
 41 

CHAPTER THREE 

Binary Math and Signed Representations 

Representing numbers with bits is one thing. Doing something with 
them is an entirely different matter. This chapter discusses some of the 
basic mathematical operations that computers perform on binary 
numbers along with the binary representations that support those 
operations. These concepts will help programmers better understand the 
limitations of doing math with a processor, and thereby allow them to 
better handle problems such as the upper and lower limits of variable 
types, mathematical overflow, and type casting. 

3.1 Binary Addition 
Regardless of the numbering system, the addition of two numbers 

with multiple digits is performed by adding the corresponding digits of 
a single column together to produce a single digit result. For example, 3 
added to 5 using the decimal numbering system equals 8. The 8 is 
placed in the same column of the result where the 3 and 5 came from. 
All of these digits, 3, 5, and 8, exist in the decimal numbering system, 
and therefore can remain in a single column.  

In some cases, the result of the addition in a single column might be 
more than 9 making it necessary to place a '1' overflow or carry to the 
column immediately to the left. If we add 6 to 5 for example, we get 11 
which is too large to fit in a single decimal digit. Therefore, 10 is 
subtracted from the result leaving 1 as the new result for that column. 
The subtraction of 10 is compensated for by placing a carry in the next 
highest column, the ten's place. Another way of saying this is that 6 
added to 5 equals 1 with a carry of 1. It is important to note that the 
addition of two digits in decimal can never result in a value greater than 
18. Therefore, the carry to the next highest position will never be larger 
than 1. 

Binary addition works the same way except that we're limited to two 
digits. Three of the addition operations, 0+0, 0+1, and 1+0, result in 0 
or 1, digits that already exist in the binary numbering system. This 
means no carry will be needed. 
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Adding 1 to 1, however, results in a decimal 2, a digit which does 
not exist in binary. In this case, we need to create a carry or overflow 
that will go to the next column. 

The next highest bit position represents 21 = 2. Just as we did with 
decimal, we subtract one instance of the next highest bit position from 
our result. In the case of 1+1=2, we subtract 2 from 2 and get 0. 
Therefore, 0 is the result that is placed in the current column, and the 
subtraction of 2 becomes a carry to the next column. Therefore, 1+1 in 
binary equals 0 with a carry of 1. Each of the possible binary additions 
of two variables is shown in Figure 3-1. 

 
   1 

0  0 1 1 
+ 0  + 1 + 0 + 1 
0  1 1 10 

Figure 3-1   The Four Possible Results of Adding Two Bits 

The last addition 12 + 12 = 102 is equivalent to the decimal addition 
110 + 110 = 210. Converting 210 to binary results in 102, the result shown 
in the last operation of Figure 3-1, which confirms our work. 

Now we need to figure out how to handle a carry from a previous 
column. In decimal, a carry from a previous column is simply added to 
the next column. This is the same as saying that we are adding three 
digits where one of the digits, the carry, is always a one. 

In binary, accounting for a carry adds four new scenarios to the 
original four shown in Figure 3-1. Just like decimal, it is much like 
adding three values together: 1+0+0, 1+0+1, 1+1+0, or 1+1+1. The 
four additional cases where a carry is added from the previous column 
are shown in Figure 3-2. 

 
Previous 
Carry  

 
1 

 1 
1

 1 
1

  1 
1 

 0 0 1  1 
 + 0 + 1 + 0  + 1 
 1 10 10  11 

Figure 3-2   The Four Possible Results of Adding Three Bits 
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The second and third cases are similar to the last case presented in 
Figure 3-1 where two 1's are added together to get a result of 0 with a 
carry. The last case in Figure 3-2, however, has three 1's added together 
resulting in a decimal 3. Subtracting 2 from this result places a new 
result of 1 in the current column and sends a carry to the next column. 
And just as in decimal addition, the carry in binary is never greater than 
1. 

Now let's try to add binary numbers with multiple digits. The 
example shown below presents the addition of 100101102 and 
001010112. The highlighted values are the carries from the previous 
column's addition, and just as in decimal addition, they are added to the 
next most significant digit/bit. 

 
    1 1 1 1 1     
  1 0 0 1 0 1 1 0 
+ 0 0 1 0 1 0 1 1 
  1 1 0 0 0 0 0 1 

3.2 Binary Subtraction 
Just as with addition, we're going to use the decimal numbering 

system to illustrate the process used in the binary numbering system for 
subtraction.  

There are four possible cases of single-bit binary subtraction:  0 – 0, 
0 – 1, 1 – 0, and 1 – 1. As long as the value being subtracted from (the 
minuend) is greater than or equal to the value subtracted from it (the 
subtrahend), the process is contained in a single column. 

 
  Minuend 0 1  1
Subtrahend - 0 - 0  - 1

0 1  0
 
But what happens in the one case when the minuend is less than the 

subtrahend? As in decimal, a borrow must be made from the next most 
significant digit. The same is true for binary. 

 
 
 
 

1 0 
- 1 
  1 

A "borrow" is made from 
the next highest bit position 
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Pulling 1 from the next highest column in binary allows us to add 102 
or a decimal 2 to the current column. For the previous example, 102 
added to 0 gives us 102 or a decimal 2. When we subtract 1 from 2, the 
result is 1. 

Now let's see how this works with a multi-bit example. 

Starting at the rightmost bit, 1 is subtracted from 1 giving us zero. In 
the next column, 0 is subtracted from 1 resulting in 1. We're okay so far 
with no borrows required. In the next column, however, 1 is subtracted 
from 0. Here we need to borrow from the next highest digit. 

