
 361

CHAPTER SIXTEEN

Intel 80x86 Base Architecture

16.1 Why Study the 80x86?
Any introduction to processor architecture should be followed by an

investigation of the architecture of a specific processor. The choice then
becomes which processor to examine. There are so many. Some
approaches use a virtual processor, i.e., one that exists only on paper or
as a simulator. This method simplifies the learning process by
concealing the complexities and idiosyncrasies of a real processor.

At the other extreme, we could examine a modern processor such as
the Intel® Pentium® 4 Processor Extreme Edition with its Hyper-
Threading Technology™, Hyper-Pipelined Technology™, enhanced
branch prediction, three levels of 8-way cache including a split L1
cache, and multiple ALUs. Or we could look at the Apple® PowerPC®
G5 with its 64-bit architecture, two double-precision floating point
units, and twelve functional units. If you are a student who has just
been introduced to processor architecture, this can be like trying to
swallow an elephant. Too many new concepts must be explained before
even a minimal understanding of the processor can be had.

A third method is to examine the simplest processor from a family
of existing processors. This particular processor should provide the
closest match to the processor architecture discussed in Chapter 15
while providing a link to the most modern processor of the family. It
eliminates the need for a discussion of advanced computer architecture
concepts while giving the student a real processor that they can
program.

The processor we present here is the original 16-bit Intel processor,
the 80186, the root of the Intel processor family that is commonly
referred to as the 80x86 family. The 'x' in 80x86 represents the
generation of the processor, 1, 2, 3, and so on. Table 16-1 presents a
summary of the bus characteristics of some of the 80x86 processors.

The 80186 has 16 data lines allowing it to perform operations on
unsigned integers from 0 to 216 – 1 = 65,535 and signed integers from
–32,768 to 32767. It has 20 address lines providing access to a memory
space of 220 = 1 Meg.

362 Computer Organization and Design Fundamentals

Table 16-1 Summary of Intel 80x86 Bus Characteristics

Processor
Data

bus width
Address

bus width
Size of

address space
80186 16 20 220 = 1 Meg
80286 16 24 224 = 16 Meg
80386SX 16 24 224 = 16 Meg
80386DX 32 32 232 = 4 Gig
80486 32 32 232 = 4 Gig
80586 "Pentium" 64 32 232 = 4 Gig

16.2 Execution Unit
The 80x86 processor is divided into two main components: the

execution unit and the bus interface unit. The execution unit (EU) is
the 80x86's CPU as discussed in Chapter 15. It is controlled by the EU
control system which serves a dual purpose: it acts as the control unit
and also as a portion of the instruction decoder. The EU also contains
the ALU, the processor flags, and the general purpose and address
registers. Figure 16-1 presents a block diagram of the EU.

Figure 16-1 Block Diagram of 80x86 Execution Unit (EU)

General Registers
Flags

ALU

EU
control system

Connects to
instruction

queue in BIU
(Figure 16-2)

Connects to data bus in
BIU (Figure 16-2)

– internal data bus
– internal control bus

– latches used to hold data

– logic for processing
– logic for control

AH AL
BH BL
CH CL
DH DL

SP
BP
DI
SI
IP

 Chapter 16: Intel 80x86 Base Architecture 363

16.2.1 General Purpose Registers

The registers of the 80x86 are grouped into two categories: general
purpose and address. The general purpose registers are for
manipulating or transferring data; the address registers contain memory
addresses and are used to point to the locations in memory where data
will be retrieved or stored.

Figure 16-1 shows that there are eight general purpose registers:
AH, AL, BH, BL, CH, CL, DH, and DL. Each of these registers is eight
bits. Earlier we said that the 80186 is a 16-bit processor. How can this
be since we only have 8-bit registers?

The 80186 processor creates a 16-bit register by combining two 8-
bit registers. AH and AL, for example, can function as a pair. This
larger register is referred to as AX. The 8-bit registers are combined by
linking them together so that the 8 bits of AH are the 8 most significant
bits of AX and AL are the 8 least significant bits of AX. For example,
if AH contains 101100002 = B016 and AL contains 010111112 = 5F16,
then the virtual register AX contains 10110000010111112 = B05F16.

