CSCI 1900 Discrete Structures

Labeled Trees

Reading: Kolman, Section 7.2

CSCI 1900 - Discrete Structures

Labeled Trees - Page 1

Giving Meaning to Vertices and Edges

- Our discussion of trees implied that a vertex is simply an entity with parents and offspring much like a family tree
- What if the position of a vertex relative to its siblings or the vertex itself represented an operation. Examples:
 - Edges from a vertex represent cases from a switch statement in software
 - Vertex represented a mathematical operation

CSCI 1900 – Discrete Structures

Labeled Trees - Page 2

Mathematical Order of Precedence Represented with Trees

· Consider the equation:

$$(3-(2\times x))+((x-2)-(3+x))$$

- Each element is combined with another using an operator, i.e., this expression can be broken down into a hierarchy of (a ° b) where "°" represents an operation used to combine two elements.
- We can use a binary tree to represent this equation with the elements as the leaves.

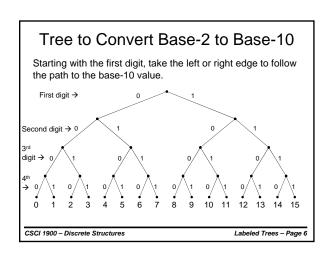
CSCI 1900 – Discrete Structures

Labeled Trees - Page 3

Precedence Example Tree **Tree** **Tree*** **Tree** *

Positional Tree

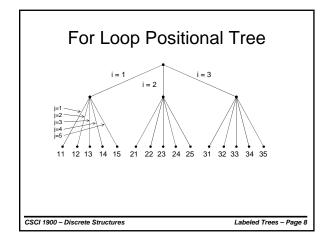
 A positional tree is an n-tree that relates the direction/angle an edge comes out of a vertex to a characteristic of that vertex.
 For example:



 When n=2, then we have a positional binary tree.

CSCI 1900 - Discrete Structures

Labeled Trees - Page 5



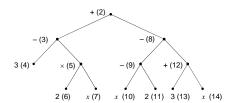
For-Loop Represented with Tree

```
for i = 1 to 3
    for j = 1 to 5
        array[i,j] = 10*i + j
    next j
next i
```

CSCI 1900 - Discrete Structures

Labeled Trees - Page 7

Storing Binary Trees in Memory


- Section 4.6 introduced us to "linked lists".
 Each item in the list was comprised of two components:
 - Data
 - Pointer to next item in list
- Positional binary trees require two links, one following the right edge and one following the left edge. This is referred to as a "doubly linked list."

CSCI 1900 - Discrete Structures

Labeled Trees – Page 9

Doubly Linked List 0 0 0 9 12 10 11 10 0 0 11 0 0 13 0 13 0 14 CSCI 1900 - Discrete Structures Labeled Trees - Page 10

Precedence Example Derived from the Doubly Linked List

The numbers in parenthesis represent the index from which they were derived in the linked list on the previous slide.

CSCI 1900 – Discrete Structures

Labeled Trees - Page 11

Huffman Code

- Depending on the frequency of the letters occurring in a string, the Huffman Code assigns patterns of varying lengths of 1's and 0's to different letters.
- These patterns are based on the paths taken in a binary tree.
- A Huffman Code Generator can be found at: http://www.inf.puc-rio.br/~sardinha/Huffman/Huffman.html

CSCI 1900 - Discrete Structures

Labeled Trees - Page 12