
1

Searching Trees – Page 1CSCI 1900 – Discrete Structures

CSCI 1900
Discrete Structures

Searching Trees
Reading: Kolman,

Section 7.3

Searching Trees – Page 2CSCI 1900 – Discrete Structures

Tree Searching
Trees can represent the organization of
elements, but they can also represent a
process with each vertex specifying a task.
– For-loop example

for i = 1 to 3
for j = 1 to 5

array[i,j] = 10*i + j
next j

next i

– Mathematical expression from section 7.2 – each
vertex represents a computation that combines its
offspring.

Searching Trees – Page 3CSCI 1900 – Discrete Structures

Terminology

• “Visiting” a vertex – the act of performing a
task at a vertex, e.g., perform a computation
or make a decision.

• “Searching” the tree – the process of visiting
each vertex in a specific order or path. The
term “searching” can be misleading. Just
think of it as “traversing” the tree.

Searching Trees – Page 4CSCI 1900 – Discrete Structures

Tree Search
• The application of some trees involves traversing

the tree in a methodical pattern so as to address
every vertex.

• Our book uses the term “search”, but sometimes
search can imply we’re looking for a particular
vertex. This is not the case.

• Example:
Assume we want to compute the average age,
maximum age, and minimum age of all of the
children from five families. (Tree is on next slide.)

Searching Trees – Page 5CSCI 1900 – Discrete Structures

Search Example
Neighborhood

families

A. Jones Halls Smith Taylor B. Jones

Katy
age 3

Tommy
age 5

Phil
age 8

Taylor
age 1

Lori
age 4

Lexi
age 2

Karen
age 14

Bart
age 12

Mike
age 6

Ben
age 2

Searching Trees – Page 6CSCI 1900 – Discrete Structures

Search Example (continued)
• To calculate the average, max, and min ages

for all of the children, we need to have a
method for going through the tree so that we
don’t miss a child.

• By defining a rigorous process, not only can a
human be sure not to miss a vertex, but also
an algorithm can be defined for a computer

2

Searching Trees – Page 7CSCI 1900 – Discrete Structures

A Suggested Process for
Searching a Tree

1.Starting at the root, repeatedly take the leftmost
“untraveled” edge until you arrive at a leaf which
should be a child.

2. Include this child in the average, max, and min
calculations.

3.One at a time, go back up the edges until you
reach a vertex that hasn’t had all of its outgoing
edges traveled.

4. If you get back to the root and cannot find an
untraveled edge, you are done. Otherwise,
return to step 1.

Searching Trees – Page 8CSCI 1900 – Discrete Structures

Vertices Numbered
in Order of Visits

Neighborhood
families

A. Jones Halls Smith Taylor B. Jones

Katy
age 3

Tommy
age 5

Phil
age 8

Taylor
age 1

Lori
age 4

Lexi
age 2

Karen
age 14

Bart
age 12

Mike
age 6

Ben
age 2

1

2

3

5

6

7

8

9

10

11

12

13

14

15

164

Searching Trees – Page 9CSCI 1900 – Discrete Structures

Preorder Search
• This methodical pattern of traversing a tree is called

a preorder search.
• Assume v is the root of a binary positional tree T.

– Each vertex of this tree has at most a left vertex, vL, and a
right vertex, vR.

– If either vL or vR have offspring, then they are subtrees of T,
and a search can be performed of them too.

– By viewing a tree this way, then the search method we
described in earlier slides can be performed using a
recursive algorithm applied to each vertex.

– The recursive algorithm is repeatedly applied until every
leaf has been reached.

Searching Trees – Page 10CSCI 1900 – Discrete Structures

Preorder Search Algorithm

• A preorder search of a tree has the
following three steps:

1. Visit the root
2. Search the left subtree if it exists
3. Search the right subtree if it exists

• The term “search” in steps 2 and 3
implies that we apply all three steps to
the subtree beginning with step 1.

Searching Trees – Page 11CSCI 1900 – Discrete Structures

Vertices Visited in Alphabetical
Order Using Preorder Search

A

B

C

D F J LG

I KE

H

Searching Trees – Page 12CSCI 1900 – Discrete Structures

Prefix or Polish Form

x

–

a

d e

c ÷b

+

Preorder search produces: × – a b + c ÷ d e

Binary tree representing: (a – b) × (c + (d ÷ e))

3

Searching Trees – Page 13CSCI 1900 – Discrete Structures

Polish Form (continued)
• Allows us to write complex arithmetic

expressions without using parenthesis
• Expression is evaluated by performing

following steps:
– Move left to right until you find a string of the

form Fxy, where F is the symbol for a binary
operation and x and y are numbers.

– Evaluate x F y and substitute answer for string
Fxy.