The next highest digit is a 1, so we subtract 1 from it and add 10 to 
the digit in the 22 column. (This appears as a small "1" placed before 
the 0 in the minuend's 22 position.) This makes our subtraction 10 - 1 
which equals 1. Now we go to the 23 column. After the borrow, we 
have 0 – 0 which equals 0. 

We need to make a borrow again in the third column from the left, 
the 26 position, but the 27 position of the minuend is zero and does not 
have anything to borrow. Therefore, the next highest digit of the 
minuend, the 28 position, is borrowed from. The borrow is then 
cascaded down until it reaches the 26 position so that the subtraction 
may be performed. 

3.3 Binary Complements 
In decimal arithmetic, every number has an additive complement, 

i.e., a value that when added to the original number results in a zero. 
For example, 5 and -5 are additive complements because 5 + (-5) = 0. 
This section describes the two primary methods used to calculate the 
complements of a binary value. 

3.3.1 One's Complement 
When asked to come up with a pattern of ones and zeros that when 

added to a binary value would result in zero, most people respond with, 
"just flip each bit in the original value."  This "inverting" of each bit, 
substituting 1's for all of the 0's and 0's for all of the 1's, results in the 
1's complement of the original value. An example is shown below. 

  0 1    0 
  1 10 10 1 1 1 10 1 1 
 - 0 0 1 0 1 0 1 0 1 
  0 1 1 1 0 0 1 1 0 
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Previous value  1 0 0 1 0 1 1 1 

1's complement 0 1 1 0 1 0 0 0 
 
The 1's complement of a value is useful for some types of digital 

functions, but it doesn't provide much of a benefit if you are looking for 
the additive complement. See what happens when we add a value to its 
1's complement. 

 
 1 0 0 1 0 1 1 0 
 + 0 1 1 0 1 0 0 1 
 1 1 1 1 1 1 1 1 
 
If the two values were additive complements, the result should be 

zero, right? Well, that takes us to the 2's complement. 

3.3.2 Two's Complement 
The result of adding an n-bit number to its one's complement is 

always an n-bit number with ones in every position. If we add 1 to that 
result, our new value is an n-bit number with zeros in every position 
and an overflow or carry to the next highest position, the (n+1)th 
column which corresponding to 2n. For our 8-bit example above, the 
result of adding 100101102 to 011010012 is 111111112. Adding 1 to 
this number gives us 000000002 with an overflow carry of 1 to the 
ninth or 28 column. If we restrict ourselves to 8 bits, this overflow carry 
can be ignored. 

This gives us a method for coming up with the additive complement 
called the 2's complement representation. The 2's complement of a 
value is found by first taking the 1's complement, then incrementing 
that result by 1. For example, in the previous section, we determined 
that the 1's complement of 100101112 is 011010002. If we add 1 to this 
value, we get: 

 
 0 1 1 0 1 0 0 0 
 +               1  
 0 1 1 0 1 0 0 1 
 

Therefore, the 2's complement of 100101112 is 011010012. Let's see 
what happens when we try to add the value to its 2's complement. 
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 1 1 1 1 1 1 1 1   
 1 0 0 1 0 1 1 1 
 + 0 1 1 0 1 0 0 1 
 0 0 0 0 0 0 0 0 
 
The result is zero! Okay, so most of you caught the fact that I didn't 

drop down the last carry which would've made the result 1000000002. 
This is not a problem, because in the case of signed arithmetic, the 
carry has a purpose other than that of adding an additional digit 
representing the next power of two. As long as we make sure that the 
two numbers being added have the same number of bits, and that we 
keep the result to that same number of bits too, then any carry that goes 
beyond that should be discarded. 

Actually, discarded is not quite the right term. In some cases we will 
use the carry as an indication of a possible mathematical error. It should 
not, however, be included in the result of the addition. This is simply 
the first of many "anomalies" that must be watched when working with 
a limited number of bits. 

Two more examples of 2's complements are shown below. 
 

Original value (1010) 0 0 0 0 1 0 1 0 
1's complement 1 1 1 1 0 1 0 1 

2's complement (-1010)  1 1 1 1 0 1 1 0 
 

Original value (8810) 0 1 0 1 1 0 0 0 
1's complement 1 0 1 0 0 1 1 1 

2's complement (-8810) 1 0 1 0 1 0 0 0 
 
Now let's see if the 2's complement representation stands up in the 

face of addition. If 8810 = 010110002 and -1010 = 111101102, then the 
addition of these numbers should equal 7810 = 010011102. 

  
 1 1 1 1       
 0 1 0 1 1 0 0 0 
 + 1 1 1 1 0 1 1 0 
 0 1 0 0 1 1 1 0 
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There is also a "short-cut" to calculating the 2's complement of a 
binary number. This trick can be used if you find the previous way too 
cumbersome or if you'd like a second method in order to verify the 
result you got from using the first. 

The trick works by copying the zero bit values starting with the least 
significant bit until you reach your first binary 1. Copy that 1 too. If the 
least significant bit is a one, then only copy that bit. Next, invert all of 
the remaining bits. Figure 3-3 presents an example of the short-cut. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-3   Two's Complement Short-Cut 

This result matches the result for the previous example. 
In decimal, the negative of 5 is -5. If we take the negative a second 

time, we return to the original value, e.g., the negative of -5 is 5. Is the 
same true for taking the 2's complement of a 2's complement of a 
binary number?  Well, let's see. 

The binary value for 4510 is 001011012. Watch what happens when 
we take the 2's complement twice. 

 
Original value = 45  0 0 1 0 1 1 0 1 

1's complement of 45 1 1 0 1 0 0 1 0 
2's complement of 45 = -45 1 1 0 1 0 0 1 1 

1's complement of -45 0 0 1 0 1 1 0 0 
2's complement of -45 = 45 0 0 1 0 1 1 0 1 

 
It worked! The second time the 2's complement was taken, the 

pattern of ones and zeros returned to their original values. It turns out 
that this is true for any binary number of a fixed number of bits. 

