CSCI 1900 Discrete Structures

Integers

Reading: Kolman, Section 1.4

CSCI 1900 - Discrete Structures

ntogore - Dago

Divisibility

- If one integer, n, divides into a second integer, m, without producing a remainder, then we say that "n divides m".
- Denoted n | m
- If one integer, n, does not divide evenly into a second integer, m, i.e., m+n produces a remainder, then we say that "n does not divide m"
- Denoted n∤m

CSCI 1900 - Discrete Structures

Integers – Page 2

Some Properties of Divisibility

- If n | m, then there exists a q such that $m = q \times n$
- The absolute values of both q and n are less than the absolute value of m, i.e., |n| < |m| and |q| < |m|
- Examples:
 - 4 | 24: 24 = 4×6 and both 4 and 6 are less than 24. 5 | 135: 135 = 5×27 and both 5 and 27 are less than 135
- Simple properties of divisibility (proofs on page 21)
 - If a | b and a | c, then a | (b + c)
 - If a | b and a | c, where b > c, then a | (b c)
 - If a | b or a | c, then a | bc
 - If a | b and b | c, then a | c

CSCI 1900 - Discrete Structures

Integers – Page 3

Prime Numbers

- A number *p* is called prime if the only positive integers that divide *p* are *p* and 1.
- Examples of prime numbers: 2, 3, 5, 7, 11, and 13.
- There is a science to determining prime numbers. The following slides present some computer algorithms that can be used to determine if a number n>1 is prime.

CSCI 1900 - Discrete Structures

Integers - Page 4

Basic Primer Number Algorithm

- 1. First, check if n=2. If it is, n is prime. Otherwise, proceed to step 2.
- Check to see if each integer k is a divisor of n where 1<k≤(n-1). If none of the values of k are divisors of n, then n is prime

CSCI 1900 - Discrete Structures

Integers – Page 5

Better Prime Number Algorithm

Note that if n=mk, then either m or k is less than \sqrt{n} . Therefore, we don't need to check for values of k greater than \sqrt{n} .

- 1. First check if n=2. If it is, n is prime. Otherwise, proceed to step 2.
- Check to see if each integer k is a divisor of n where 1<k≤√n. If none of the values of k are divisors of n, then n is prime

CSCI 1900 - Discrete Structures

Even Better Prime Number Algorithm

Note that if $k \mid n$, and k is even, then $2 \mid n$. Therefore, if 2 does not divide n, then no even number can be a divisor of n. (If $a \mid b$ and $b \mid c$, then $a \mid c$)

- 1. First check if n=2. If it is, n is prime. Otherwise, proceed to step 2.
- 2. Check if 2 | n. If so, n is not prime. Otherwise, proceed to step 3.
- Check to see if each *odd* integer k is a divisor of n where 1<k≤√n. If none of the values of k are divisors of n, then n is prime.

CSCI 1900 - Discrete Structures

Integers – Page 7

Even² Better Prime Number Algorithm

Note that if k | n, and d | k, then d | n. Therefore, if d does not divide n, then no multiple of d can be a divisor of n.

- 1. First check if n=2. If it is, n is prime. Otherwise, proceed to step 2.
- 2. Use a sequence k = 2, 3, 5, 7, 11, 13, 17, ... up to √n to check if k | n. If none are the values of k are divisors of n, then n is prime. (Note that list is a list of prime numbers!)

CSCI 1900 - Discrete Structures

Integers – Page 8

Factoring a Number into its Primes

- Dividing a number into its multiples over and over again until the multiples cannot be divided any longer shows us that any number can eventually be broken down into prime numbers.
- Examples: 9 = 3·3 = 3² 24 = 8·3 = 2·2·2·3 = 2³·3 315 = 3·105 = 3·3·35 = 3·3·5·7 = 3²·5·7
- Basically, this means that any number can be broken into multiples of prime numbers.

CSCI 1900 - Discrete Structures

Integers - Page 9

Factoring into Primes (continued)

Each row of the table below presents a different number factored into its primes. The numbers in the columns represent the number of each particular prime can be factored out of each original value.

	2	3	5	7	11	13	17	
540	2	3	1	0	0	0	0	
85	0	0	1	0	0	0	1	
96	5	1	0	0	0	0	0	
315	0	2	1	1	0	0	0	

CSCI 1900 - Discrete Structures

Integers – Page 10

Factoring into Primes (continued)

- Every positive integer n > 1 can be broken into multiples of prime numbers.
- $n = p_1^{k1} p_2^{k2} p_3^{k3} p_4^{k4} ... p_s^{ks}$ $p_1 < p_2 < p_3 < p_4 < ... < p_s$

CSCI 1900 – Discrete Structures

Integers – Page 11

Methods for Factoring

- 2 | n → If least significant digit of n is divisible by 2 (i.e., n is even), then 2 divides n
- 3 | n → If the sum of all the digits of n down to a single digit equals 3, 6, or 9, then 3 divides n. For example, is 17,587,623 divisible by 3?

