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CSCI 1900
Discrete Structures

Searching Trees
Reading:  Kolman, 

Section 7.3
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Tree Searching
Trees can represent the organization of 
elements, but they can also represent a 
process with each vertex specifying a task.
– For-loop example

for i = 1 to 3
for j = 1 to 5

array[i,j] = 10*i + j
next j

next i

– Mathematical expression from section 7.2 – each 
vertex represents a computation that combines its 
offspring.
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Terminology

• “Visiting” a vertex – the act of performing a 
task at a vertex, e.g., perform a computation 
or make a decision.

• “Searching” the tree – the process of visiting 
each vertex in a specific order or path.  The 
term “searching” can be misleading.  Just 
think of it as “traversing” the tree.

Searching Trees – Page 4CSCI 1900 – Discrete Structures

Tree Search
• The application of some trees involves traversing 

the tree in a methodical pattern so as to address 
every vertex.

• Our book uses the term “search”, but sometimes 
search can imply we’re looking for a particular 
vertex.  This is not the case.

• Example:
Assume we want to compute the average age, 
maximum age, and minimum age of all of the 
children from five families.  (Tree is on next slide.) 
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Search Example
Neighborhood

families

A. Jones Halls Smith Taylor B. Jones

Katy
age 3

Tommy
age 5

Phil
age 8

Taylor
age 1

Lori
age 4

Lexi
age 2

Karen
age 14

Bart
age 12

Mike
age 6

Ben
age 2
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Search Example (continued)
• To calculate the average, max, and min ages 

for all of the children, we need to have a 
method for going through the tree so that we 
don’t miss a child.

• By defining a rigorous process, not only can a 
human be sure not to miss a vertex, but also 
an algorithm can be defined for a computer
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A Suggested Process for 
Searching a Tree

1.Starting at the root, repeatedly take the leftmost 
“untraveled” edge until you arrive at a leaf which 
should be a child.

2. Include this child in the average, max, and min 
calculations.

3.One at a time, go back up the edges until you 
reach a vertex that hasn’t had all of its outgoing 
edges traveled.

4. If you get back to the root and cannot find an 
untraveled edge, you are done.  Otherwise, 
return to step 1. 
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Vertices Numbered 
in Order of Visits

Neighborhood
families

A. Jones Halls Smith Taylor B. Jones

Katy
age 3

Tommy
age 5

Phil
age 8

Taylor
age 1

Lori
age 4

Lexi
age 2

Karen
age 14

Bart
age 12

Mike
age 6

Ben
age 2

1

2

3

5

6

7

8

9

10

11

12

13

14

15

164
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Preorder Search
• This methodical pattern of traversing a tree is called 

a preorder search.
• Assume v is the root of a binary positional tree T. 

– Each vertex of this tree has at most a left vertex, vL, and a 
right vertex, vR.

– If either vL or vR have offspring, then they are subtrees of T, 
and a search can be performed of them too.

– By viewing a tree this way, then the search method we 
described in earlier slides can be performed using a 
recursive algorithm applied to each vertex.  

– The recursive algorithm is repeatedly applied until every 
leaf has been reached.
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Preorder Search Algorithm

• A preorder search of a tree has the 
following three steps:

1. Visit the root
2. Search the left subtree if it exists
3. Search the right subtree if it exists

• The term “search” in steps 2 and 3 
implies that we apply all three steps to 
the subtree beginning with step 1.
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Vertices Visited in Alphabetical 
Order Using Preorder Search

A

B

C

D F J LG

I KE

H
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Prefix or Polish Form

x

–

a

d e

c ÷b

+

Preorder search produces:  × – a b + c ÷ d e

Binary tree representing: (a – b) × (c + (d ÷ e))
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Polish Form (continued)
• Allows us to write complex arithmetic 

expressions without using parenthesis
• Expression is evaluated by performing 

following steps:
– Move left to right until you find a string of the 

form Fxy, where F is the symbol for a binary 
operation and x and y are numbers.

