CSCI 1900 Discrete Structures

Methods of Proof

Reading: Kolman, Section 2.3

CSCI 1900 - Discrete Structures

Methods of Proof - Page 1

Past Experience

Up to now we've used the following methods to write proofs:

- Used direct proofs with generic elements, definitions, and given facts
- Used proof by cases such as when we used truth tables

CSCI 1900 - Discrete Structures

Methods of Proof - Page 2

General Description of Process

- $p \Rightarrow q$ denotes "q logically follows from p"
- Implication may take the form $(p_1 \land p_2 \land p_3 \land ... \land p_n) \Rightarrow q$
- q logically follows from p_1 , p_2 , p_3 , ..., p_n

CSCI 1900 - Discrete Structures

Methods of Proof - Page 3

General Description (continued)

The process is generally written as:

 $\begin{array}{c}
\rho_1 \\
\rho_2 \\
\rho_3 \\
\vdots \\
\rho_n
\end{array}$

CSCI 1900 - Discrete Structures

Methods of Proof - Page

Components of a Proof

- The p_i's are called hypotheses or premises
- *q* is called the *conclusion*
- Proof shows that if all of the p_i's are true, then q has to be true
- If result is a tautology, then the implication
 p ⇒ q represents a universally correct
 method of reasoning and is called a *rule of inference*

CSCI 1900 – Discrete Structures

Methods of Proof – Page 5

Example of a Proof based on a Tautology

If p implies q and q implies r, then p implies r

$$\begin{array}{l} p \Rightarrow q \\ \underline{q \Rightarrow r} \\ \therefore p \Rightarrow r \end{array}$$

- By replacing the bar under q ⇒ r with the "⇒", the proof above becomes ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r)
- The next slide shows that this is a tautology and therefore is universally valid.

CSCI 1900 - Discrete Structures

	Tautology Example (continued)								
p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r)$	$p \Rightarrow r$	$((p \Rightarrow q) \land (q \Rightarrow r))$ $\Rightarrow (p \Rightarrow r)$		
Т	T	T	Т	Т	T	Т	T		
Т	T	F	Т	F	F	F	T		
Т	F	T	F	T	F	Т	T		
Т	F	F	F	T	F	F	T		
F	T	T	Т	T	T	Т	T		
F	T	F	Т	F	F	Т	T		
F	F	T	Т	T	T	Т	T		
F	F	F	Т	T	T	Т	T		
CSCI 1900 – Discrete Structures Methods of Proof – Page 7									

Equivalences

- Some mathematical theorems are equivalences, i.e., p ⇔ q.
- The proof of such a theorem is equivalent with proving both p ⇒ q and q ⇒ p

CSCI 1900 - Discrete Structures

Methods of Proof - Page 8

modus ponens

form (the method of asserting):

$$p \Rightarrow q$$
 $\therefore q$

- Example:
 - p: a man used the toilet
 - q: the toilet seat is up
- $-p \Rightarrow q$: If a man used the toilet, the seat was left up
- Supported by the tautology $(p \land (p \Rightarrow q)) \Rightarrow q$

CSCI 1900 – Discrete Structures Methods of Proof – Page 9

modus ponens (continued) $p \quad q \mid (p \Rightarrow q) \mid p \land (p \Rightarrow q) \mid (p \land (p \Rightarrow q)) \Rightarrow$

p	q	$(p \Rightarrow q)$	$p \wedge (p \Rightarrow q)$	$(p \land (p \Rightarrow q)) \Rightarrow q$
T	T	Т	Т	Т
T	F	F	F	Т
F	T	Т	F	T
F	F	Т	F	Т

CSCI 1900 – Discrete Structures Methods of Proof – Page 10

Invalid Conclusions from Invalid Premises

 Just because the format of the argument is valid does not mean that the conclusion is true.
 A premise may be false. For example:

Acorns are money

If acorns were money, no one would have to work

- ∴ No one has to work
- Argument is valid since it is in modus ponens form
- Conclusion is false because premise p is false

