
1

Labeled Trees – Page 1CSCI 1900 – Discrete Structures

CSCI 1900
Discrete Structures

Labeled Trees
Reading: Kolman, Section 7.2

Labeled Trees – Page 2CSCI 1900 – Discrete Structures

Giving Meaning to
Vertices and Edges

• Our discussion of trees implied that a vertex is simply
an entity with parents and offspring much like a family
tree.

• What if the position of a vertex relative to its siblings or
the vertex itself represented an operation. Examples:
– Edges from a vertex represent cases from a switch

statement in software
– Vertex represented a mathematical operation

Labeled Trees – Page 3CSCI 1900 – Discrete Structures

Mathematical Order of Precedence
Represented with Trees

• Consider the equation:

(3 – (2 × x)) + ((x – 2) – (3 + x))

• Each element is combined with another using an
operator, i.e., this expression can be broken
down into a hierarchy of (a ° b) where “°”
represents an operation used to combine two
elements.

• We can use a binary tree to represent this
equation with the elements as the leaves.

Labeled Trees – Page 4CSCI 1900 – Discrete Structures

Precedence Example Tree

3 × – +

2 x 3x 2 x

– –

+

Labeled Trees – Page 5CSCI 1900 – Discrete Structures

Positional Tree
• A positional tree is an n-tree that relates

the direction/angle an edge comes out of a
vertex to a characteristic of that vertex.
For example:

• When n=2, then we have a positional
binary tree.

Yes
No

Maybe Left Right X=0
X=1

X=2

Labeled Trees – Page 6CSCI 1900 – Discrete Structures

Tree to Convert Base-2 to Base-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

First digit

Second digit

3rd

digit

4th

Starting with the first digit, take the left or right edge to follow
the path to the base-10 value.

2

Labeled Trees – Page 7CSCI 1900 – Discrete Structures

For-Loop Represented with Tree

for i = 1 to 3
for j = 1 to 5

array[i,j] = 10*i + j
next j

next i

Labeled Trees – Page 8CSCI 1900 – Discrete Structures

For Loop Positional Tree

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35

i = 1
i = 2

i = 3

j=1
j=2
j=3
j=4
j=5

Labeled Trees – Page 9CSCI 1900 – Discrete Structures

Storing Binary Trees in Memory

• Section 4.6 introduced us to “linked lists”.
Each item in the list was comprised of two
components:
– Data
– Pointer to next item in list

• Positional binary trees require two links,
one following the right edge and one
following the left edge. This is referred to
as a “doubly linked list.”

Labeled Trees – Page 10CSCI 1900 – Discrete Structures

Doubly Linked List
RightDataLeftIndex

0x014

03013

14+1312

02011

0x010

11–109

12–98

0x07

0206

7×65

0304

5–43

8+32

0-------21

root

Labeled Trees – Page 11CSCI 1900 – Discrete Structures

Precedence Example Derived from
the Doubly Linked List

3 (4) × (5) – (9) + (12)

2 (6) x (10) 3 (13)x (7) 2 (11) x (14)

– (3) – (8)

+ (2)

The numbers in parenthesis represent the index from which
they were derived in the linked list on the previous slide.

Labeled Trees – Page 12CSCI 1900 – Discrete Structures

Huffman Code

• Depending on the frequency of the letters
occurring in a string, the Huffman Code assigns
patterns of varying lengths of 1’s and 0’s to
different letters.

• These patterns are based on the paths taken in
a binary tree.

• A Huffman Code Generator can be found at:
http://www.inf.puc-rio.br/~sardinha/Huffman/Huffman.html

