CSCI 1900 Discrete Structures

Operations on Sets

Reading: Kolman, Section 1.2

CSCI 1900 - Discrete Structures

Operations on Sets - Page 1

Operation on Sets

 An operation on a set is where two sets are combined to produce a third

CSCI 1900 - Discrete Structures

Operations on Sets - Page 2

Union

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Example:
 Let A = {a, b, c, e, f} and B = {b, d, r, s}
 A ∪ B = {a, b, c, d, e, f, r, s}
- Venn diagram

CSCI 1900 - Discrete Structures

Operations on Sets – Page 3

Intersection

- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Example:

Let $A = \{a, b, c, e, f\},\$

 $B = \{b, e, f, r, s\}, and C = \{a, t, u, v\}.$

 $A \cap B = \{b, e, f\}$

 $A \cap C = \{a\}$

 $B \cap C = \{\}$

· Venn diagram

CSCI 1900 - Discrete Structures

Operations on Sets – Page 4

Disjoint Sets

Disjoint sets are sets where the intersection results in the empty set

Not disjoint

Disjoint

CSCI 1900 - Discrete Structures

Operations on Sets – Page 5

Unions and Intersections Across Multiple Sets

Both intersection and union can be performed on multiple sets

- $-A \cup B \cup C = \{x \mid x \in A \text{ or } x \in B \text{ or } x \in C\}$
- $-A \cap B \cap C = \{x \mid x \in A \text{ and } x \in B \text{ and } x \in C\}$
- Example:

 $A = \{1, 2, 3, 4, 5, 7\}, B = \{1, 3, 8, 9\}, \text{ and } C = \{1, 3, 6, 8\}.$

 $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A \cap B \cap C = \{1, 3\}$

CSCI 1900 - Discrete Structures

Operations on Sets – Page 6

Complement

- The complement of A (with respect to the universal set U) - all elements of the universal set *U* that are *not* a member of *A*.
- Denoted A
- Example: If $A = \{x \mid x \text{ is an integer and } x < 4\}$ and U = Z, then $\overline{A} = \{x \mid x \text{ is an integer and } x > 4\}$

Venn diagram

CSCI 1900 - Discrete Structures

Operations on Sets - Page 7

Complement "With Respect to..."

- The complement of B with respect to A all elements belonging to A, but not to B.
- It's as if *U* is in the complement is replaced with *A*.
- Denoted $A B = \{x \mid x \in A \text{ and } x \in B\}$
- Example: Assume A = {a, b, c} and B = {b, c, d, e} $A - B = \{a\}$

 $B - A = \{d, e\}$ · Venn diagram

CSCI 1900 - Discrete Structures

Operations on Sets - Page 8

Symmetric difference

- Symmetric difference If A and B are two sets, the symmetric difference is the set of elements belonging to A or B, but not both A and B.
- Denoted $A \oplus B = \{x \mid (x \in A \text{ and } x \notin B) \text{ or } A \oplus B \in A \text{ and } A \oplus B \text{ or } A \oplus B \text{ or$ $\{x \in B \text{ and } x \notin A\}$
- $A \oplus B = (A B) \cup (B A)$
- Venn diagram

CSCI 1900 - Discrete Structures

Operations on Sets - Page 9

Algebraic Properties of Set Operations

• Commutative properties

 $A \cup B = B \cup \dot{A}$

 $A \cap B = B \cap A$

Associative properties

 $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

• Distributive properties

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

CSCI 1900 - Discrete Structures

Operations on Sets - Page 10

More Algebraic Properties of Set **Operations**

· Idempotent properties

 $A \cup \dot{A} = A$

 $A \cap A = A$

· Properties of the complement

 $A \cup \underline{A} = U$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ -- De Morgan's law $A \cap B = \overline{A} \cup \overline{B}$ -- De Morgan's law

CSCI 1900 - Discrete Structures

Operations on Sets - Page 11

More Algebraic Properties of Set **Operations**

· Properties of a Universal Set

 $A \cup U = U$

 $A \cap U = A$

• Properties of the Empty Set

 $A \cup \emptyset = A \text{ or } A \cup \{\} = A$

 $A \cap \emptyset = \emptyset$ or $A \cap \{\} = \{\}$

CSCI 1900 - Discrete Structures

Operations on Sets - Page 12

The Addition Principle

- The Addition Principle associates the cardinality of sets with the cardinality of their union
- If A and B are finite sets, then
 |A ∪ B| = |A| + |B| |A ∩ B|
- · Let's use a Venn diagram to prove this:

- The Roman Numerals indicate how many times each segment is included for the expression |A| + |B|
- Therefore, we need to remove one |A ∩ B| since it is counted twice.

CSCI 1900 - Discrete Structures

Operations on Sets - Page 13

Addition Principle Example

- Let A = {a, b, c, d, e} and B = {c, e, f, h, k, m}
- |A| = 5, |B| = 6, and $|A \cap B| = |\{c, e\}| = 2$
- $|A \cup B| = |\{a, b, c, d, e, f, h, k, m\}|$ $|A \cup B| = 9 = 5 + 6 - 2$
- If A ∩ B = Ø, i.e., A and B are disjoint sets, then the |A ∩ B| term drops out leaving |A| + |B|

CSCI 1900 - Discrete Structures

Operations on Sets - Page 14