CSCI 1900 Discrete Structures

Logical Operations

Reading: Kolman, Section 2.1

CSCI 1900 - Discrete Structures

Logical Operations - Page 1

Statement of Proposition

- Statement of proposition a declarative sentence that is either true or false, but not both
- · Examples:
 - The earth is round: statement that is true
 2+3=5: statement that is true
 - Do you speak English? This is a question, not a statement

CSCI 1900 - Discrete Structures

Logical Operations - Page 2

More Examples of Statements of Proposition

- 3-x=5: is a declarative sentence, but not a statement since it is true or false depending on the value of x
- Take two aspirins: is a command, not a statement
- The temperature on the surface of the planet Venus is 800°F: is a declarative statement of whose truth is unknown to us
- The sun will come out tomorrow: a statement that is either true or false, but not both, although we will have to wait until tomorrow to determine the answer.

CSCI 1900 - Discrete Structures

Logical Operations – Page 3

Logical Connectives and Compound Statements

- x, y, z, ... denote variables that can represent real numbers
- p, q, r,... denote prepositional variables that can be replaced by statements.
 - -p: The sun is shining today
 - -q: It is cold

CSCI 1900 - Discrete Structures

Logical Operations – Page 4

Negation

- If *p* is a statement, the negation of *p* is the statement *not p*
- Denoted ~p
- If *p* is true, ~*p* is false
- If p is false, ~p is true
- ~p is not actually connective, i.e., it doesn't join two of anything
- not is a unary operation for the collection of statements and ~p is a statement if p is

CSCI 1900 – Discrete Structures

Logical Operations – Page 5

Examples of Negation

- If p: 2+3 > 1 then If $\sim p: 2+3 \le 1$
- If *q*: It is cold then ~*q*: It is not the case that it is cold, i.e., It is not cold.

CSCI 1900 - Discrete Structures

Conjunction

- If p and q are statements, then the conjunction of p and q is the compound statement "p and q"
- Denoted p∧q
- p∧q is true only if both p and q are true
- Example:
 - p: ETSU parking permits are expensive
 - q: ETSU has plenty of parking
 - $-p \land q = ?$

CSCI 1900 - Discrete Structures

Logical Operations - Page 7

Disjunction

- If p and q are statements, then the disjunction of p and q is the compound statement "p or q"
- Denoted pyq
- pvq is true if either p or q are true
- · Example:
 - p: I am a male
 - q: I am under 40 years old
 - $-p \lor q = ?$

CSCI 1900 - Discrete Structures

Logical Operations - Page 8

Exclusive Disjunction

- If p and q are statements, then the
 exclusive disjunction is the compound
 statement, "either p or q may be true, but
 both are not true at the same time."
- Example:
 - p: It is daytime
 - q: It is night time
 - $-p \lor q$ (in the exclusive sense) = ?

CSCI 1900 - Discrete Structures

Logical Operations – Page 9

Inclusive Disjunction

- If p and q are statements, then the inclusive disjunction is the compound statement, "either p or q may be true or they may both be true at the same time."
- · Example:
 - p: It is cold
 - q: It is night time
 - $-p \lor q$ (in the inclusive sense) = ?

CSCI 1900 - Discrete Structures

Logical Operations – Page 10

Exclusive versus Inclusive

- Depending on the circumstances, some disjunctions are inclusive and some of exclusive.
- · Examples of Inclusive
 - "I have a dog" or "I have a cat"
 - "It is warm outside" or "It is raining"
- · Examples of Exclusive
 - Today is either Tuesday or it is Thursday
 - Pat is either male or female

CSCI 1900 – Discrete Structures

Logical Operations – Page 11

Compound Statements

- A compound statement is a statement made from other statements
- For n individual propositions, there are 2ⁿ possible combinations of truth values
- A truth table contains 2ⁿ rows identifying the truth values for the statement represented by the table
- Use parenthesis to denote order of precedence
- ∧ has precedence over ∨

CSCI 1900 - Discrete Structures

Truth Tables are Important Tools for this Material!

p q	p∧q	p	q	p∨q
T T		Т	Т	Т
T F	F	Т	F	
F T	F	F	Т	
F F	F	F	F	F

CSCI 1900 - Discrete Structures

Logical Operations – Page 13

Compound Statement Example $(p \land q) \lor (\sim p)$

	p	q	$p \wedge q$	~p	$(p \wedge q) \vee (\simp)$
_	Т	Т	Т	F	Т
	T	F	F	F	F
	F	Т	F	Т	Т
	F	F	F	Т	Т

CSCI 1900 - Discrete Structures

Logical Operations - Page 14

Quantifiers

- Back in Section 1.1, a set was defined {x | P(x)}
- For an element t to be a member of the set, P(t) must evaluate to "true"
- P(x) is called a predicate or a propositional function

CSCI 1900 - Discrete Structures

Logical Operations – Page 15

Computer Science Functions

- if P(x), then execute certain steps
- while Q(x), do specified actions

CSCI 1900 - Discrete Structures

Logical Operations – Page 16

Universal quantification of a predicate P(x)

- Universal quantification of predicate P(x) = For all values of x, P(x) is true
- Denoted ∀x P(x)
- The symbol ∀ is called the universal quantifier
- The order in which multiple quantifications are considered does not affect the truth value (e.g., ∀x ∀y P(x,y) ≡ ∀y ∀x P(x,y))

CSCI 1900 - Discrete Structures

Logical Operations – Page 17

Examples:

- P(x): -(-x) = x
 - This predicate makes sense for all real numbers x.
 - The universal quantification of P(x), $\forall x P(x)$, is a true statement, because for all real numbers, -(-x) = x
- Q(x): x+1<4
 - ∀x Q(x) is a false statement, because, for example, Q(5) is not true

CSCI 1900 - Discrete Structures

Existential quantification of a predicate P(x)

- Existential quantification of a predicate P(x) is the statement "There exists a value of x for which P(x) is true."
- Denoted ∃x P(x)
- Existential quantification may be applied to several variables in a predicate
- The order in which multiple quantifications are considered does not affect the truth value

CSCI 1900 - Discrete Structures

Logical Operations - Page 19

Applying both universal and existential quantification

- · Order of application does matter
- Example: Let A and B be n x n matrices
- The statement $\forall A \exists B \ A + B = I_n$
- Reads "for every **A** there is a **B** such that **A** + **B** = I_n "
- Prove by coming up for equations for b_{ii} and b_{ii} (j≠i)
- Now reverse the order: $\exists B \forall A A + B = I_n$
- Reads "there exists a **B** such that for all **A A** + **B** = **I**."
- · THIS IS FALSE!

CSCI 1900 - Discrete Structures

Logical Operations - Page 20

Assigning Quantification to Proposition

- Let p: ∀x P(x)
- The negation of p is false when p is true and true when p is false
- For p to be false, there must be at least one value of x for which P(x) is false.
- Thus, p is false if $\exists x \sim P(x)$ is true.
- If ∃x ~P(x) is false, then for every x, ~P(x) is false; that is ∀x P(x) is true.

CSCI 1900 - Discrete Structures

Logical Operations – Page 21

Okay, what exactly did the previous slide say?

- Assume a statement is made that "for all x, P(x) is true."
 - If we can find one case that is not true, then the statement is false.
 - If we cannot find one case that is not true, then the statement is true.
- Example: \forall positive integers, n, $P(n) = n^2 + 41n + 41$ is a prime number.
 - This is false because ∃ an integer resulting in a non-prime value, i.e., ∃n such that P(n) is false.

CSCI 1900 - Discrete Structures