1 0 1 0 1 0 0 0

Step 1:  Copy bits 
up to and including 

the first '1'. 

Step 2:  Invert 
the remaining 

bits. 

First '1' reading 
right to left 

0 1 0 1 1 0 0 0
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3.3.3 Most Significant Bit as a Sign Indicator 

As was stated earlier, 2's complement is used to allow the computer 
to represent the additive complement of a binary number, i.e., negative 
numbers. But there is a problem. As we showed earlier in this section, 
taking the 2's complement of 4510 = 001011012 gives us –4510 = 
110100112. But in Chapter 2, the eight bit value 110100112 was shown 
to be equal to 27 + 26 + 24 + 21 + 20 = 128 + 64 + 16 + 2 + 1 = 21110. So 
did we just prove that –4510 is equal to 21110?  Or maybe 001011012 is 
actually –21110. 

It turns out that when using 2's complement binary representation, 
half of the binary bit patterns must lose their positive association in 
order to represent negative numbers. So is 110100112 –4510 or 21110?  
It turns out that 110100112 is one of the bit patterns meant to represent 
a negative number, so in 2's complement notation, 110100112 = –4510. 
But how can we tell whether a binary bit pattern represents a positive or 
a negative number? 

From the earlier description of the 2's complement short-cut, you 
can see that except for two cases, the MSB of the 2's complement is 
always the inverse of the original value. The two cases where this isn't 
true are when all bits of the number except the most significant bit 
equal 0 and the most significant bit is a 0 or a 1. In both of these cases, 
the 2's complement equals the original value. 

In all other cases, when we apply the shortcut we will always 
encounter a 1 before we get to the MSB when reading right to left. 
Since every bit after this one will be inverted, then the most significant 
bit must be inverted toggling it from its original value. If the original 
value has a zero in the MSB, then its 2's complement must have a one 
and vice versa. Because of this characteristic, the MSB of a value can 
be used to indicate whether a number is positive or negative and is 
called a sign bit. 

A binary value with a 0 in the MSB position is considered positive 
and a binary value with a 1 in the MSB position is considered negative. 
This makes it vital to declare the number of bits that a signed binary 
number uses. If this information is not given, then the computer or the 
user looking at a binary number will not know which bit is the MSB. 

Since the MSB is being used to indicate the sign of a signed binary 
number, it cannot be used to represent a power of 2, i.e., if a number is 
said to represent a 2's complement value, only n-1 of its n bits can be 
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used to determine the magnitude since the MSB is used for the sign. 
This cuts in half the number of positive integers n bits can represent. 

And the special cases?  Well, a binary number with all zeros is equal 
to a decimal 0. Taking the negative of zero still gives us zero. The other 
case is a bit trickier. In the section on minimums and maximums, we 
will see that an n-bit value with an MSB equal to one and all other bits 
equal to zero is a negative number, specifically, –2(n-1). The largest 
positive number represented in 2's complement has an MSB of 0 with 
all the remaining bits set to one. This value equals 2(n-1) – 1. Therefore, 
since 2(n-1) > 2(n-1) – 1, we can see that there is no positive equivalent to 
the binary number 100…002.  

3.3.4 Signed Magnitude 
A second, less useful way to represent positive and negative binary 

numbers is to take the MSB and use it as a sign bit, much like a plus or 
minus sign, and leave the remaining bits to represent the magnitude. 
The representation is called signed magnitude representation. For 
example, –45 and +45 would be identical in binary except for the MSB 
which would be set to a 1 for –45 and a 0 for +45. This is shown below 
for an 8-bit representation. 

  
+4510 in binary  0 0 1 0 1 1 0 1 

–4510 using signed magnitude 1 0 1 0 1 1 0 1 

3.3.5 MSB and Number of Bits 
Since the MSB is necessary to indicate the sign of a binary value, it 

is vital that we know how many bits a particular number is being 
represented with so we know exactly where the MSB is. In other 
words, the leading zeros of a binary value may have been removed 
making it look like the binary value is negative since it starts with a 
one. 

For example, if the binary value 100101002 is assumed to be an 8-bit 
signed number using 2's complement representation, then converting it 
to decimal would give us -10810. (We will discuss converting signed 
values to decimal later in this chapter.)  If, however, it was a 10-bit 
number, then the MSB would be 0 and it would convert to the positive 
value 14810. 
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3.3.6 Issues Surrounding the Conversion of Binary Numbers 

Since computers don't use an infinite number of bits to represent 
values, the software must know two things before it can interpret a 
binary value: the number of bits and the type of binary representation 
being used. This usually is confusing for the novice. 

Identifying 101001102 as an 8-bit number isn't enough. Note that the 
MSB is equal to 1. Therefore, this value represents one number in 
unsigned binary, another number in 2's complement, and yet a third in 
signed magnitude. 

First, let's do the conversion of 101001102 assuming it is an 8-bit, 
unsigned binary like those described in Chapter 2. 

 
101001102 = 27 + 25 + 22 + 21 = 128 + 32 + 4 + 2 = 16610 

 
Now let's do the conversion in 2's complement. Before we do, 

however, let's examine the process. First, if the MSB is equal to 0, then 
the value is a positive number. In 2's complement notation, positive 
numbers look just like unsigned binary and should be treated exactly 
the same when performing a conversion to decimal. 

If, however, the MSB is equal to 1, then the value represented by 
this pattern of ones and zeros is negative. To turn it into a negative 
number, someone had to apply the process of taking the 2’s 
complement to the original positive value. Therefore, we must remove 
the negative sign before we do the conversion. 