– Repeat starting at beginning of string again.

Searching Trees – Page 14CSCI 1900 – Discrete Structures

Polish Form Example

1. × – 6 4 + 5 ÷ 2 2 1st pattern: – 6 4
2. × 2 + 5 ÷ 2 2 2nd pattern: ÷ 2 2
3. × 2 + 5 1 3rd pattern: + 5 1
4. × 2 6 4th pattern: × 2 6
5. 12

(6 – 4) × (5 + (2 ÷ 2)) = 12

Searching Trees – Page 15CSCI 1900 – Discrete Structures

Inorder and Postorder Searches
• Preorder search gets its name from the fact

that the operator that joins two items is
evaluated first, e.g., the binary operation 6 – 4
is visited in the order – 6 4.

• Inorder search evaluates the expression as it
is written, e.g., the binary operation 6 – 4 is
visited in the order 6 – 4.

• Postorder search evaluates the operator after
the elements are read, e.g., the binary
operation 6 – 4 is visited in the order 6 4 –.

Searching Trees – Page 16CSCI 1900 – Discrete Structures

Inorder Search Algorithm

An inorder search of a tree has the
following three steps:

1. Search the left subtree if it exists
2. Visit the root
3. Search the right subtree if it exists

Searching Trees – Page 17CSCI 1900 – Discrete Structures

Postorder Search Algorithm

A postorder search of a tree has the
following three steps:

1. Search the left subtree if it exists
2. Search the right subtree if it exists
3. Visit the root

Searching Trees – Page 18CSCI 1900 – Discrete Structures

Evaluation of Tree Using
Inorder Search

A

B

C

D F J LG

I KE

H

Resulting string: DCBFEGAIJHKL

4

Searching Trees – Page 19CSCI 1900 – Discrete Structures

Evaluation of Tree Using
Postorder Search

A

B

C

D F J LG

I KE

H

Resulting string: DCFGEBJILKHA

Searching Trees – Page 20CSCI 1900 – Discrete Structures

Infix Form

x

–

a

d e

c ÷b

+

Inorder search produces: a – b × c + d ÷ e
Unfortunately, without parenthesis, we can’t

do anything with this expression.

Binary tree representing: (a – b) × (c + (d ÷ e))

Searching Trees – Page 21CSCI 1900 – Discrete Structures

Postfix or Reverse Polish Form

x

–

a

d e

c ÷b

+

Inorder search produces: a b – c d e ÷ + ×

Binary tree representing: (a – b) × (c + (d ÷ e))

Searching Trees – Page 22CSCI 1900 – Discrete Structures

Reverse Polish Form (continued)

• Allows us to write complex arithmetic
expressions without using parenthesis

• Expression is evaluated by performing
following steps:
– Move left to right until you find a string of the

form xyF, where F is the symbol for a binary
operation and x and y are numbers.

– Evaluate x F y and substitute answer for string
xyF.

– Repeat starting at beginning of string again.

Searching Trees – Page 23CSCI 1900 – Discrete Structures

Reverse Polish Form Example
From left-to-right evaluate xyF first.
1. 2 1 – 3 4 2 ÷ + × 1st pattern: 2 1 –
2. 1 3 4 2 ÷ + × 2nd pattern: 4 2 ÷
3. 1 3 2 + × 3rd pattern: 3 2 +
4. 1 5 × 4th pattern: 1 5 ×
5. 5

(2 – 1) × (3 + (4 ÷ 2)) = 5

Searching Trees – Page 24CSCI 1900 – Discrete Structures

Converting an Ordered
n-tree to a Positional Binary Tree

• An ordered n-tree where some vertices
have more than two offspring can be
converted to a positional binary tree.

• This allows easier computer
representation with methods such as
linked lists.

• A process exists for this conversion that
works on any finite tree.

5

Searching Trees – Page 25CSCI 1900 – Discrete Structures

Process to Convert Ordered n-tree
to Positional Binary Tree

• Starting at the root, the first or
leftmost offspring of a vertex
remains the leftmost vertex in
the binary tree

• The first sibling to the right
of the leftmost vertex
becomes the right offspring
of the leftmost vertex

• Subsequent siblings
become the right offspring
in succession until last
sibling is converted.

A

B C D E

A

B C

D

E

Searching Trees – Page 26CSCI 1900 – Discrete Structures

Conversion Example

A

B C D

E GF H I

J K L

Searching Trees – Page 27CSCI 1900 – Discrete Structures

Conversion Example
A

B C D

E GF H I

J K L

A

B

C

D

E

GF

H

I

J
K

L

Preorder search:
Left tree – ABEFCGJKLHID
Right tree – ABEFCGJKLHID