CSCI 1900 – Discrete Structures

Methods of Proof - Page 11

Invalid Conclusion from Invalid Argument

- Sometimes, an argument that looks like modus ponens is actually not in the correct form. For example:
- If tuition was free, enrollment would increase <u>Enrollment increased</u>
 - ∴ Tuition is free
- Argument is invalid since its form is:

$$\begin{array}{c} p \Rightarrow q \\ \underline{q} \\ \therefore p \end{array}$$

CSCI 1900 - Discrete Structures

Invalid Argument (continued)

• Truth table shows that this is not a tautology:

	p	q	$(p \Rightarrow q)$	$(p \Longrightarrow q) \wedge q$	$((p \Rightarrow q) \land q) \Rightarrow$	
					p	
	T	T	T	T	T	
	T	F	F	F	Т	
	F	T	Т	Т	F	
	F	F	T	F	Т	
CCCI 4000 Discusto Company						

Indirect Method

 Another method of proof is to use the tautology:

$$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$$

• The form of the proof is:

CSCI 1900 - Discrete Structures

Methods of Proof - Page 14

Indirect Method Example

- p: My e-mail address is available on a web site
- q: I am getting spam
- p ⇒ q: If my e-mail address is available on a web site, then I am getting spam
- ~q ⇒ ~p: If I am not getting spam, then my email address must not be available on a web site
- This proof says that if I am not getting spam, then my e-mail address is not on a web site.

CSCI 1900 - Discrete Structures

Methods of Proof – Page 15

Another Indirect Method Example

- Prove that if the square of an integer is odd, then the integer is odd too.
- p: n² is odd
- q: n is odd
- ~q ⇒ ~p: If n is even, then n² is even.
- If n is even, then there exists an integer m for which n = 2×m. n² therefore would equal (2×m)² = 4×m² which must be even.

CSCI 1900 – Discrete Structures

Methods of Proof – Page 16

Proof by Contradiction

- Another method of proof is to use the tautology (p ⇒ q) ∧ (~q) ⇒ (~p)
- The form of the proof is:

CSCI 1900 – Discrete Structures

Methods of Proof – Page 17

Proof by Contradiction (continued)

p	q	$(p \Rightarrow q)$	~q	$(p \Rightarrow q) \land \sim q$	~p	$(p \Rightarrow q) \land (\sim q) \Rightarrow (\sim p)$
T	T	T	F	F	F	T
Т	F	F	Т	F	F	Т
F	T	T	F	F	Т	Т
F	F	T	Т	T	Т	Т
			l		I	

CSCI 1900 - Discrete Structures

Proof by Contradiction (continued)

 The best application for this is where you cannot possibly go through a large number (such as infinite) of cases to prove that every one is true.

CSCI 1900 - Discrete Structures

Methods of Proof – Page 19

Proof by Contradiction Example

Prove that $\sqrt{(2)}$ is irrational, i.e., cannot be represented with m/n where m and n are integers.

- p: $\sqrt{(2)}$ is a rational number
- q: There exists integers m and n for every rational number such that the rational number can be expressed as m/n
- $-\,p \Rightarrow q\colon \text{If } \sqrt(2)$ is a rational number, then we can find m and n
- The goal is to prove that we cannot find an m and an n, i.e., ~q is true.

CSCI 1900 - Discrete Structures

Methods of Proof - Page 20

Proof by Contradiction Example (continued)

- Assume $(m/n)^2 = 2$ and that m and n are in their most reduced form. This means that $m^2 = 2n^2$.
- Therefore, m must be even and m² must contain 2²
- Therefore, n must be even too.
- Therefore, m/n is not in the most reduced form (we can pull a 2 out of both m and n).
- This is a contradiction! Cannot come up with m and n, i.e., ~q is true
- Therefore, ~p is true and $\sqrt(2)$ must not be a rational number

CSCI 1900 - Discrete Structures