Example
If CX contains the binary value 01101101011010112, what value

does CH have?

Solution
Since the register CH provides the most significant 8 bits of CX,

then the upper eight bits of CX is CH, i.e., CH contains 011011012.

Each of the general purpose registers is named according to their

default purpose. For the most part, these purposes are not set in stone.
The programmer still has some flexibility in how the registers are used.
The following discussion presents their suggested use.

AX is called the accumulator register, and it is used mostly for
arithmetic, logic, and the general transfer of data. Many of the
assembly language instructions for higher level mathematical
operations such as multiply and divide don't even let the programmer
specify a register other than AX to be used.

BX is called the base register, and it is used as a base address or
pointer to things like data arrays. We will find out later that there are a
number of other registers that are used as pointers, but those are special
purpose pointers. BX tends to be more of a general purpose pointer.

364 Computer Organization and Design Fundamentals

CX is called the counter register. When a programmer uses a for-
loop, the index for that loop is usually stored in CX. Intel designed a
number of special purpose instructions that use CX in order to get
better performance out of loops.

DX is called the data register. This register is used with AX for
special arithmetic functions allowing for things such as storing the
upper half of a 32-bit result of a 16-bit multiply or holding the
remainder after an integer division.

16.2.2 Address Registers
Below the general purpose registers in Figure 16-1 are the address

registers: SP, BP, DI, SI, and IP. These are 16-bit registers meant to
contain addresses with which to point to locations in memory. At this
point, do not worry about how a 16-bit register can reference something
in a memory space that uses a 20-bit address bus. The process involves
using the segment registers of the BIU. We will address the mechanics
behind the use of the segment registers later in this chapter.

These address registers are classified into two groups: the pointer
registers, SP, BP, and IP, and the index registers, DI and SI. Although
they all operate in the same manner, i.e., pointing to addresses in
memory, each address register has a specific purpose.

SP is the stack pointer and it points to the address of the last piece
of data stored to the stack. To store something to the stack, the stack
pointer is decremented by the size of the value to be stored, i.e., SP is
decremented by 2 for a word or 4 for a double word. The value is then
stored at the new address pointed to by the stack pointer. To retrieve a
value from the stack, the value is read from the address pointed to by
the stack pointer, then the stack pointer is incremented accordingly.

BP is the base pointer and its primary use is to point to the
parameters that are passed to a function during a function call. For
example, if the function myfunc(var1, var2) is called, the values for
var1 and var2 are placed in the temporary memory of the stack. BP
contains the address in the stack where the list of variables begins.

IP is the instruction pointer. As we discussed in Chapter 15, the
CPU goes step-by-step through memory loading, interpreting, and then
executing machine code. It uses the memory address contained in IP as
a marker pointing to where to retrieve the next instruction. Each time it
retrieves an instruction, it increments IP so that it points to the next
instruction to retrieve. In some cases, the instruction decoder needs to

 Chapter 16: Intel 80x86 Base Architecture 365

increment IP multiple times to account for data or operands that might
follow an element of machine code.

SI, the source index, and DI, the destination index, also contain
addresses that point to memory. They are used for string operations
where strings may be copied, searched, or otherwise manipulated. SI
points to memory locations from which characters are to be retrieved
while DI points to memory locations where characters will be stored.

16.2.3 Flags
The flags of the 80x86 processor are contained in a 16-bit register.

Not all 16 bits are used, and it isn't important to remember the exact bit
positions of each of the flags inside the register. The important thing is
to understand the purpose of each of the flags.

Remember from Chapter 15 that the flags indicate the current status
of the processor. Of these, the majority report the results of the last
executed instruction to affect the flags. (Not all instructions affect all
the flags.) These flags are then used by a set of instructions that test
their state and alter the flow of the software based on the result.

The flags of the 80x86 processor are divided into two categories:
control flags and status flags. The control flags are modified by the
software to change how the processor operates. There are three of
them: trap, direction, and interrupt.

