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CSCI 1900
Discrete Structures

Sets and Subsets
Reading:  Kolman, Section 1.1
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Definitions of sets

• A set is any well-defined collection of 
objects

• The elements or members of a set are the 
objects contained in the set

• Well-defined means that it is possible to 
decide if a given object belongs to the 
collection or not.
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Set notation

• Enumeration of sets are represented with 
a list of elements in curly brackets –
example: {1, 2, 3}

• Set labels are uppercase letters in italics –
example: A, B, C

• Element labels are lowercase letters –
example: a, b, c

• ∅ is the label for the empty set, i.e., ∅ = { }
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Membership

• ∈ -- “is an element of” (Note that it is 
shaped like an “E” as in element)

• ∉ -- “is not an element of”
• Example: If A = {1, 3, 5, 7}, then 1 ∈ A, but 

2 ∉ A.
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Specifying sets with their 
properties: 

A set can be represented or defined by the 
rules classifying whether an object 
belongs to a collection or not.
A = {a | a is __________}
The above notation translates to “the set A 
is comprised of elements a where a 
satisfies _________.”
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Examples of Common Sets

• Z+ = {x | x is a positive integer}
• N = {x | x is a positive integer or zero}
• Z = {x | x is an integer}
• Q = {x | x is a rational number}

Q consists of the numbers that can be 
written a/b, where a and b are integers 
and b ≠ 0.

• R = {x | x is a real number}
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Examples of sets used in 
programming

• unsigned int
• int
• float
• enum
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Subsets

• If every element of A is also an element of 
B, that is, if whenever x ∈ A, then x ∈ B, 
we say that A is a subset of B or that A is 
contained in B.

• A is a subset of B if for every x, x ∈ A 
means that x ∈ B.
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Subset Notation

• ⊆ -- “is contained in” (Note that it is 
shaped like a “C” as in contained in)
⊆ -- “is not contained in”

• “Is not contained in” does not mean that 
there aren’t some elements that can be in 
both sets.  It just means that not all of the 
elements of A are in B
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Subset Examples
• vowels ⊆ alphabet
• letters that spell “see” ⊆ letters that spell “yes”
• letters that spell “yes” ⊆ letters that spell “easy”
• letters that spell “say” ⊆ letters that spell “easy”
• positive integers ⊆ integers
• odd integers ⊆ integers
• integers ⊆ floating point values (real numbers)
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Venn Diagrams

• Named after British logician John Venn
• Graphical depiction of the relationship of 

sets.
• Does not represent the individual elements 

of the sets, rather it implies their existence
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Venn Diagram Examples
• A ⊆ B

• A ⊆ B

B
A

BA B
Aor
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More Venn Diagram Examples

a ∈ A, b ∈ B, and c ∈ A and c ∈ B

BA

a c b
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Theorems on Sets

• A ⊆ B and B ⊆ C implies A ⊆ C
• Example:

– A = {x | letters that spell “see”} = {e, s}
– B = {x | letters that spell “yes”} = {e, s, y}
– C = {x | letters that spell “easy”} = {a, e, s, y}
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Theorems on Sets (continued)

• If A ⊆ B and B ⊆ C, then A ⊆ C.
• If A ⊆ B and C ⊆ B, that doesn’t mean we 

can say anything at all about the 
relationship between A and C.  It could be 
any of the following three cases:

A A AC C C
B

B B
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Theorems on Sets (continued)

• If A is any set, then A ⊆ A.  That is, every 
set is a subset of itself.

• Since ∅ contains no elements, then every 
element of ∅ is contained in every set. 
Therefore, if A is any set, the statement 
∅ ⊆ A is always true.

• If A ⊆ B and B ⊆ A, then A = B
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Universal Set

• There must be some all-encompassing 
group of elements from which the 
elements of each set are considered to be 
members of or not.  

• For example, to create the set of integers, 
we must take elements from the universal 
set of all numbers.  
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Universal Set (continued)

• It’s desirable for the all-encompassing set 
to make sense.  

• Example: Although it is true that students 
enrolled in this class can be taken from the 
universal set of all mammals that roam the 
earth, it makes more sense for the 
universal set to be people enrolled at 
ETSU or at least limit the universal set to 
humans.
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Universal Set (continued)

• The Universal Set U is the set containing all 
objects for which the discussion is meaningful.  
(e.g., examining whether a sock is an integer is 
a meaningless exercise.)

• Any set is a subset of the universal set from 
which it derives its meaning

• In Venn diagrams, the universal set is denoted 
with a rectangle. U

A
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Final set of terms

• Finite – A set A is called finite if it has n 
distinct elements, where n ∈ N.

• n is called the cardinality of A and is 
denoted by |A|, e.g., n = |A|

• Infinite – A set that is not finite is called 
infinite.

• The power set of A is the set of all 
subsets of A including ∅ and is denoted 
P(A)


