
1

Introduction to JavaScript – Page 1 of 47CSCI 2910 – Client/Server-Side Programming

CSCI 2910
Client/Server-Side Programming

Topic: Intro to JavaScript

Introduction to JavaScript – Page 2 of 47CSCI 2910 – Client/Server-Side Programming

Today’s Goals
With a little luck at the conclusion of this
lecture, we should be able to:
– Define what type of programming language

JavaScript is
– Describe the syntax of JavaScript
– Insert a JavaScript program into an XHTML

file
– Hack into someone else’s JavaScript

Introduction to JavaScript – Page 3 of 47CSCI 2910 – Client/Server-Side Programming

What is JavaScript?
• JavaScript is a high-level language
• JavaScript is an interpreted language

– A program called an interpreter runs on the client’s
computer.

– One instruction at a time, the interpreter figures out what
to do by reading your text program file.

– Interpreted programming language can run on any
platform or O/S as long as there is an interpreter that runs
on that particular setup.

– Interpreted languages are usually slower.
– Speed may not be a big factor because programs written

in JavaScript are not usually that complex

Introduction to JavaScript – Page 4 of 47CSCI 2910 – Client/Server-Side Programming

What is JavaScript? (continued)

Interpreter Block
Diagram

Compiled Code
Block Diagram

Introduction to JavaScript – Page 5 of 47CSCI 2910 – Client/Server-Side Programming

What is JavaScript? (continued)
• JavaScript runs through a web browser

– developed by Netscape in order to give dynamic operation
and control to web pages

– executed on the user's or client's computer, i.e., the
interpreter is part of the browser, not the server software

• JavaScript is an object-oriented language
– program elements are organized into "objects"

• JavaScript is case sensitive
• JavaScript is NOT Java

– Java and JavaScript share many characteristics, but Java is
a compiled language and it has a number of capabilities,
instructions, and libraries not available to JavaScript.

Introduction to JavaScript – Page 6 of 47CSCI 2910 – Client/Server-Side Programming

JavaScript Syntax
• JavaScript programs are created with basic

text editors just like your HTML web pages.
• The JavaScript interpreter that will be

running your code will look line-by-line
through the code to see what to do.

• In order for the interpreter to understand
what you've written, there are some rules
you must follow, i.e., syntax.

2

Introduction to JavaScript – Page 7 of 47CSCI 2910 – Client/Server-Side Programming

JavaScript Syntax – Terminating a Line
• In general, each instruction may cross more

than one line on the screen. In other words,
white space such as tabs, spaces, or carriage
returns do not usually affect the flow of the
program.

• Because of this, we need to have a way to
indicate that we have reached the end of an
instruction.

• In JavaScript, we do this with a semicolon (;).
For example:

A = B + C;
Introduction to JavaScript – Page 8 of 47CSCI 2910 – Client/Server-Side Programming

JavaScript Syntax – Grouping Lines
• The program needs to know how to group sections

of code together.
• Grouping might be required for things such as:

– functions
– loops
– if-blocks

• We need to have a syntax for doing this. In
JavaScript, we use the curly brackets ({ and }). For
example:

{
Lines of code grouped together

}

Introduction to JavaScript – Page 9 of 47CSCI 2910 – Client/Server-Side Programming

JavaScript Syntax – Comments
• All programming languages allow the

programmer to add comments to their code
that are "invisible" to the execution of the
program.

• In JavaScript, there are two kinds. (Actually
there are three, but one of them is sort of
unofficial.) They are:
– Block comments
– End of line comments
– Comments to force old browsers to ignore

JavaScript (the unofficial one)

Introduction to JavaScript – Page 10 of 47CSCI 2910 – Client/Server-Side Programming

Block Comments
/* This is a block comment. It
is surrounded by the
slash/asterisk and
asterisk/slash that indicate the
beginning and ending of a
comment respectively. A block
comment may span multiple lines.
*/

Introduction to JavaScript – Page 11 of 47CSCI 2910 – Client/Server-Side Programming

End of Line Comments
// This is an end of line comment.
// Everything from the double
// slashes to the end of the line
// is ignored.
// To use this method over
// multiple lines, each line must
// have its own set of double
// slashes.

Introduction to JavaScript – Page 12 of 47CSCI 2910 – Client/Server-Side Programming

Comments for Old Browsers
• This third method of commenting is not an

official method. It is simply a fix so that
JavaScript can be commented out with HTML
comment tags so that older browsers will ignore
the script.
<!-- The HTML comment character
<!-- acts just like double slashes

• It is important to note that “- ->” doesn't do
anything and is not a JavaScript comment
character.

