22 of our textbook. You are not
responsible for this proof!
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GCD Theorem

e Ifaand b are in Z*, a>b, then GCD(a,b) =
GCD(a, atb)

« If c divides a and b, it divides a+b (this is from
the earlier “divides” theorems)

¢ Since b = a-(a-b) = -a+(a+b), then a common
divisor of a and (a+b) also divides a and b

¢ Since all ¢ that divide a or b must also divide b
and b+a, then they have the same complete set
of divisors and therefore the same GCD.
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Euclidean Algorithm
* The Euclidean Algorithm is a recursive algorithm that

can be used to find GCD (a, b)

« Itis based on the fact that for any two integers,
a > b, there exists a k and r such that:

a=kb+r

e Sinceifa|banda]c,thena] (b +c), then we know
that the GCD (a,b) must also divide r. Therefore, the
GCD (a,b) = GCD(b,r)
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Euclidean Algorithm Process

¢ For two integers a and b wherea>b >0
a=k;b+r,wherek;isinZz+and0<r;<b

Ifr, =0, then b | a and b the is GCD(a, b)

If r; # 0, then if some integer n divides a and b,
then it must also divide r,. Similarly, if n divides b
and ry, then it must divide a.

Go back to top substituting b for a and r, for b.
Repeat until r, = 0 and k, will be GCD
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Least Common Multiple

e Ifa,b,and k are in Z+, and a | k, b | k, we say
that k is a common multiple of a and b.

» The smallest such k, call it c, is called the least
common multiple or LCM of a and b

* We write ¢ = LCM(a,b)
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Deriving the LCM

* We can obtain LCM from a, b, and GCD(a,b)

» For any integers a and b, we can write a = p;
p2a2 mpkak and b = plbl p2b2 ---pkbk

GCD(a,b) = plmin(al,bl) pzmin(az,bz) ”_pkmin(ak,bk)
LCM(a’b) = plmax(al,bl) pZmax(aZ,bZ) ._.pkmax(ak,bk)

« Since, GCD(a,b)-.LCM(a,b) = p,@l+b1) p,(@2+b2)
_..p, (@k+bk)
= P PPt P22 P2 L pi p K
=ab

¢ Therefore, LCM(a,b) = a-b/GCD(a,b)
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Mod-n function

« If z is a nonnegative integer, the mod-n function,
f.(2), isdefined as f (z) =rifz=qgn +r

» For example:
f3(14) = 2 because 14 = 4.3 + 2
f,(153) = 6 because 153 =217 + 6
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Representation of integers

* We are used to decimal, but in reality, it is only
one of many ways to describe an integer

* We say that a decimal value is the “base 10
expansion of n” or the “decimal expansion of
n”

¢ If b>1 is an integer, then every positive integer n
can be uniquely expressed in the form:
n = dgb* + d, bkt +d, ,bk2 + ... +d,bt + dyb?
where0<d;<b,i=0,1, ...,k
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Proof that There is Exactly
One Base Expansion

Proof is on bottom of page 27

« Basis of proof is that n = d bk +r

If d, > bk, then k was not the largest non-
negative integer so that bk < n.

* If r > bX, then d isn’t large enough

» Go back to 1 replacing n with r. This time,
remember that k = k-1, because r must be less
than bk

Repeat until k=0.
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Quick way to determine base b
expansion of n

« Note that d is the remainder after dividing n by b.

* Note also that once n is divided by b, quotient is
made up of:

(n-1)/b = (d bk d, ,bk2+ d, bk3+ ... +d,)

Therefore, we can go back to step 1 to determine
dl
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Example: Determine base 5 expansion

of decimal 432

* 432 =86*5 + 2 (remainder is d, digit)

» 86 = 17*5 + 1 (remainder is d, digit)

» 17 = 3*5 + 2 (remainder is d, digit)

» 3=0* + 3 (remainder is d; digit)

. 432,,=3212;

« Verify this using powers of 5 expansion:

3212, =353+ 2.52 + 1.51 + 2.50
=3125+225+15+21
=375+50+5+2
=423
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Example: Determine base 8 expansion

of decimal 704

» 704 =88*8 + 0 (remainder is d, digit)

» 88 =11*8 + 0 (remainder is d, digit)

» 11 =1*8 + 3 (remainder is d, digit)

¢ 1=0*8+ 1 (remainder is d digit)

* 704,,= 1300,

« Verify this using powers of 8 expansion:

32125 =1-8%+3.82+0-81 + 0-8°
=1512+364+08+01
=512 +192
=704,
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