CSCI 1900 Discrete Structures

Probability

Reading: Kolman, Section 3.4

CSCI 1900 - Discrete Structures

Probability – Page

Probability Theory

There are two types of experiments:

- Deterministic the outcome is always the same
- Probabilistic the outcome could be any of a number of possible outcomes

Now that we know how to "count" using the multiplication principle, permutations, and combinations, we can figure out the probability of a certain outcome for probabilistic experiments.

CSCI 1900 - Discrete Structures

Probability – Page 2

Sample Spaces

- The set of all possible outcomes of a probabilistic experiment is called the *sample space*.
- Tossing a pair of dice results in one of ₇C₂.

•	•	• • •	••	
•••	•	• • • •	•••	
• •	•	•	••	::
•	•	••		

CSCI 1900 - Discrete Structures

Probability – Page 3

Sample Spaces (continued)

The previous slide doesn't take into account the fact that in all but 6 cases, each pattern could be the result of 2 different rolls

•	•	• •	•	··.	
•	•			••	
•		• • •	••	::[.·	
• •	•		••	• • •	
		•			
•	•		••		

CSCI 1900 - Discrete Structures

Probability – Page 4

Sample Spaces (continued)

- When determining the size of the sample space, you need to be sure of the method by which the sample space is created.
- Rolling dice duplicates allowed, order matters (multiplication principle)
- Poker duplicates not allowed, order doesn't matter (combinations)

CSCI 1900 – Discrete Structures

Probability – Page 5

Events

- An event is a set of outcomes that satisfy a statement (remember that a statement is something that must be true or false).
- Poker example a statement about a hand of poker might be that the hand contained four of a kind.
- Dice example a statement about a roll of the dice might be that a pair came up or that the sum of the dots equals 7.

CSCI 1900 - Discrete Structures

Probability – Page 6

Events (continued)

- The list of all possible outcomes that satisfies an event makes a set.
- The events for which a roll of dice results in a pair is {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}.
- The events for which a roll of dice results in a sum of 7 is {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}.

CSCI 1900 - Discrete Structures

Probability - Page 7

Events (continued)

- Since an event is a set, then all of the operations on sets can apply to events.
- The events for which a roll of a pair of dice is either a pair or the sum equals 7 is {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}.
- The events for which a roll of a pair of dice is a pair and the sum equals 7 is the empty set.

CSCI 1900 - Discrete Structures

Probability - Page 8

Equally Likely Outcomes

 Assuming that any outcome is equally likely, i.e., there is no bias towards a particular subset of outcomes, then the probability of any outcome from a sample space with n possible outcomes is:

1/n

 The probability of an outcome from the event set, E, containing |E| possible outcomes is:

|*E*|/n

CSCI 1900 - Discrete Structures

Probability – Page 9

Poker Odds Calculation

- Total possible hands = $_{52}C_5 = 2,598,960$
- Royal Straight Flush → 4 possible hands Odds are 4 in 2,598,960 → 1:649,740
- Straight Flush → 40 possible hands
 Odds are 40 in 2,598,960 → 1:64,974
- Four Aces → 48 possible hands
 Odds are 48 in 2,598,960 → 1:54,145
- Four of a kind → ₁₃C₁×₄₈C₁ = 624 hands
 Odds are 624 in 2,598,960 → 1:4,165
- Full house \rightarrow ₁₃C₁×₄C₃×₁₂C₁×₄C₂ = 3,744 Odds are 3,744 in 2,598,960 \rightarrow 1:694

CSCI 1900 - Discrete Structures

Probability – Page 10

In-Class Exercise

• Is it worth it to play PowerBALL?

CSCI 1900 – Discrete Structures

Probability - Page 11