3

Introduction to JavaScript – Page 13 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control
• Flow control consists of a number of

reserved words combined with syntax to
allow the computer to decide which parts of
code to execute, which to jump over, and
which to execute multiple times.

• For the most part, all computer languages
share the same basic reserved words for
control, so what we discuss here will be the
same for many different languages.

Introduction to JavaScript – Page 14 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "If"
• As an example, assume you want to print

"Student's grade = A" when the value of the
variable grade is above 93.

• The code below uses an if-statement to do
this:

if (grade > 93)
write("Student's grade = A");

• If grade was 93 or below, the computer
would simply skip this instruction.

Introduction to JavaScript – Page 15 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "If" (continued)
• The programmer can also group multiple

instructions to execute based on the result
of the if-statement using the curly brackets.
For example:

if (grade > 93)
{

write("Student's grade is an A");
honor_roll_value = True;

}

Introduction to JavaScript – Page 16 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "If" (continued)
• The programmer can string together if-

statements to allow the computer to select from
one of a number of cases using else if and else.
For example:

if (grade > 93)
write("Student's grade is an A");

else if (grade > 89)
write("Student's grade is an A-");

else
write("Student did not get an A");

Introduction to JavaScript – Page 17 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "Switch"
• A switch

statement can
be used to
replace long
sequences of if
and else if
statements. A
sample of the
JavaScript
switch/case
statement is
shown here.

write("Today is ");
switch(day_of_week)
{

case 0:
write("Sunday");
break;

case 1:
write("Monday");
break;

case 2:
write("Tuesday");
break;

and so on...
}

Introduction to JavaScript – Page 18 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "While"
• Another type of program flow control is to make

a section of code execute multiple times.
• One way this is done is with the while-loop.
• This format also uses a "condition" placed

between two parenthesis
• As long as the condition is true, the program

continues to execute the code between the
curly brackets in a round-robin fashion.

• Once the condition is false, execution goes to
the next section of code.

4

Introduction to JavaScript – Page 19 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "While" (continued)
• Syntax:

while(condition)
{
// statements to execute

}

• Example:

while(temperature > 72)
air_conditioner_value = On;

Introduction to JavaScript – Page 20 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control – "For"
• It is also possible to create a loop that uses a counter

or index. A for-loop is a single statement that:
– initializes a index,
– performs a operation on that index at the end of the loop,

and
– defines a condition on which to stop executing the loop.

• Its syntax is shown below:

for (initialization; terminating
condition; operation)

{
// statements to execute

}

Introduction to JavaScript – Page 21 of 47CSCI 2910 – Client/Server-Side Programming

Flow Control (continued)
• This is NOT a comprehensive list of flow control

formats.
• For more information on elements of flow control in

JavaScript, check out one of the on-line resources:

http://www.devguru.com/technologies/javascript/11470.asp
http://www.hscripts.com/tutorials/javascript/switch-case.php

http://www.javascriptkit.com/javatutors/primer1.shtml

Introduction to JavaScript – Page 22 of 47CSCI 2910 – Client/Server-Side Programming

Operators
• As with any programming language, there

are operators that are used to processes
information. These include:
– Arithmetic operators
– Bitwise operator
– Assignment operators
– Comparison operators
– Logical operators
– String operators

Introduction to JavaScript – Page 23 of 47CSCI 2910 – Client/Server-Side Programming

Arithmetic Operators
• + Addition operator: adds two values

Example: A + B
• – Subtraction operator: subtracts one number from another

Example: A – B
• * Multiplication operator: multiplies two numerical values

Example: A * B
• / Division operator: divides one number into another

Example: A/B
• ++ Increment operator: adds one to its operand

Example: A++
• -- Decrement operator: subtracts one from its operand

Example: A--
• % Modulus operator: returns the integer remainder of a

division of the second value into the first
Example: A % B

Introduction to JavaScript – Page 24 of 47CSCI 2910 – Client/Server-Side Programming

Bitwise Logical Operations
• ~ Bitwise NOT operator: Inverts each bit of the

single operand placed to the right of the
symbol

• & Bitwise AND: Takes the logical-bitwise AND
of two values

• | Bitwise OR operator: Takes the logical-
bitwise OR of two values

• ^ Bitwise XOR: Takes the logical-bitwise
exclusive-OR of two values

5

Introduction to JavaScript – Page 25 of 47CSCI 2910 – Client/Server-Side Programming

Bitwise Shift Operations
• << Left shift: Shifts the left operand left by the

number of places specified by the right
operand filling in with zeros on the right side.

• >> Sign-propagating right shift: Shifts the left
operand right by the number of places
specified by the right operand filling in with
the sign bit on the left side.

• >>> Zero-fill right shift operator: Shifts the
left operand right by the number of places
specified by the right operand filling in with
zeros on the left side.

