
 207

CHAPTER TEN

Memory Cells

The previous chapters presented the concepts and tools behind
processing binary data. This is only half of the battle though. For
example, a logic circuit uses inputs to calculate an output, but where do
these inputs come from? Some of them come from switches and other
hardwired inputs, but many times a processor uses signals it has stored
from previous operations. This might be as simple as adding a sequence
of values one at a time to a running total: the running total must be
stored somewhere so that it can be sent back to the inputs of the adder
to be combined with the next value.

This chapter introduces us to memory by presenting the operation of
a single memory cell, a device that is capable of storing a single bit.

10.1 New Truth Table Symbols
The truth tables that represent the operation of memory devices have

to include a few new symbols in order to represent the functionality of
the devices. For example, a memory cell is capable of storing a binary
value, either a one or a zero. A new symbol, however, is needed to
represent the stored value since its specific value is known only at the
instant of operation.

10.1.1 Edges/Transitions
Many devices use as their input a change in a signal rather than a

level of a signal. For example, when you press the "on" button to a
computer, it isn't a binary one or zero from the switch that turns on the
computer. If this was the case, as soon as you removed your finger, the
machine would power off. Instead, the computer begins its power up
sequence the instant your finger presses the button, i.e., the button
transitions from an off state to an on state.

There are two truth table symbols that represent transitions from one
logic value to another. The first represents a change in a binary signal
from a zero to a one, i.e., a transition from a low to a high. This
transition is called a rising edge and it is represented by the symbol ↑.
The second symbol represents a transition from a one to a zero. This
transition is called a falling edge and it is represented by the symbol ↓.

208 Computer Organization and Design Fundamentals

Figure 10-1 presents a binary signal with the points where transitions
occur identified with these two new symbols.

Figure 10-1 Symbols for Rising Edge and Falling Edge Transitions

10.1.2 Previously Stored Values
If a memory cell is powered, it contains a stored value. We don't

know whether that value is a one or a zero, but there is something
stored in that cell. If a logic circuit uses the stored value of that cell as
an input, we need to have a way of labeling it so that it can be used
within a boolean expression.

Just as A, B, C, and D are used to represent inputs and X is used to
represent an output, a standard letter is used to represent stored values.
That letter is Q. To indicate that we are referring to the value of Q that
was most recently stored, we use Q0.

For example, if a boolean expression is being used to represent what
we are about to store in a memory cell, we would write the expression:

Q = value to be stored in memory cell

If an expression used the value previously stored in the memory cell as
an input, our expression might look like:

X = expression using Q0

10.1.3 Undefined Values
Some circuits have conditions that either are impossible to reach or

should be avoided because they might produce unpredictable or even
damaging results. In these cases, we wish to indicate that the signal is
undefined. We do this with the letter U.

For example, consider the binary circuit that operates the light inside
a microwave oven. The inputs to this circuit are a switch to monitor
whether the door has been opened and a signal to indicate whether the

 ↑ ↓ ↑ ↓ ↑ ↓

 Chapter 10: Memory Cells 209

magnetron is on or off. Note that the magnetron never turns on when
the door is opened, so this circuit has an undefined condition.

Door Magnetron Light D M L
Closed Off Off 0 0 0
Closed On On ⇒ 0 1 1
Open Off On 1 0 1
Open On Shouldn't happen 1 1 U

Figure 10-2 Sample Truth Table Using Undefined Output

10.2 The S-R Latch
Computer memory is made from arrays of cells, each of which is

capable of storing a single bit, a one or a zero. The digital circuitry that
is used to route bits to and from memory is similar to much of that
already presented here. Nothing has been said, however, about how the
bit is stored.

The goal is to send a logic one or a logic zero to a device, then after
leaving it unattended for a period of time, come back and find the value
still there. A simple wire alone cannot do this. A digital value placed on
a wire will, after the value is removed, quickly loose the charge and
become unreadable or erroneous.