– Evaluate x F y and substitute answer for string 
Fxy.

– Repeat starting at beginning of string again.
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Polish Form Example

1. × – 6 4 + 5 ÷ 2 2 1st pattern: – 6 4
2. × 2 + 5 ÷ 2 2 2nd pattern: ÷ 2 2
3. × 2 + 5 1 3rd pattern: + 5 1
4. × 2 6 4th pattern: × 2 6
5. 12

(6 – 4) × (5 + (2 ÷ 2)) = 12
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Inorder and Postorder Searches
• Preorder search gets its name from the fact 

that the operator that joins two items is 
evaluated first, e.g., the binary operation 6 – 4 
is visited in the order – 6 4.

• Inorder search evaluates the expression as it 
is written, e.g., the binary operation 6 – 4 is 
visited in the order  6 – 4.

• Postorder search evaluates the operator after 
the elements are read, e.g., the binary 
operation 6 – 4 is visited in the order  6 4 –.
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Inorder Search Algorithm

An inorder search of a tree has the 
following three steps:

1. Search the left subtree if it exists
2. Visit the root
3. Search the right subtree if it exists
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Postorder Search Algorithm

A postorder search of a tree has the 
following three steps:

1. Search the left subtree if it exists
2. Search the right subtree if it exists
3. Visit the root

Searching Trees – Page 18CSCI 1900 – Discrete Structures

Evaluation of Tree Using
Inorder Search

A

B

C

D F J LG

I KE

H

Resulting string:  DCBFEGAIJHKL
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Evaluation of Tree Using
Postorder Search

A

B

C

D F J LG

I KE

H

Resulting string:  DCFGEBJILKHA
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Infix Form

x

–

a

d e

c ÷b

+

Inorder search produces: a – b × c + d ÷ e
Unfortunately, without parenthesis, we can’t 

do anything with this expression.

Binary tree representing: (a – b) × (c + (d ÷ e))
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Postfix or Reverse Polish Form

x

–

a

d e

c ÷b

+

Inorder search produces: a b – c d e ÷ + ×

Binary tree representing: (a – b) × (c + (d ÷ e))
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Reverse Polish Form (continued)

• Allows us to write complex arithmetic 
expressions without using parenthesis

• Expression is evaluated by performing 
following steps:
– Move left to right until you find a string of the 

form xyF, where F is the symbol for a binary 
operation and x and y are numbers.

– Evaluate x F y and substitute answer for string 
xyF.

– Repeat starting at beginning of string again.
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Reverse Polish Form Example
From left-to-right evaluate xyF first.
1. 2 1 – 3 4 2 ÷ + × 1st pattern: 2 1 –
2. 1 3 4 2 ÷ + × 2nd pattern: 4 2 ÷
3. 1 3 2 + × 3rd pattern: 3 2 +
4. 1 5 × 4th pattern: 1 5 ×
5. 5

(2 – 1) × (3 + (4 ÷ 2)) = 5
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Converting an Ordered 
n-tree to a Positional Binary Tree

• An ordered n-tree where some vertices 
have more than two offspring can be 
converted to a positional binary tree.

• This allows easier computer 
representation with methods such as 
linked lists.

• A process exists for this conversion that 
works on any finite tree.
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Process to Convert Ordered n-tree 
to Positional Binary Tree

• Starting at the root, the first or
leftmost offspring of a vertex 
remains the leftmost vertex in 
the binary tree

• The first sibling to the right 
of the leftmost vertex 
becomes the right offspring 
of the leftmost vertex

• Subsequent siblings 
become the right offspring 
in succession until last 
sibling is converted.

A

B C D E

A

B C

D

E
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Conversion Example

A

B C D

E GF H I

J K L
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Conversion Example
A

B C D

E GF H I

J K L

A

B

C

D

E

GF

H

I

J
K

L

Preorder search:
Left tree – ABEFCGJKLHID
Right tree – ABEFCGJKLHID