1 + 7 + 5 + 8 + 7 + 6 + 2 + 3 = 39

3 + 9 = 12

 $1 + 2 = 3 \rightarrow YES!$ 3 divides 17,587,623

CSCI 1900 - Discrete Structures

Methods for Factoring (continued)

- Does 7 divide n?
 - Remove least significant digit (one's place) from n and multiply it by two.
 - Subtract the doubled number from the remaining digits.
 - If result is divisible by 7, then original number was divisible by 7
 - Repeat if unable to determine from result.

CSCI 1900 - Discrete Structures

Integers – Page 13

Methods for Factoring (continued)

Examples of checking for divisibility by 7

•
$$1,876 \rightarrow 187 - 12 = 175 \rightarrow 17 - 10 = 7 \checkmark$$

•
$$4.923 \rightarrow 492 - 6 = 486 \rightarrow 48 - 12 = 36 \times$$

•
$$34,461 \rightarrow 3,446 - 2 = 3,444 \rightarrow$$

 $344 - 8 = 336 \rightarrow 33 - 12 = 21 \checkmark$

CSCI 1900 - Discrete Structures

Integers – Page 14

Methods for Factoring (continued)

- Does 11 divide n?
 - Starting with the most significant digit of n, adding the first digit, subtracting the next digit, adding the third digit, subtracting the fourth, and so on. If the result is 0 or a multiple of 11, then the original number is divisible by 11.
 - Repeat if unable to determine from result.

CSCI 1900 - Discrete Structures

Integers – Page 15

Methods for factoring (continued)

Examples of checking for divisibility by 11

•
$$285311670611 \rightarrow 2 - 8 + 5 - 3 + 1 - 1 + 6$$

 $-7 + 0 - 6 + 1 - 1 = -11 \checkmark$

•
$$279048 \rightarrow 2 - 7 + 9 - 0 + 4 - 8 = 0$$

CSCI 1900 - Discrete Structures

Integers – Page 16

Methods for Factoring (continued)

- Does 13 divide n?
 - Delete the last digit (one's place) from n.
 - Subtract nine times the deleted digit from the remaining number.
 - If what is left is divisible by 13, then so is the original number.
 - Repeat if unable to determine from result.

CSCI 1900 – Discrete Structures

Integers – Page 17

General Observation of Integers

- If n and m are integers and n > 0, we can write m = qn + r for integers q and r with 0 < r < n
- For specific integers m and n, there is only one set of values for q and for r.
- If r = 0, then m is a multiple of n, i.e., $n \mid m$.

CSCI 1900 - Discrete Structures

Examples of m = qn + r

- If n is 3 and m is 16, then 16 = 5(3) + 1 so
 q = 5 and r = 1
- If n is 10 and m is 3, then 3 = 0(10) + 3 so q = 0 and r = 3
- If n is 5 and m is -11, then -11 = -3(5) + 4 so q = -3 and r = 4

CSCI 1900 - Discrete Structures

Integers - Page 19

Greatest Common Divisor

- If a, b, and k are in Z+, and k | a and k | b, we say that k is a common divisor.
- If d is the largest such k, d is called the *greatest common divisor* (GCD).
- d is a multiple of every k, i.e., every k divides d.

CSCI 1900 - Discrete Structures

Integers - Page 20

GCD Example

Find the GCD of 540 and 315:

- $540 = 2^2 \cdot 3^3 \cdot 5$
- $315 = 3^2 \cdot 5 \cdot 7$
- 540 and 315 share the divisors 3, 3², 5, 3·5, and 3²·5 (Look at it as the number of possible ways to combine 3, 3, and 5)
- The largest is the GCD \rightarrow 32.5 = 45
- $315 \div 45 = 7$ and $540 \div 45 = 12$

CSCI 1900 - Discrete Structures

Integers – Page 21

Theorems of the GCD

Assume d is GCD(a, b)

- d = sa + tb for some integers s and t. (s and t are not necessarily positive.)
- If c is any other common divisor of a and b, then c | d
- If d is the GCD(a, b), then d | a and d | b
- Assume d is the GCD(a, b). If c | a and c | b, then c | d
- There is a horrendous proof of these theorems on page 22 of our textbook. You are not responsible for this proof!

CSCI 1900 - Discrete Structures

Integers – Page 22

GCD Theorem

- If a and b are in Z⁺, a>b, then GCD(a,b) = GCD(a, a+b)
- If c divides a and b, it divides a+b (this is from the earlier "divides" theorems)
- Since b = a-(a-b) = -a+(a+b), then a common divisor of a and (a+b) also divides a and b
- Since all c that divide a or b must also divide b and b±a, then they have the same complete set of divisors and therefore the same GCD.