The trap flag (TF) is used for debugging purposes and allows code
to be executed one instruction at a time. This allows the programmer to
step through code address-by-address so that the results of each
instruction can be inspected for proper operation.

The direction flag (DF) is associated with string operations. In
particular, DF dictates whether a string is to be examined by
incrementing through the characters or decrementing. This flag is used
by the 80x86 instructions that automate string operations.

Chapter 15 introduced us to the concept of interrupts by showing
how devices that need the processor's attention can send a signal
interrupting the processor's operation in order to avoid missing critical
data. The interrupt flag (IF) is used to enable or disable this function.
When this flag contains a one, any interrupt that occurs is serviced by
the processor. When this flag contains a zero, the maskable interrupts
are ignored by the processor, their requests for service remaining in a
queue waiting for the flag to return to a one.

366 Computer Organization and Design Fundamentals

The IF flag is cleared and set by software using two different
assembly language commands: STI for setting and CLI for clearing.
Some interrupts known as non-maskable interrupts cannot be disabled.
Either their purpose is considered to be a priority over all other
processor functions or the software itself calls the interrupt.

The remaining flags are the status flags. These are set or cleared
based on the result of the last executed instruction. There are six of
them: overflow, sign, zero, auxiliary carry, parity, and carry. The
following describes the operation of each of these bits.

• Overflow flag (OF) – indicates when an overflow has occurred in a

mathematical operation.
• Sign flag (SF) – follows the sign bit of a mathematical or logical

result, i.e., it is cleared to 0 when the result is positive and set to 1
when the result is negative.

• Zero flag (ZF) – is set to 1 when the result of a mathematical or
logical function is zero. The flag is cleared to 0 otherwise.

• Auxiliary carry flag (AF) – equals the carry from the bit 3 column
of an addition into the bit 4 column. If you recall the section on
BCD addition from Chapter 3, a carry out of a nibble is one
indication that error correction must be taken. This flag represents
the carry out of the least significant nibble.

• Parity flag (PF) – is set to 1 if the result contains an even number
of ones and cleared to 0 otherwise.

• Carry flag (CF) – represents the carry out of the most significant
bit position. Some shift operations also use the carry to hold the bit
that was last shifted out of a register.

Example
How would the status flags be set after the processor performed the

8-bit addition of 101101012 and 100101102?

Solution
This problem assumes that the addition affects all of the flags. This

is not true for all assembly language instructions, i.e., a logical OR does
not affect AF.

Let's begin by adding the two numbers to see what the result is.

 Chapter 16: Intel 80x86 Base Architecture 367

1 1 1 1
 1 0 1 1 0 1 0 1
+ 1 0 0 1 0 1 1 0
 0 1 0 0 1 0 1 1

Now go through each of the flags to see how it is affected.

 OF=1 – There was an overflow, i.e., adding two negative numbers
 resulted in a positive number.
 SF=0 – The result is positive.
 ZF=0 – The result does not equal zero.
 AF=0 – No carry occurred from the fourth column (bit 3) to the fifth
 column (bit 4).
 PF=1 – The result contains four ones which is an even number.
 CF=1 – There was a carry.

16.2.4 Internal Buses
There are two internal buses in the EU that are used to pass

information between the components. The first is used to exchange data
and addressing information between the registers and the ALU. This
same bus is also used to transfer data to and from memory by way of
the bus interface unit. Each assembly language instruction that uses
operands must move those operands from their source to a destination.
These transfers occur along the data bus.

The second bus has one purpose: to transfer instructions that have
been obtained by the bus interface unit to the instruction decoder
contained in the EU control system.

The next section discusses how the bus interface unit performs data
transactions with the memory space.