It was shown earlier how a second application of the 2's complement 
conversion process returns the number back to its original positive 
value. If taking the 2's complement of a negative number returns it to 
its positive value, then the positive value can be converted to decimal 
using the same process used for an unsigned binary value. Adding a 
negative sign to the decimal result completes the conversion. Figure  
3-4 presents a flow chart showing this process graphically.  
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Figure 3-4   Converting a Two's Complement Number to a Decimal 

In the case of 101001102, the MSB is a 1. Therefore, it is a negative 
number. By following the right branch of the flowchart in Figure 3-4, 
we see that we must take the two's complement to find the positive 
counterpart for our negative number. 

 
Negative value  1 0 1 0 0 1 1 0 

1's comp. of negative value 0 1 0 1 1 0 0 1 
2's comp. of negative value 0 1 0 1 1 0 1 0 
 
Now that we have the positive counterpart for the 2's complement 

value of the negative number 101001102, we convert it to decimal just 
as we did with the unsigned binary value. 

 

Start 
Positive 
Number 

Negative 
Number 

Does 
MSB=1? 

No Yes 

Convert to 
decimal using 

unsigned 
integer method 

Take 2's 
complement 

Convert to 
decimal using 

unsigned 
integer method 

Insert negative 
sign 

End 
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010110102 = 26 + 24 + 23 + 21 = 64 + 16 + 8 + 2 = 9010 
 
Since we determined that the 2's complement value was a negative 

number to begin with, the value of 101001102 in 8-bit, 2's complement 
form is –90. 

Next, let's do the conversion assuming 101001102 is in 8-bit signed 
magnitude where the MSB represents the sign bit. As with the 2's 
complement form, an MSB of 1 means that the number is a negative 
number.  

The conversion of a signed magnitude binary number to decimal is 
different than 2's complement. In the case of signed magnitude, remove 
the MSB and convert the remaining bits using the same methods used 
to convert unsigned binary to decimal. When done, place a negative 
sign in front of the decimal result only if the MSB equaled 1. 

 
Meaning of bit position Sign 26 25 24 23 22 21 20 

Binary value 1 0 1 0 0 1 1 0 
 
To convert this value to a positive number, remove the sign bit. 

Next, calculate the magnitude just as we would for the unsigned case. 
 

01001102 = 25 + 22 + 21 = 32 + 4 + 2 = 3810 
 
Since the MSB of the original value equaled 1, the signed magnitude 

value was a negative number to begin with, and we need to add a 
negative sign. Therefore, 101001102 in 8-bit, signed magnitude 
representation equals –3810. 

But what if this binary number was actually a 10-bit number and not 
an 8 bit number? Well, if it's a 10 bit number (00101001102), the MSB 
is 0 and therefore it is a positive number. This makes our conversion 
much easier. The method for converting a positive binary value to a 
decimal value is the same for all three representations. The conversion 
goes something like this: 

 
Bit position MSB 28 27 26 25 24 23 22 21 20 

Binary value 0 0 1 0 1 0 0 1 1 0 
 
00101001102 = 27 + 25 + 22 + 21 = 128 + 32 + 4 + 2 = 16610 
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This discussion shows that it is possible for a binary pattern of ones 
and zeros to have three interpretations. It all depends on how the 
computer has been told to interpret the value. 

In a programming language such as C, the way in which a computer 
treats a variable depends on how it is declared. Variables declared as 
unsigned int are stored in unsigned binary notation. Variables declared 
as int are treated as either 2's complement or signed magnitude 
depending on the processor. 

3.3.7 Minimums and Maximums 
When using a finite number of bit positions to store information, it is 

vital to be able to determine the minimum and maximum values that 
each binary representation can handle. Failure to do this might result in 
bugs in the software you create. This section calculates the minimum 
and maximum values for each of the three representations discussed in 
this and the previous chapter using a fixed number of bits, n. 

Let's begin with the most basic representation, unsigned binary. The 
smallest value that can be represented with unsigned binary 
representation occurs when all the bits equal zero. Conversion from 
binary to decimal results in 0 + 0 + ... + 0 = 0. Therefore, for an n bit 
number: 

 
 Minimum n-bit unsigned binary number = 0 (3.1) 

 
The largest value that can be represented with unsigned binary 

representation is reached when all n bits equal one. When we convert 
this value from binary to decimal, we get 2n-1 + 2n-2 + ... + 20. As was 
shown in Chapter 2, adding one to this expression results in 2n. 
Therefore, for an n-bit unsigned binary number, the maximum is: 

 
 Maximum n-bit unsigned binary number = 2n – 1 (3.2) 

 
Next, let's examine the minimum and maximum values for an n-bit 

2's complement representation. Unlike the unsigned case, the lowest 
decimal value that can be represented with n-bits in 2's complement 
representation is not obvious. Remember, 2's complement uses the 
MSB as a sign bit. Since the lowest value will be negative, the MSB 
should be set to 1 (a negative value). But what is to be done with all of 
the remaining bits?  A natural inclination is to set all the bits after the 
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MSB to one. This should be a really big negative number, right? Well, 
converting it to decimal results in something like the 8 bit example 
below: 

 
2's comp. value 1 1 1 1 1 1 1 1 

Intermediate 1's complement 0 0 0 0 0 0 0 0 
Positive value of 2's comp. 0 0 0 0 0 0 0 1 

 
This isn't quite what we expected. Using the 2's complement method 

to convert 111111112 to a decimal number results in –110. This couldn't 
possibly be the lowest value that can be represented with 2's 
complement. 