Early memory stored data in small doughnut shaped rings of iron.
Wires that were woven through the centers of the iron rings were
capable of magnetizing the rings in one of two directions. If each ring
was allowed to represent a bit, then one direction of magnetization
would represent a one while the other represented a zero. As long as
nothing disturbed the magnetization, the value of the stored bit could be
detected later using the same wires that stored the original value.

With the advent of digital circuitry, the use of iron (magnetic
material) was no longer necessary. A circuit could be developed where
the output could be routed back around to the circuit's inputs. This
"ring" provides feedback which allows the circuit's current data to
affect the circuit's future data and thus maintain its condition. The
circuit in Figure 10-3 is a simple example of this.

210 Computer Organization and Design Fundamentals

Figure 10-3 Primitive Feedback Circuit using Inverters

The output of the first inverter in the circuit of Figure 10-3 is fed
into the input of a second inverter. Since the inverse of an inverse is the
original value, the input to the first inverter is equal to the output of the
second inverter. If we connect the output of the second inverter to the
input of the first inverter, then the logic value will be maintained until
power to the circuit is removed.

In order to take the next step, sometimes it is helpful to redraw the
circuit of Figure 10-3 so that the inverters are side-by-side.

Figure 10-4 Primitive Feedback Circuit Redrawn

The problem with the circuit of Figure 10-4 is that there is no way to
modify the value that is stored. We need to replace either one or both of
the inverters with a device that has more than one input, but one that
can also operate the same way as the inverter during periods when we
want the data to be stable. It turns out that the NAND gate can do this.
Figure 10-5 presents the truth table for the NAND gate where one of
the inputs is always connected to a one.

Figure 10-5 Operation of a NAND Gate with One Input Tied High

A 1 X
0 1 1
1 1 0

A
1 X

 Chapter 10: Memory Cells 211

Notice that the output X is always the inverse of the input A. The
NAND gate operates just like an inverter with a second input. Figure
10-6 replaces the inverters of Figure 10-4 with NAND gates.

Figure 10-6 Primitive Feedback Circuit Redrawn with NAND Gates

As long as the free inputs to the two NAND gates remain equal to
one, the circuit will remain stable since it is acting as a pair of inverters
connected together in series. It is also important to note that if the top
inverter outputs a zero, the bottom inverter outputs a one. Likewise, if a
one is output from the top inverter, then a zero is output from the
bottom one. These two possible states are shown in Figure 10-7.

Figure 10-7 Only Two Possible States of Circuit in Figure 10-6

What happens if we change the free input of either NAND gate?
Remember that if either input to a NAND gate is a zero, then the output
is forced to be a 1 regardless of the other input. That means that if a
zero is placed on the free input of the top NAND gate, then the output
of that NAND gate is forced to one. That one is routed back to the input
of the lower NAND gate where the other input is one. A NAND gate
with all of its inputs set to one has an output of zero. That zero is routed
back to the input of the top NAND gate whose other input is a zero. A
NAND gate with all of its inputs set to zero has an output of one. This
means that the system has achieved a stable state.

1

1

1

1

0

1

1

1

1

0

212 Computer Organization and Design Fundamentals

If the free input of the top NAND gate returns to a one, the zero
input to it from the lower NAND gate makes it so that there is no
change to the one currently being output from it. In other words,
returning the free input of the top NAND gate back to a one does not
change the output of the circuit. These steps are represented graphically
in the circuit diagrams of Figure 10-8.

Figure 10-8 Operation of a Simple Memory Cell

This means that the circuit can be used to store a one in the top
NAND gate and a zero in the bottom NAND gate by toggling the free
input on the top NAND gate from a one to a zero and back to a one.
Figure 10-9 shows what happens when we toggle the free input on the
bottom NAND gate from a one to a zero and back to a one.

0

1

1 0

1

1

01

0

1

1

01

0
1

1

1

01

0

a.) A zero to the free input
of the top NAND gate
forces a one to its output

b.) That one passes to the
bottom NAND which in
turn outputs a zero

c.) A zero from the bottom
NAND returns to the lower
input of the top NAND

d.) The second zero at the top
NAND holds its output even
if the free input returns to 1

 Chapter 10: Memory Cells 213

Figure 10-9 Operation of a Simple Memory Cell (continued)

This configuration of two NAND gates represents the basic circuit
used to store a single bit of data using logic gates. Notice that in step d
of both Figure 10-8 and Figure 10-9, the circuit is stable with the
opposing NAND gates outputting values that are inverses of each other.
In addition, notice that the circuit's output is changed by placing a zero
on the free input of one or the other NAND gates.

