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CSCI 1900
Discrete Structures

Minimal Spanning Trees
Reading:  Kolman, Section 7.5
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In-Class Exercise
A small startup 
airline wants to 
provide service to 
the 5 cities in the 
table to the right. 
Allowing for multiple 
connecting flights, 
determine all of the 
direct flights that 
would be needed in 
order to service all 
five cities.

MileageCity 2City 1

450PittsburgChicago
300PittsburgDetroit
300ChicagoDetroit
300PittsburgPhiladelphia
700ChicagoPhiladelphia
600DetroitPhiladelphia
150PittsburgCleveland
350ChicagoCleveland
200DetroitCleveland
400PhiladelphiaCleveland

Source: http://www.usembassymalaysia.org.my/distance.html
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Undirected Graph
• If you recall from our discussion on types of 

relations, a symmetric relation is one that for 
every relation (a,b) that is contained in R, the 
relation (b,a) is also in R.

• If the relation is represented with a matrix, this 
means that the matrix is symmetric across the 
main diagonal.

• In the digraph of a symmetric relation, every 
edge is bidirectional, i.e., there is no defined 
direction. 
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Connected Relation
• A relation is connected if for every a and b in 

R, there is a path from a to b.
• It is easier to see a connected relation using a 

digraph than it is to describe in using words.
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Not Connected
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Spanning Tree
• Textbook definition: “If R is a symmetric, 

connected relation on a set A, we say that a 
tree T on A is a spanning tree for R if T is a tree 
with exactly the same vertices as R and which 
can be obtained from R by deleting some edges 
of R.” p. 275

• Basically, a undirected spanning tree is one that 
connects all n elements of A with n-1 edges.

• To make a cycle connecting n elements, more 
than n-1 edges will be needed.  Therefore, 
there are no cycles.
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Weighted Graph

In the past, we have represented a undirected 
graph with unlabeled edges.  It can also be 
represented with a symmetric binary matrix.

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

MT = 

A

B
D

C
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Weighted Graph (continued)

By giving the edges a numeric value indicating 
some parameter in the relation between two 
vertices, we have created a weighted tree.

A

B
D

C
5

3

4
7
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Weighted Graph (continued)
We can still use matrix notation to represent a 
weighted graph. Replace the 1’s used to represent an 
edge with the edge’s weight.  A 0 indicates no edge.

0 5 3 0

5 0 4 0

3 4 0 7

0 0 7 0

MT = 
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Back to In-Class Exercise
(Not drawn to scale)

Philadelphia

Pittsburg

Chicago

Cleveland

Detroit

400

200

350
150

600

700
300

300
300

450
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Minimal Spanning Tree
• Assume T represents a spanning tree for an 

undirected graph.
• The total weight of the spanning tree T is the 

sum of all of the weights of all of the edges of T.
• The one(s) with the minimum total weight are 

called the minimal spanning tree(s).
• As suggested by the “(s)” in the above 

definition, there may be a number of minimal 
spanning trees for a particular undirected graph 
with the same total weight.  
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Algorithms for Determining the 
Minimal Spanning Tree

There are two algorithms presented in our 
textbook for determining the minimal 
spanning tree of an undirected graph that 
is connected and weighted.

– Prim’s Algorithm: process of stepping from 
vertex to vertex

– Kruskal’s Algoritm: searching through edges 
for minimum weights
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Prim’s Algorithm
From textbook, p. 281

Let R be a symmetric, connected relation 
with n vertices.

1. Choose a vertex v1 of R. Let V = {v1} and 
E = { }.

2. Choose a nearest neighbor vi of V that is 
adjacent to vj, vj ∈ V, and for which the edge 
(vi, vj) does not form a cycle with members of 
E.  Add vi to V and add (vi, vj) to E.

3. Repeat Step 2 until |E| = n – 1.  Then V
contains all n vertices of R, and E contains the 
edges of a minimal spanning tree for R.
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Prim’s Algorithm in English

• The goal is to one at a time include a new 
vertex by adding a new edge without 
creating a cycle

• Pick any vertex to start.  From it, pick the 
edge with the lowest weight.

• As you add vertices, you will add possible 
edges to follow to new vertices.  

• Pick the edge with the lowest weight to go 
to a new vertex without creating a cycle.
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In-Class Exercise (1st edge)
Pick any starting point: Detroit. 
Pick edge with lowest weight: 200 (Cleveland)

Cleveland

Detroit

200
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In-Class Exercise (2nd edge)
Pick any edge connected to Cleveland or Detroit 

that doesn’t create a cycle: 150 (Pittsburg)

Pittsburg

Cleveland

Detroit

200

150
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In-Class Exercise (3rd edge)
Pick any edge connected to Cleveland, Detroit, 

or Pittsburg that doesn’t create a cycle: 300 
(Philadelphia)

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300
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In-Class Exercise (4th edge)
Pick any edge connected to Cleveland, Detroit, 

Pittsburg, or Philadelphia that doesn’t create a 
cycle: 300 (Chicago)  This gives us 4 edges!

Chicago

300

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300
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Kruskal’s Algorithm
From textbook, p. 284

Let R be a symmetric, connected relation 
with n vertices and let S = {e1, e2, e3, …ek} 
be the set of all weighted edges of R.

1. Choose an edge e1 in S of least weight.  Let E
= {e1}. Replace S with S – {e1}.

2. Select an edge ei in S of least weight that will 
not make a cycle with members of E.  Replace 
E with E ∪ {ei} and S with S – {ei}.

3. Repeat Step 2 until |E| = n – 1.
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Kruskal’s Algorithm in English

• The goal is to one at a time include a new 
edge without creating a cycle.

• Start by picking the edge with the lowest 
weight.

• Continue to pick new edges without 
creating a cycle. Edges do not necessarily 
have to be connected.

• Stop when you have n-1 edges.
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In-Class Exercise (1st edge)
First edge picked is lowest value of 150 

(Cleveland to Pittsburg)

Pittsburg

Cleveland

150
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In-Class Exercise (2nd edge)
Next lowest edge is 200 (Cleveland to Detroit)

Pittsburg

Cleveland

Detroit

200

150
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In-Class Exercise (3rd edge)
There are a few edges of 300, but Detroit to Pittsburg 
cannot be selected because it would create a cycle.  
We go with Pittsburg to Philadelphia.

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300
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In-Class Exercise (4th edge)
The next lowest edge that doesn’t create a 
cycle is 300 edge from Detroit to Chicago.  This 
is the 4th edge!

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300Chicago

300