It turns out that the lowest possible 2's complement value is an MSB 
of 1 followed by all zeros as shown in the 8 bit example below. For the 
conversion to work, you must strictly follow the sequence presented in 
Figure 3-4 to convert a negative 2's complement value to decimal. 

 
2's comp. value 1 0 0 0 0 0 0 0 

Intermediate 1's complement 0 1 1 1 1 1 1 1 
Positive value of 2's comp. 1 0 0 0 0 0 0 0 

 
Converting the positive value to decimal using the unsigned method 

shows that 100000002 = –27 = –128. Translating this to n-bits gives us: 
 

 Minimum n-bit 2's complement number = –2(n-1) (3.3) 
 
The maximum value is a little easier to find. It is a positive number, 

i.e., an MSB of 0. The remaining n-1 bits are then treated as unsigned 
magnitude representation. Therefore, for n bits: 

 
 Maximum n-bit 2's complement number = 2(n-1) – 1 (3.4) 

 
Last of all, we have the signed magnitude representation. To 

determine the magnitude of a signed magnitude value, ignore the MSB 
and use the remaining n–1 bits to convert to decimal as if they were in 
unsigned representation. This means that the largest and smallest values 
represented with an n-bit signed magnitude number equals the positive 
and negative values of an (n–1)-bit unsigned binary number. 

 



 Chapter 3: Binary Math and Signed Representations    55 
 
 Minimum n-bit signed magnitude number = –(2(n-1)– 1) (3.5) 
 
 Maximum n-bit signed magnitude number = (2(n-1)– 1) (3.6) 

 
As an example, Table 3-1 compares the minimum and maximum 

values of an 8-bit number for each of the binary representations. The 
last column shows the number of distinct integer values possible with 
each representation. For example, there are 256 integer values between 
0 and 255 meaning the 8-bit unsigned binary representation has 256 
possible combinations of 1's and 0's, each of which represents a 
different integer in the range. 

Table 3-1   Representation Comparison for 8-bit Binary Numbers 

Representation Minimum Maximum Number of integers 
represented 

Unsigned 0 255 256 
2's Complement -128 127 256 
Signed Magnitude -127 127 255 

 
So why can 8-bit signed magnitude only represent 255 possible 

values instead of 256? It is because in signed magnitude 000000002 and 
100000002 both represent the same number, a decimal 0. 

3.4 Floating Point Binary 
Binary numbers can also have decimal points, and to show you how, 

we will once again begin with decimal numbers. For decimal numbers 
with decimal points, the standard way to represent the digits to the right 
of the decimal point is to continue the powers of ten in descending 
order starting with -1 where 10-1=1/10th = 0.1. That means that the 
number 6.5342 has 5 increments of 10-1 (tenths), 3 increments of 10-2 
(hundredths), 4 increments of 10-3 (thousandths), and 2 increments of 
10-4 (ten-thousandths). The table below shows this graphically. 

 
Exponent 3 2 1 0 -1 -2 -3 -4 

Position value 1000 100 10 1 0.1 0.01 0.001 0.0001
Sample values 0 0 0 6 5 3 4 2 
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Therefore, our example has the decimal value 6*1 + 5*0.1 + 3*0.01 + 
4*0.001 + 2*0.0001 = 6.5342. 

Binary representation of real numbers works the same way except 
that each position represents a power of two, not a power of ten. To 
convert 10.01101 to decimal for example, use descending negative 
powers of two to the right of the decimal point. 

         
Exponent 2 1 0 -1 -2 -3 -4 -5 

Position value 4 2 1 0.5 0.25 0.125 0.0625 0.03125
Sample values 0 1 0 0 1 1 0 1 

 
Therefore, our example has the decimal value 0*4 + 1*2 + 0*1 

+0*0.5 + 1*0.25 + 1*0.125 + 0*0.0625 + 1*0.03125 = 2.40625. This 
means that the method of conversion is the same for real numbers as it 
is for integer values; we've simply added positions representing 
negative powers of two. 

Computers, however, use a form of binary more like scientific 
notation to represent floating-point or real numbers. For example, with 
scientific notation we can represent the large value 342,370,000 as 
3.4237 x 108. This representation consists of a decimal component or 
mantissa of 3.4237 with an exponent of 8. Both the mantissa and the 
exponent are signed values allowing for negative numbers and for 
negative exponents respectively.  

Binary works the same way using 1's and 0's for the digits of the 
mantissa and exponent and using 2 as the multiplier that moves the 
decimal point left or right. For example, the binary number 
100101101.010110 would be represented as: 

 
1.00101101010110 * 28 

 
The decimal point is moved left for negative exponents of two and right 
for positive exponents of two. 

The IEEE Standard 754 is used to represent real numbers on the 
majority of contemporary computer systems. It utilizes a 32-bit pattern 
to represent single-precision numbers and a 64-bit pattern to represent 
double-precision numbers. Each of these bit patterns is divided into 
three parts, each part representing a different component of the real 
number being stored. Figure 3-5 shows this partitioning for both single- 
and double-precision numbers. 
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Figure 3-5   IEEE Standard 754 Floating-Point Formats 

Both formats work the same differing only by the number of bits 
used to represent each component of the real number. In general, the 
components of the single-precision format are substituted into Equation 
3.7 where the sign of the value is determined by the sign bit (0 – 
positive value, 1 – negative value). Note that E is in unsigned binary 
representation. 

 
 (+)1.F x 2(E-127) (3.7) 

 
Equation 3.8 is used for the double-precision values. 
 