CSCI 1900 - Discrete Structures

Integers – Page 23

Euclidean Algorithm

- The Euclidean Algorithm is a recursive algorithm that can be used to find GCD (a, b)
- It is based on the fact that for any two integers,
 a > b, there exists a k and r such that:

 $a = k \cdot b + r$

 Since if a | b and a | c, then a | (b + c), then we know that the GCD (a,b) must also divide r. Therefore, the GCD (a,b) = GCD(b,r)

CSCI 1900 - Discrete Structures

Euclidean Algorithm Process

- For two integers a and b where a > b > 0
 a = k₁b + r₁, where k₁ is in Z+ and 0 ≤ r₁ < b
- If $r_1 = 0$, then b | a and b the is GCD(a, b)
- If r₁ ≠ 0, then if some integer n divides a and b, then it must also divide r₁. Similarly, if n divides b and r₁, then it must divide a.
- Go back to top substituting b for a and r₁ for b.
 Repeat until r_n = 0 and k_n will be GCD

CSCI 1900 - Discrete Structures

Integers – Page 25

Least Common Multiple

- If a, b, and k are in Z+, and a | k, b | k, we say that k is a common multiple of a and b.
- The smallest such k, call it c, is called the least common multiple or LCM of a and b
- We write c = LCM(a,b)

CSCI 1900 - Discrete Structures

Integers – Page 26

Deriving the LCM

- We can obtain LCM from a, b, and GCD(a,b)
- For any integers a and b, we can write $a = p_1^{a1}$ $p_2^{a2} \dots p_k^{ak}$ and $b = p_1^{b1} p_2^{b2} \dots p_k^{bk}$
- $GCD(a,b) = p_1^{min(a1,b1)} p_2^{min(a2,b2)} ... p_k^{min(ak,bk)}$
- LCM(a,b) = $p_1^{\max(a1,b1)} p_2^{\max(a2,b2)} \dots p_k^{\max(ak,bk)}$
- Since, GCD(a,b)·LCM(a,b) = $p_1^{(a1+b1)} p_2^{(a2+b2)} \dots p_k^{(ak+bk)}$ = $p_1^{a1} p_1^{b1} p_2^{a2} p_2^{b2} \dots p_k^{ak} p_k^{bk}$ = $a_1^{a1} p_1^{b1} p_2^{a2} p_2^{b2} \dots p_k^{ak} p_k^{bk}$
- Therefore, LCM(a,b) = a·b/GCD(a,b)

CSCI 1900 - Discrete Structures

Integers – Page 27

Mod-n function

- If z is a nonnegative integer, the mod-n function, $f_n(z)$, is defined as $f_n(z) = r$ if z = qn + r
- For example: $f_3(14) = 2$ because 14 = 4.3 + 2 $f_7(153) = 6$ because 153 = 21.7 + 6

CSCI 1900 - Discrete Structures

Integers – Page 28

Representation of integers

- We are used to decimal, but in reality, it is only one of many ways to describe an integer
- We say that a decimal value is the "base 10 expansion of n" or the "decimal expansion of n"
- If b>1 is an integer, then every positive integer n can be uniquely expressed in the form: $n=d_kb^k+d_{k\cdot 1}b^{k\cdot 1}+d_{k\cdot 2}b^{k\cdot 2}+\ldots +d_1b^1+d_0b^0$ where $0\leq d_i < b,\, i=0,\,1,\,\ldots,\,k$

CSCI 1900 - Discrete Structures

Integers – Page 29

Proof that There is Exactly One Base Expansion

- Proof is on bottom of page 27
- Basis of proof is that $n = d_k b^k + r$
- If d_k > b^k, then k was not the largest nonnegative integer so that b^k ≤ n.
- If $r \ge b^k$, then d_k isn't large enough
- Go back to 1 replacing n with r. This time, remember that k = k-1, because r must be less than b^k
- Repeat until k=0.

CSCI 1900 - Discrete Structures

Quick way to determine **base b** expansion of n

- Note that d₀ is the remainder after dividing n by b.
- Note also that once n is divided by b, quotient is made up of:

$$(n-r)/b = (d_k b^{k-1} d_{k-1} b^{k-2} + d_{k-2} b^{k-3} + \dots + d_1)$$

Therefore, we can go back to step 1 to determine $\boldsymbol{d}_{\boldsymbol{1}}$

CSCI 1900 - Discrete Structures

Integers – Page 31

Example: Determine base 5 expansion of decimal 432

- 432 = 86*5 + 2 (remainder is d₀ digit)
- 86 = 17*5 + 1 (remainder is d₁ digit)
- 17 = 3*5 + 2 (remainder is d₂ digit)
- 3 = 0*5 + 3 (remainder is d_3 digit)
- $432_{10} = 3212_5$
- Verify this using powers of 5 expansion:

$$3212_5 = 3.5^3 + 2.5^2 + 1.5^1 + 2.5^0$$

= $3.125 + 2.25 + 1.5 + 2.1$
= $375 + 50 + 5 + 2$
= 423

CSCI 1900 - Discrete Structures

Integers – Page 32

Example: Determine base 8 expansion of decimal 704

- 704 = 88*8 + 0 (remainder is d₀ digit)
- 88 = 11*8 + 0 (remainder is d_1 digit)
- 11 = 1*8 + 3 (remainder is d_2 digit)
- 1 = 0*8 + 1 (remainder is d₃ digit)
- $704_{10} = 1300_8$
- Verify this using powers of 8 expansion:

$$3212_5 = 1.8^3 + 3.8^2 + 0.8^1 + 0.8^0$$

$$= 1.512 + 3.64 + 0.8 + 0.1$$

$$= 512 + 192$$

$$= 704_{10}$$

CSCI 1900 - Discrete Structures