Figure 10-10 presents the standard form of this circuit with the
inputs labeled S and R and the outputs labeled Q and Q. The bars
placed above the S and R inputs indicate that they are active low inputs
while the bar above the lower output of Q indicates that it is an inverted
value of the Q output.

This circuit is referred to as the S-R latch. The output Q is set to a
one if the S input goes low while R stays high. The output Q is reset to
a zero if the R input goes low while S stays high. If both of these inputs
are high, i.e., logic one, then the circuit maintains the current value of
Q. The truth table for the S-R latch is shown in Figure 10-11.

1

0
1

1

0

0

1

1

1

0

0

10

1
1

1

0

10

1

a.) A zero to the free input of
the bottom NAND gate
forces a one to its output

b.) That one passes to the
top NAND which in turn
outputs a zero

c.) A zero from the top NAND
returns to the lower input of
the bottom NAND

d.) The second zero at the bottom
NAND holds its output even
if the free input returns to 1

214 Computer Organization and Design Fundamentals

Figure 10-10 S-R Latch Capable of Storing a Single Bit

Figure 10-11 S-R Latch Truth Table

Notice that the row of the truth table where both inputs equal zero
produces an undefined output. Actually, the output is defined: both Q
and its inverse are equal to one. What makes this case undefined is that
when both of the inputs return to one, the output of the system becomes
unpredictable, and possibly unstable. It is for this reason that the top
row of this truth table is considered illegal and is to be avoided for any
implementation of the S-R latch circuit.

10.3 The D Latch
The S-R latch is presented in this chapter to show how latches store

data. In general, every memory device that employs logic gates has
embedded in it an S-R latch. For the rest of this book, we will be
treating latches as "black boxes" addressing only the controls and how
they affect Q and its inverse.

The typical data storage latch is referred to as a data latch or a D
latch. There are slight variations between different implementations of
the D latch, but in general, every D latch uses the same basic inputs and
outputs. Figure 10-12 presents the block diagram for the fully
implemented D-latch.

S

R

Q

Q

S R Q Q
0 0 U U
0 1 1 0
1 0 0 1
1 1 Q0 Q0

 Chapter 10: Memory Cells 215

Figure 10-12 Block Diagram of the D Latch

The outputs, Q and Q, operate just as they did for the S-R latch
outputting the stored data and its inverse. The active low inputs, S and
R, also operate the same as they did for the S-R latch. If S goes low
while R is held high, the output Q is set to a one. If R goes low while S
is held high, the output Q is reset to zero. If both S and R are high, then
Q maintains the data bit it was last storing. The output of the circuit is
undefined for both S and R low.

The two new inputs, D and Clock, allow the circuit to specify the
data being stored in Q. D, sometimes called the data input, is the binary
value that we wish to store in Q. Clock tells the circuit when the data is
to be stored.

This circuit acts much like a camera. Just because a camera is
pointing at something does not mean that it is storing that image. The
only way that the image is going to be stored is if someone presses the
button activating the shutter. Once the shutter is opened, the image is
captured to film or to digital media.

The Clock input acts like the button on the camera. A specific
transition or level of the binary value at the Clock input captures the
binary value present at the D input and stores it to Q.

There is another characteristic of taking a picture with a camera that
has an analogy with the storage of data in a D latch. Assume for a
moment that we are talking about cameras that use film instead of
digital media to store an image. If the camera's shutter is opened thus
exposing the film to light for the entire time the user's finger was
pressing the button, then every picture would be over exposed. The
shutter should just open for an instant, typically, the instant that the
user's finger is coming down on the button.