 (+)1.F x 2(E-1023) (3.8) 
 
In both cases, F is preceded with an implied '1' and a binary point. 
There are, however, some special cases. These are as follows: 
 

• Positive, E=255, F=0: represents positive infinite; 
• Negative, E=255, F=0: represents negative infinite; and 
• Positive or negative, E=0, F=0: represents zero. 

Sign 
bit Exponent, E Fraction, F 

1 bit 8 bits 23 bits 

a)  Single-Precision 

Sign 
bit Exponent, E Fraction, F 

1 bit 11 bits 52 bits 

b)  Double-Precision 
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Example 

Convert the 32-bit single-precision IEEE Standard 754 number 
shown below into its binary equivalent. 

 
11010110101101101011000000000000 

Solution 
First, break the 32-bit number into its components. 
 
 
 
 
 
 
A sign bit of 1 means that this will be a negative number.  
The exponent, E, will be used to determine the power of two by 

which our mantissa will be multiplied. To use it, we must first convert 
it to a decimal integer using the unsigned method. 

 
 Exponent, E  = 101011012  
  = 27 + 25 + 23 + 22 + 20 
  = 128 + 32 + 8 + 4 + 1 
  = 17310 
 
Substituting these components into Equation 3.7 gives us: 
 

 (+)1.F x 2(E-127) = –1.01101101011000000000000 x 2(173-127) 
  = –1.01101101011 x 246 

Example 
Create the 32-bit single-precision IEEE Standard 754 representation 

of the binary number 0.000000110110100101 

Solution 
Begin by putting the binary number above into the binary form of 

scientific notation with a single 1 to the left of the decimal point. Note 
that this is done by moving the decimal point seven positions to the 
right giving us an exponent of –7. 

1 10101101 01101101011000000000

Sign bit Exponent, E Fraction, F 
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0.000000110110100101 = 1.10110100101 x 2-7 
 
The number is positive, so the sign bit will be 0. The fraction (value 

after the decimal point and not including the leading 1) is 10110100101 
with 12 zeros added to the end to make it 23 bits. Lastly, the exponent 
must satisfy the equation: 

 
E – 127 = –7 
E = –7 + 127 = 120 
 

Converting 12010 to binary gives us the 8-bit unsigned binary value 
011110002. Substituting all of these components into the IEEE 754 
format gives us: 

 
 
 
 
 
Therefore, the answer is 00111100010110100101000000000000. 

3.5 Hexadecimal Addition 
At the beginning of this chapter, it was shown how binary addition 

(base 2) with its two digits, 1 and 0, is performed the same way decimal 
addition (base 10) is with its ten digits, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
The only difference is the limitation placed on the addition by the 
number of digits. In binary, the addition of two or three ones results in 
a carry since the result goes beyond 1, the largest binary digit. Decimal 
doesn't require a carry until the result goes beyond 9. 

Hexadecimal numbers (base 16) can be added using the same 
method. The difference is that there are more digits in hexadecimal 
than there are in decimal. For example, in decimal, adding 5 and 7 
results in 2 with a carry to the next highest position. In hexadecimal, 
however, 5 added to 7 does not go beyond the range of a single digit. In 
this case, 5 + 7 = C16 with no carry. It isn't until a result greater than F16 
is reached (a decimal 1510) that a carry is necessary. 

In decimal, if the result of an addition is greater than 9, subtract 1010 
to get the result for the current column and add a carry to the next 
column. In binary, when a result is greater than 1, subtract 102 (i.e., 210) 
to get the result for the current column then add a carry to the next 

0 01111000 10110100101000000000

Sign bit Exponent, E Fraction, F 
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column. In hexadecimal addition, if the result is greater than F16 (1510) 
subtract 1016 (1610) to get the result for the current column and add a 
carry to the next column.  

 
 D16 + 516  = 1310 + 510 = 1810 

 
By moving a carry to the next highest column, we change the result 

for the current column by subtracting 1610. 
 

 1810  = 210 + 1610 
  = 216 with a carry to the next column 

 
Therefore, D16 added to 516 equals 216 with a carry to the next column. 

Just like decimal and binary, the addition of two hexadecimal digits 
never generates a carry greater than 1. The following shows how 
adding the largest hexadecimal digit, F16, to itself along with a carry 
from the previous column still does not require a carry larger than 1 to 
the next highest column. 

   
 F16 + F16 +1  = 1510 + 1510 + 1 = 3110 
  = 1510 + 1610 
  = F16 with a 1 carry to the next column 

 
When learning hexadecimal addition, it might help to have a table 

showing the hexadecimal and decimal equivalents such as that shown 
in Table 3-2. This way, the addition can be done in decimal, the base 
with which most people are familiar, and then the result can be 
converted back to hex. 

Table 3-2   Hexadecimal to Decimal Conversion Table 

Hex Dec  Hex Dec Hex Dec Hex Dec 
016 010  416 410 816 810 C16 1210 
116 110  516 510 916 910 D16 1310 
216 210  616 610 A16 1010 E16 1410 
316 310  716 710 B16 1110 F16 1510 
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Example 

Add 3DA3216 to 4292F16. 

Solution 
Just like in binary and decimal, place one of the numbers to be 

added on top of the other so that the columns line up. 
 
  3 D A 3 2 
 + 4 2 9 2 F 
 
Adding 216 to F16 goes beyond the limit of digits hexadecimal can 

represent. It is equivalent to 210 + 1510 which equals 1710, a value 
greater than 1610. Therefore, we need to subtract 1016 (1610) giving us a 
result of 1 with a carry into the next position. 

 
     1  
  3 D A 3 2 
 + 4 2 9 2 F 
      1 
 
For the next column, the 161 position, we have 1 + 3 + 2 which 

equals 6. This result is less than 1610, so there is no carry to the next 
column. 