16.3 Bus Interface Unit
The bus interface unit (BIU) controls the transfer of information

between the processor and the external devices such as memory, I/O
ports, and storage devices. Basically, it acts as the bridge between the
EU and the external bus. A portion of the instruction decoder as defined
in Chapter 15 is located in the BIU. The instruction queue acts as a
buffer allowing instructions to be queued up as they wait for their turn
in the EU. Figure 16-2 presents the block diagram of the BIU.

carry out

368 Computer Organization and Design Fundamentals

Figure 16-2 Block Diagram of 80x86 Bus Interface Unit (BIU)

The main purpose of the BIU is to take the 16-bit pointers of the EU
and modify them so that they can point to data in the 20-bit address
space. This is done using the four registers CS, DS, SS, and ES. These
are the segment registers.

16.3.1 Segment Addressing
In the center of the BIU block diagram is a set of segment registers

labeled CS, DS, SS, and ES. These four 16-bit registers are used in
conjunction with the pointer and index registers to store and retrieve
items from the memory space.

So how does the processor combine a 16-bit address register with a
16-bit segment register to create a 20-bit address? Well, it is all done in
the address summing block located directly above the segment registers
in the block diagram of the BIU in Figure 16-2. Every time the
processor goes out to its memory space to read or write data, this 20-bit
address must be calculated based on different combinations of address
and segment registers.

Σ

Connects to EU control system
(Figure 16-1)

Connects to EU data
bus (Figure 16-1)

To external
data bus

To external
address bus

Bus
control
logic

CS
DS
SS
ES

– internal data bus

– latches used to hold data – logic for processing
– logic for control

1 2 3 4
Instruction queue

 Chapter 16: Intel 80x86 Base Architecture 369

Next time your Intel-based operating system throws up an execution
error, look to see if it gives you the address where the error occurred. If
it does, you should see some hexadecimal numbers in a format similar
to the one shown below:

3241:A34E

This number is a special representation of the segment register (the
number to the left of the colon) and the pointer or index register (the
number to the right of the colon). Remember that a 4-digit hexadecimal
number represents a 16-bit binary number. It is the combination of
these two 16-bit registers that creates the 20-bit address.

The process works like this. First take the value in the segment
register and shift if left four places. This has the effect of adding a zero
to the right side of the hexadecimal number or four zeros to the right
side of the binary number. In our example above, the segment is 324116
= 0011 0010 0100 00012. Adding a zero nibble to the right side of the
segment gives us 3241016 = 0011 0010 0100 0001 00002.

The pointer or index register is then added to this 20-bit segment
address. Continuing our example gives us:

 0011 0010 0100 0001 0000 3241016
 + 1010 0011 0100 1110 or + A34E16
 0011 1100 0111 0101 1110 3C75E16

For the rest of this book, we will use the following terminology to

represent these three values.

• The 20-bit value created by shifting the value in a segment register
four places to the left will be referred to as the segment address. It
points to the lowest address to which a segment:pointer
combination can point. This address may also be referred to as the
base address of the segment.

• The 16-bit value stored in a pointer or index register will be
referred to as the offset address. It represents an offset from the
segment address to the address in memory that the processor needs
to communicate with.

• The resulting 20-bit value that comes out of the address summing
block points to a specific address in the processor's memory space.

370 Computer Organization and Design Fundamentals

This address will be referred to as the physical address, and it is the
address that is placed on the address lines of the memory bus.

If we look at the function of the segment and pointer registers from

the perspective of the memory space, the segment register adjusted with
four binary zeros filled in from the right points to an address
somewhere in the full memory space. Because the least significant four
bits are always zero, this value can only point to memory in 16-byte
increments. The 16-bit offset address from the pointer register is then
added to the segment address pointing to an address within the 216 =
65,535 (64K) locations above where the segment register is pointing.
This is the physical address. Figure 16-3 shows how the segment and
pointer addresses relate to each other when pointing to a specific
address within the memory space.

Figure 16-3 Segment/Pointer Relation in the 80x86 Memory Map

There is a second purpose for this segment:pointer addressing
method beyond allowing the 80x86 processor to control 20 address
lines using 16-bit registers. This second reason is actually of greater
importance as it allows for greater functionality of the operating
system.