 S
D Q

 Q

R
Clock

216 Computer Organization and Design Fundamentals

Alternatively, if the shutter was activated when the user's finger
came up instead of down on the button, a number of good shots would
be missed and the user might become quite frustrated. It is important to
define specifically when the image is captured with regards to the
button.

Different implementations of the D latch use different definitions of
when the data is captured with respect to Clock. Some operate like
cameras do only capturing data when the Clock signal transitions,
either rising edge or falling edge. These D latches are referred to as
edge-triggered latches. The instant the D latch detects the appropriate
transition, the binary value that is present at the input D is copied to Q.
The data will remain at Q until the next appropriate transition. The truth
tables in Figure 10-13 show how the inputs Clock and D of both the
rising and falling edge-triggered latches affect the data stored at Q.

Figure 10-13 Edge-Triggered D Latch Truth Tables

Notice that the value on D does not affect the output if the Clock
input is stable, nor does it have an effect during the clock transition
other than the one for which it was defined. During these periods, the
values stored at the latch's outputs remain set to the values stored there
from a previous data capture.

D latches can also be designed to capture data during a specified
level on the Clock signal rather than a transition. These are called
transparent latches. They latch data much like an edge triggered latch,
but while Clock is at the logic level previous to the transition, they pass
all data directly from the D input to the Q output. For example, when a
zero is input to the Clock input of a D latch designed to capture data
when Clock equals zero, the latch appears to vanish, passing the signal

D Clock Q Q D Clock Q Q
X 0 Q0 Q0 X 0 Q0 Q0
X 1 Q0 Q0 X 1 Q0 Q0
X ↓ Q0 Q0 X ↑ Q0 Q0
0 ↑ 0 1 0 ↓ 0 1
1 ↑ 1 0 1 ↓ 1 0

a.) Rising Edge b.) Falling Edge

 Chapter 10: Memory Cells 217

D straight to Q. The last value present on D when the Clock switches
from zero to one is stored on the output until Clock goes back to zero.
Figure 10-14 presents this behavior using truth tables for both the
active low and active high transparent D latches.

Figure 10-14 Transparent D Latch Truth Tables

A transparent D latch acts like a door. If Clock is at the level that
captures data to the output, i.e., the door is open, any signal changes on
the D input pass through to the output. Once Clock goes to the opposite
level, the last value in Q is maintained in Q.

The rest of this chapter presents some applications of latches
including processor support circuitry, I/O circuits, and memory.

10.4 Divide-By-Two Circuit
In some cases, the frequency of a clock input on a circuit board is

too fast for some of the computer's peripherals. An edge-triggered D
latch can be used to divide a clock frequency in half. The circuit
presented in Figure 10-15 does this.

Figure 10-15 Divide-By-Two Circuit

Assume, for example, that we are using a rising edge-triggered latch
for this circuit. By connecting the inverse of the Q output to the D
input, the output Q is inverted or toggled every time the clock goes

D Clock Q Q D Clock Q Q
X 1 Q0 Q0 X 0 Q0 Q0
0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 0

a.) Active Low b.) Active High

D Q

 Q

High frequency
clock input

Clock output with
frequency cut in half

218 Computer Organization and Design Fundamentals

from a zero to a one. Since there is only one rising edge for a full cycle
of a periodic signal, it takes two cycles to make the output Q go
through a full cycle. This means that the frequency of the output Q is
one half that of the input frequency at the clock input. Figure 10-16
presents a timing diagram of this behavior.

Figure 10-16 Clock and Output Timing in a Divide-By-Two Circuit

By cascading multiple divide-by-two circuits, we get divisions of
the original frequency by 2, 4, 8, … , 2n.

Figure 10-17 Cascading Four Divide-By-Two Circuits

10.5 Counter
By making a slight modification to the cascaded divide-by-two

circuits of Figure 10-17, we can create a circuit with a new purpose.
Figure 10-18 shows the modified circuit created by using the inverted
outputs of the latches to drive the Clock inputs of the subsequent
latches instead of using the Q outputs to drive them.

clock input

Q

D Q

 Q

Clock
input

Frequency
divided by 2

D Q

 Q

D Q

 Q

D Q

 Q

Frequency
divided by 4

Frequency
divided by 8

Frequency
divided by 16

 Chapter 10: Memory Cells 219

Figure 10-18 Cascading Four Divide-By-Two Circuits

If we draw the outputs of all four latches with respect to each other
for this new circuit, we see that the resulting ones and zeros from their
outputs have a familiar pattern to them, specifically, they are counting
in binary.