 
     1  
  3 D A 3 2 
 + 4 2 9 2 F 
     6 1 
 
The 162 position has A16 + 916 which in decimal is equivalent to 1010 

+ 910 = 1910. Since this is greater than 1610, we must subtract 1610 to get 
the result for the 162 column and add a carry in the 163 column. 

 
   1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
    3 6 1 
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For the 163 column, we have 116 + D16 + 216 which is equivalent to 
110 + 1310 + 210 = 1610. This gives us a zero for the result in the 163 
column with a carry. 

 
  1 1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
   0 3 6 1 
 
Last of all, 1 + 3 + 4 = 8 which is the same in both decimal and 

hexadecimal, so the result is 3DA3216 + 4292F16 = 8036116: 
 
  1 1  1  
  3 D A 3 2 
 + 4 2 9 2 F 
  8 0 3 6 1 
 

3.6 BCD Addition 
When we introduced Binary Coded Decimal numbers, we said that 

the purpose of these numbers was to provide a quick conversion to 
binary that would not be used in mathematical functions. It turns out, 
however, that BCD numbers can be added too, there's just an additional 
step that occurs when each column of digits is added. 

When two BCD numbers are added, the digits 1010, 1011, 1100, 
1101, 1110, and 1111 must be avoided. This is done by adding an 
additional step anytime the binary addition of two nibbles results in one 
of these illegal values or if a carry is generated. When this happens, the 
invalid result is corrected by adding 6 to skip over the illegal values. 
For example: 

 
  BCD      Decimal 
 
  0011        3 
 +1000       +8 
  1011     Invalid 
 +0110       +6 
 10001       11 
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This step is also necessary if a carry results from a BCD addition. 
 

   BCD     Decimal 
 
  1001        9 
 +1000       +8 
 10001     Carry 
 +0110       +6 
 10111       17 

3.7 Multiplication and Division by Powers of Two 
Due to factors to be examined later in this book, multiplication and 

division is a time-intensive operation for processors. Therefore, 
programmers and compilers have a trick they use to divide or multiply 
binary by powers of two. Examine Table 3-3 to see if you can find a 
pattern in the multiples of two of the binary number 10012. 

Table 3-3   Multiplying the Binary Value 10012 by Powers of Two 

 Binary 
Decimal 28 27 26 25 24 23 22 21 20 

9 0 0 0 0 0 1 0 0 1 
18 0 0 0 0 1 0 0 1 0 
36 0 0 0 1 0 0 1 0 0 
72 0 0 1 0 0 1 0 0 0 
144 0 1 0 0 1 0 0 0 0 
288 1 0 0 1 0 0 0 0 0 

 
Note that multiplying by two has the same effect as shifting all of 

the bits one position to the left. Similarly, a division by two is 
accomplished by a right shift one position. This is similar to moving a 
decimal point right or left when multiplying or dividing a decimal 
number by a power of ten. 

Since a shift operation is significantly faster than a multiply or 
divide operation, compilers will always substitute a shift operation 
when a program calls for a multiply or divide by a power of two. For 
example, a division by 1610 = 24 is equivalent to a right shift by 4 bit 
positions. 
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This works for all positive binary representations of integers and 
real numbers as well as 2's complement representation of negative 
numbers. Care must be taken in a few instances in order to maintain the 
data's integrity. 

First, carefully watch the bits that are shifted out to verify that data 
isn't being lost. If during a left shift (multiplication), a one is shifted out 
of an unsigned binary value or the MSB of a 2's complement number 
changes, then you've gone beyond the range of values for that number 
of bits. If during a right shift (division), a one is shifted out of an 
integer value, then a decimal value has been truncated. 

For negative 2's complement values, there is an additional concern. 
Since the MSB is a sign bit, if we fill in the empty bits coming in from 
the left with zeros when performing a right shift, then a negative 
number has been turned into a positive number. To avoid this, always 
duplicate the sign bit in the MSB for each right shift of a 2's 
complement value. 

 
 
 
 
 
 
 

Figure 3-6   Duplicate MSB for Right Shift of 2's Complement Values 

This operation can even be used for some multiplications by 
constants other than powers of two. For example, if a processor needed 
to multiply a value x by 10, it could first multiply x by 2 (a single left 
shift), then multiply x by 8 (a left shift by three bit positions), then add 
the two shifted values together. This would still be a time savings over 
a multiplication. 

A bit shift is easily accomplished in high-level programming 
languages such as C. In C, the operator used to perform a left shift is 
'<<' while a right shift is '>>'. Place the variable to be shifted to the left 
of the operator and to the right of the operator, enter the number of 
positions to shift. Some sample C code is shown below. 

 

1 0 1 0 0 0 1 0 

1 0 1 0 0 0 1 1 

When shifting 
right, fill in bits to 
the left with copies 
of the MSB. 
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result = iVal << 3;    // Set result equal to iVal 
                       // shifted left 3 places 
result = iVal >> 4;    // Set result equal to iVal 
                       // shifted right 4 places 

 
The first line of code shifts iVal left three positions before putting 

the new value into result. This is equivalent to multiplying iVal by  
23 = 8. The second line shifts iVal right 4 positions which has the same 
effect as an integer divide by 24 = 16. 

3.8 Easy Decimal to Binary Conversion Trick 
The fact that a single shift right is equivalent to a division by two 

gives us a simple way to convert from decimal integers to unsigned 
binary.  Each 1 that is shifted out because of a right shift is equivalent 
to a remainder of 1 after a division by two.  Therefore, if you record the 
remainders generated by successive divisions by two, you will find that 
you've generated the binary equivalent of the original decimal value.  
For example, let's convert the decimal value 15610 to binary. 