Segment
register points
to the base of a
64K block

 64 K

Pointer or index
register adds an
offset to the
segment register's
position

Offset

1 Meg

Physical
address

 Chapter 16: Intel 80x86 Base Architecture 371

By assigning the responsibility of maintaining the segment registers
to the operating system while allowing the application to control the
address and pointer registers, applications can be placed anywhere in
memory without affecting their operation. When the operating system
loads an application to be executed, it selects a 64 K block of memory
called a segment and uses the lowest address of that block as the base
address for that particular application. During execution, the
application modifies only the pointer registers keeping its scope within
the 64K block of its segment.

As long as the application modifies only the address registers, then
the program remains in the 64 K segment it was assigned to. By using
this process, the operating system is free to place an application
wherever it wants to in memory. It also allows the operating system to
maintain several concurrent applications in memory by keeping track of
which application is assigned to which segment.

Although the programmer may force a segment register to be used
for a different purpose, each segment register has an assigned purpose.
The following describes the uses of the four segment registers, CS, DS,
SS, and ES.

• Code Segment (CS) – This register contains the base address of the

segment assigned to contain the code of an application. It is paired
with the Instruction Pointer (IP) to point to the next instruction to
load into the instruction decoder for execution.

• Data Segment (DS) – This register contains the base address of the
segment assigned to contain the data used by an application. It is
typically associated with the SI register.

• Stack Segment (SS) – This register contains the base address of the
stack segment. Remember that there are two pointer registers that
use the stack. The first is the stack pointer, and the combination of
SS and SP points to the last value stored in this temporary memory.
The other register is the base pointer which is used to point to the
block of data elements passed to a function.

• Extra Segment (ES) – Like DS, this register points to the data
segment assigned to an application. Where DS is associated with
the SI register, ES is associated with the DI register.

372 Computer Organization and Design Fundamentals

Example

If CS contains A48716 and IP contains 143616, then what is the
physical address of the next instruction in memory to be executed?

Solution
The physical address is found by shifting A48716 left four bits and

adding 143616 to the result.

A487016 1010 0100 1000 0111 0000
+ 143616 or + 0001 0100 0011 0110
A5CA616 1010 0101 1100 1010 0110

Therefore, the physical address pointed to by A487:1436 is A5CA616.

16.3.2 Instruction Queue
As discussed in Chapter 15, there are times during the execution of

an instruction when different portions of the processor are idle. In the
case of the 80x86 processor for example, while the BIU is retrieving
the next instruction to be executed from memory, the EU control
system and the ALU are standing by waiting for the instruction.

The 80186 divides the process of executing an instruction into three
cycles: fetch, decode, and execute. These cycles are described below:

• Fetch – Retrieve the next instruction to execute from its location in

memory. This is taken care of by the BIU.
• Decode – Determine which circuits to energize in order to execute

the fetched instruction. This function is performed by the
instruction decoding circuitry in the EU control system.

• Execute – Perform the operation dictated by the instruction using
the ALU, registers, and data transfer mechanisms.

The purpose of the instruction queue of the BIU is to maintain a

sequence of fetched instructions for the EU to execute. In some cases,
branches or returns from functions can disrupt the sequence of
instructions and require a change in the anticipated order of execution.
An advanced instruction queue can handle this by loading both paths of
execution allowing the EU to determine which one it will need after
executing the previous instructions.

 Chapter 16: Intel 80x86 Base Architecture 373

16.4 Memory versus I/O Ports

In order to communicate with external hardware devices without
taking up space in the 1 Meg memory space of the 80x86 processor,
two additional control lines are added to the bus that effectively turn it
into two buses, one for data and one for I/O. This second bus uses the
same address and data lines that are used by the memory bus. The
difference is that the I/O devices use different read and write control
lines.

To read data from memory, the 80x86 processor uses the active-low
signal MRDC. When MRDC is low, the addressed memory device on
the bus knows to pass the appropriate data back to the processor.

To write data to memory, the 80x86 processor uses the active-low
signal MWTC. When MWTC is low, the addressed memory device on
the bus knows that the processor will be sending data to it. Once the
memory device receives this data, it knows to store it in the appropriate
memory location.