Figure 10-19 Output of Binary Counter Circuit

If the leftmost latch is considered the LSB of a four-bit binary
number and the rightmost latch is considered the MSB, then a cycle on
the input clock of the leftmost latch will increment the binary number
by one. This means that by connecting the inverted output of a divide-
by-two circuit to the clock input of a subsequent divide-by-two circuit n
times, we can create an n-bit binary counter that counts the pulses on an
incoming frequency.

D Q

 Q

Clock
input

D Q

 Q

D Q

 Q

D Q

 Q

 Latch A Latch B Latch C Latch D

Latch A

Latch B

Latch C

Latch D

 B O
 i u
 n t
 a p
 r u
 y t

 0 1 0 1 0 1 0 1 0 1 0 1 0
 0 0 1 1 0 0 1 1 0 0 1 1 0
 0 0 0 0 1 1 1 1 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 1 1 1 1

Input
clock

220 Computer Organization and Design Fundamentals

10.6 Parallel Data Output
Not all binary values stay inside the processor. Sometimes, external

circuitry needs to have data sent to it. For example, before the advent of
the USB port, computers used a 25-pin connector to transmit data. It
was called the parallel port, and it was used to send and receive eight
bits at a time to a device such as a printer or a storage device.

The processor needed to be able to place data on the eight data bits
of this port, then latch it so that the data would remain stable while the
processor performed another task. The device connected to the other
end of the port could then access the data, and when it was done, alert
the processor that it needed additional data. The processor would then
latch another byte to the data lines for the external device.

The typical circuit used for the data lines of this port was the D
latch. By placing an active-low transparent latch at each output bit, the
processor could use the Clock to store data in each latch. This
arrangement was so common that IC manufacturers made a single chip
that contained all of the latches necessary for the circuit. Figure 10-20
presents that circuit.

Figure 10-20 Output Port Data Latch Circuitry

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

"Write" line

Inputs
for data

bits

Outputs to
external
device

 Chapter 10: Memory Cells 221

By connecting all of the Clocks to a single "write" input, then the
processor only needed to place the appropriate data on the data lines
and toggle the write line low then high. This would latch the data onto
the Q lines of the eight latches where it would remain until the
processor placed new data on the data lines and toggled the write line
again.

Memory based on logic gates works the same way. To store data,
the processor places the data it wants to store onto data lines, then
pulses a write signal low then high. This stores the data into latches
within the memory circuit.

10.7 What's Next?
The next chapter introduces state machines, the tools that are used to

design them, and the circuits that are used to implement them. A state
machine is any system that is designed to remember its condition. For
example, for a traffic signal to turn yellow, it has to know that it was
green. For an elevator to know that it should go down to get to the fifth
floor must first know that it is currently on the eighth floor. State
machines require memory, and therefore, many of the implementations
of state machines use latches.

Problems
1. For the circuit below, what value does Q have?

2. Describe why the S-R latch has an illegal condition.

3. Describe the purpose of each of the following truth table symbols.

a.) ↓ b.) ↑ c.) U d.) Q0

4.

5. True or false: A D latch with only two inputs D and CLK has no
illegal states.

 1 Q

 0 Q

If a D latch has the inputs S = 0, R = 1, D = 1, and Clock = 0,
what is the output Q?

222 Computer Organization and Design Fundamentals

6. Which of the following circuits is used to divide the frequency of
the signal F in half?

7. Show the D latch output waveform Q based on the inputs R, D,
and Clock indicated in the figure below. Assume the latch captures
on the rising edge.

D Q

 Q F

D Q

 Q F

D Q

 Q

F D Q

 Q

F

a.)

c.)

b.)

d.)

 D Q

R

D

Clock

Q

R