 
 15610 ÷ 2 = 7810 with a remainder of 0 
 7810 ÷ 2 = 3910 with a remainder of 0 
 3910 ÷ 2 = 1910 with a remainder of 1 
 1910 ÷ 2 = 910 with a remainder of 1 
 910 ÷ 2 = 410 with a remainder of 1 
 410 ÷ 2 = 210 with a remainder of 0 
 210 ÷ 2 = 110 with a remainder of 0 
 110 ÷ 2 = 010 with a remainder of 1 
 
Listing the remainders by reversing the order in which they were 

generated gives us 100111002, the binary value for 15610. 

3.9 Arithmetic Overflow 
In Section 3.3, the carry was ignored when two 2's complement 

values were added. This is not always the case. For some numbering 
systems, a carry is an indication that an error has occurred.  

An arithmetic overflow error occurs when two numbers are added 
and the result falls outside the valid range of the binary representation 
being used. For example, the numbers 20010 and 17510 can be 
represented in 8-bit unsigned binary notation. The result of their 
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addition, however, 37510, is not. Therefore, the following 8-bit binary 
addition (20010 + 17510) results in an error. 

 
 1 
   1 1 0 0 1 0 0 0 
 + 1 0 1 0 1 1 1 1 
   0 1 1 1 0 1 1 1 

 
Remember that the result must have the same bit count as the 

sources, and in this case, the 8-bit unsigned binary result 011101112 
equals 11910, not 37510. 

When adding unsigned binary values, there is a simple way to 
determine if an arithmetic overflow has occurred. In unsigned binary 
addition, if a carry is produced from the column representing the MSBs 
thereby requiring another bit for the representation, an overflow has 
occurred. 

In 2's complement addition, there is a different method for 
determining when an arithmetic overflow has occurred. To begin with, 
remember that an arithmetic overflow occurs when the result falls 
outside the minimum and maximum values of the representation. In the 
case of 2's complement representation, those limits are defined by 
Equations 3.3 and 3.4. 

The only way that this can happen is if two numbers with the same 
sign are added together. It is impossible for the addition of two numbers 
with different signs to result in a value outside of the range of 2's 
complement representation. 

When two numbers of the same sign are added together, however, 
there is a simple way to determine if an error has occurred. If the result 
of the addition has the opposite sign of the two numbers being added, 
then the result is in error. In other words, if the addition of two positive 
numbers resulted in a negative number, or if the addition of two 
negative numbers resulted in a positive number, there were not enough 
bits in the representation to hold the result. The example below presents 
one possible case. 

 
 2's complement Decimal 
  01100011        99 
 +00110101       +53 
  10011000      -104 
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If this had been done assuming unsigned notation, the result of 15210 
would have been fine because no carry was generated. From equation 
3.4, however, we see that the largest value that 8-bit 2's complement 
representation can hold is 2(8-1) – 1 = 12710. Since 15210 is greater than 
12710, it is outside the range of 8-bit 2's complement representation. In 
2's complement representation, the bit pattern 100110002 actually 
represents -10410. 

3.10 What's Next? 
Computers use different numeric representations depending on the 

application. For example, a person's weight may be stored as a 16-bit 
integer while their house address may be stored in BCD. At this point, 
five binary representations have been introduced (unsigned binary, 
signed magnitude, 2's complement, BCD, and floating-point), and 
hexadecimal representation has been presented as a quick means for 
writing binary values. 

Computers, however, do more with numbers than simply represent 
them. In Chapter 4, logic gates, the components that computers use to 
manipulate binary signals, will be presented. They are the lowest-level 
of computer hardware that we will be examining. We will use them to 
begin constructing the more complex components of the computer. 

Problems 
1. True or False: 011010112 has the same value in both unsigned and 

2's complement form. 

2. True or False: The single-precision floating-point number 
10011011011010011011001011000010 is negative. 

3. What is the lowest possible value for an 8-bit signed magnitude 
binary number? 

4. What is the highest possible value for a 10-bit 2's complement 
binary number? 

5. Convert each of the following decimal values to 8-bit 2's 
complement binary. 
a) 5410      b) –4910      c) –12810       d) –6610       e) –9810 

6. Convert each of the following 8-bit 2's complement binary 
numbers to decimal. 
a) 100111012      b) 000101012      c) 111001102       d) 011010012 
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7. Convert each of the following decimal values to 8-bit signed 

magnitude binary. 
a) 5410      b) –4910      c) –12710       d) –6610       e) –9810 

8. Convert each of the following 8-bit signed magnitude binary 
numbers to decimal. 
a) 100111012      b) 000101012      c) 111001102       d) 011010012 

9. Convert 1101.00110112 to decimal. 

10. Convert 10101.111012 to decimal. 

11. Convert 1.00011011101 x 234 to IEEE Standard 754 for single-
precision floating-point values.  

12. Convert the IEEE Standard 754 number 
11000010100011010100000000000000 to its binary equivalent.  

13. Using hexadecimal arithmetic, add 4D23116 to A413F16. 

14. Using BCD arithmetic, add 0111010010010110 to 
1000001001100001. 

15. Why is the method of shifting bits left or right to produce 
multiplication or division results by a power of 2 preferred? 

16. How many positions must the number 00011011012 be shifted left 
in order to multiply it by 8? 

17. True or False: Adding 011011012 to 101000102 in 8-bit unsigned 
binary will cause an overflow. 

18. True or False: Adding 011011012 to 101000102 in 8-bit 2's 
complement binary will cause an overflow. 

19. What would be the best binary representation for each of the 
following applications? 

- Phone number 

- Age (positive integer) 

- Exam grade 

- Checking account balance 

- Value read from a postal scale 

- Price 