If both MRDC and MWTC are high, then the memory devices
remain inactive. By adding a second pair of read and write control
lines, the processor can communicate with a new set of devices on the
same set of address and data lines. These new devices are called I/O
ports, and they connect the processor to the external environment. By
placing an address on the address lines, an I/O port is selected in the
same way that a memory chip is selected using chip select circuitry.

The read control for the I/O ports is called IORC, and it too is an
active low signal. When IORC equals zero, the selected I/O port places
data on the data lines for the processor to read. This data might be the
value of a key press, the digital value of an analog input, the status of a
printer, or anything else that the processor needs to input from the
external devices.

The write control for the I/O ports is called IOWC. This active low
signal goes low when the processor wants to send data to an external
device. This data might be the characters of a document to be printed, a
command to the video system, or any other value that the processor
needs to send to the external devices.

Table 16-2 summarizes the settings of these four read and write
control signals based on their functions.

374 Computer Organization and Design Fundamentals

Table 16-2 Summary of the 80x86 Read and Write Control Signals

Function MRDC MWTC IORC IOWC
Reading from memory 0 1 1 1
Writing to memory 1 0 1 1
Reading from an I/O device 1 1 0 1
Writing to an I/O device 1 1 1 0

Even though they use the same address and data lines, there are

slight differences between the use of memory and the use of I/O ports.
First, regardless of the generation of the 80x86 processor, only the
lowest 16 address lines are used for I/O ports. This means that even if
the memory space of an 80x86 processor goes to 4 Gig, the I/O port
address space will always be 216 = 65,536 = 64K. This is not a problem
as the demand on the number of external devices that a processor needs
to communicate with has not grown nearly at the rate of demand on
memory space.

The second difference between the memory space and the I/O port
address space is the requirement placed on the programmer. Although
we have not yet discussed the 80x86 assembly language instruction set,
the assembly language commands for transferring data between the
registers and memory are of the form MOV. This command cannot be
used for input or output to the I/O ports because it uses MRDC and
MWTC for bus commands. To send data to the I/O ports, the assembly
language commands OUT and OUTS are used while the commands for
reading data from the I/O ports are IN and INS.

16.5 What's Next?
Now that you have a general idea of the architecture of the 80x86,

we can begin programming with it. In Chapter 17, we will present some
of the instructions from the 80x86 assembly language along with the
format of the typical assembly language program. In addition, the
syntax used to differentiate between registers, memory, and constants
in 80x86 assembly language code will be presented. This information
will then be used to take you though some sample programs.

 Chapter 16: Intel 80x86 Base Architecture 375

Problems

Answer problems 1 though 7 using the following settings of the
80x86 processor registers.

AX = 123416 BP = 121216 CS = A10116
BX = 872116 SP = 343416 DS = B10116
CX = 567816 DI = 565616 SS = C10116
DX = 876516 IP = 787816 ES = D10116

1. What is the value in the register AL?

2. What is the value in the register CH?

3. What is the physical address pointed to by ES:DI?

4. What is the physical address of the next instruction to be executed
in memory?

5. What is the physical address of the last data item to be stored in the
stack?

6. Assuming a function has been called and the appropriate address
and segment registers have been set, what is the physical address
of the location of the function parameters in the stack?

7. What would the settings of the flags OF, SF, ZF, AF, PF, and CF
be after the addition of BH to AL?

8. True or false: Every 80x86 assembly language instruction modifies
the flags.

9. What is the purpose of the internal bus that connects the instruction
queue in the BIU with the EU control system?

10. List the two benefits of segmented addressing.

11. What are the values of MRDC, MWTC, IORC, and IOWC when
the processor is storing data to memory?

12. What are the values of MRDC, MWTC, IORC, and IOWC when
the processor is reading data from a device on the I/O port bus?

13. What 80x86 assembly language commands are used to write data
to a memory device on the I/O port bus?

376 Computer Organization and Design Fundamentals

14. On an 80486 processor with its 32 address lines, what is the

maximum number of I/O ports it can address?