Introduction to JavaScript – Page 26 of 47CSCI 2910 – Client/Server-Side Programming

Assignment Operators
• The equal sign, ‘=‘, sets the element on the left side

equal to the value of the element on the right side
• There are some short-hand uses of the equal sign:

– a += b is equivalent to a = a + b
– a -= b is equivalent to a = a - b
– a *= b is equivalent to a = a * b
– a /= b is equivalent to a = a / b
– a %= b is equivalent to a = a % b
– a &= b is equivalent to a = a & b
– a |= b is equivalent to a = a | b
– a ^= b is equivalent to a = a ^ b
– a <<= b is equivalent to a = a << b
– a >>= b is equivalent to a = a >> b
– a >>>= b is equivalent to a = a >>> b

Introduction to JavaScript – Page 27 of 47CSCI 2910 – Client/Server-Side Programming

Comparison Operators
• > Returns true if the first value is greater

than the second
• >= Returns true if the first value is greater

than or equal to the second
• < Returns true the first value is less than

the second
• <= Returns true if the first value is less than

or equal to the second
• == Returns true if first value is equal to second
• != Returns true if first value is not equal to

second
Introduction to JavaScript – Page 28 of 47CSCI 2910 – Client/Server-Side Programming

Logical Operators
• ! Returns true if its operand is zero or

false
• && Returns false if either operand is zero

or false
• || Returns false if both operands are zero

or false

Introduction to JavaScript – Page 29 of 47CSCI 2910 – Client/Server-Side Programming

Strings
• Strings are identified using double quotes,

e.g., "This is a JavaScript string.“
• Two strings can be concatenated using the

‘+’, e.g., "David " + "Tarnoff" equals
"David Tarnoff"

• Some characters are interpreted as white
space or act as control characters and
require an alternative method of being
entered. These are called escape
characters.

Introduction to JavaScript – Page 30 of 47CSCI 2910 – Client/Server-Side Programming

Escape Characters
\n newline
\t tab
\r carriage return
\\ backslash
\" double quote
\' single quote

6

Introduction to JavaScript – Page 31 of 47CSCI 2910 – Client/Server-Side Programming

Functions
• JavaScript allows for the definition of functions in the

case of repeated operations or operations that are too
large to be embedded into a tag (We’ll discuss
embedding functions into a tag later).

• There are three important things you need to include
with a function:
– the function's name,
– any parameters passed to the function, and
– the code to execute.

• The general format is shown below.

function functionName(passed parameters)
{

// statements to execute
}

Introduction to JavaScript – Page 32 of 47CSCI 2910 – Client/Server-Side Programming

Function (continued)
• The word "function" above indicates that we are

creating a function.
• The string functionName is the name of the

function. We need this so we know what to call
when we are trying to execute the function.

• The items between the parenthesis should be a
list of the variables being passed to the function.
The items should be separated with commas.

• The curly brackets ({ and }) surround the code we
are going to be using to create the function.

Introduction to JavaScript – Page 33 of 47CSCI 2910 – Client/Server-Side Programming

Inserting JavaScript into XHTML
• Except for some special cases which will be

discussed later, JavaScript should be
inserted into an XHTML file between
<script>...</script> tags.

<script language="javascript" type="text/javascript">
<!--

document.writeln("<h1>Hello, World!</h1>");
// -->
</script> Double slash hides “-->”

from interpreter

HTML comment tag hides
script from old browsers

<script> tag identifies script
language and MIME type.

Introduction to JavaScript – Page 34 of 47CSCI 2910 – Client/Server-Side Programming

JavaScript in Web Pages
There are two ways JavaScript scripts are
executed in web pages
– As the page is loaded, embedded scripts are

executed and the script's output is inserted where
the script occurred in the page

– If an event occurs that is associated with a script,
the script is executed

Introduction to JavaScript – Page 35 of 47CSCI 2910 – Client/Server-Side Programming

Where to Insert JavaScript
There are 5 places where scripts may be inserted:
• In the head of the page: between <head> tags

– Scripts in the header can’t create output within the
HTML document, but can be referred to by other scripts.

– Header is often used for functions.
• In the body of the page: between <body> tags

– Output from scripts contained in the body is displayed
as part of the HTML document when the browser loads
the page

Introduction to JavaScript – Page 36 of 47CSCI 2910 – Client/Server-Side Programming

Where to Insert JavaScript (continued)

• After the body of the page (after </body>)
– In this case, the script can see all XHTML

objects in a body tag
– Example: Used to place a cursor in a field

• Within an XHTML tag, such as <body>, <a>,
<input>, or <form>
– This is called an event handler and allows the

script to work with HTML elements.
– In this case, no <script> tag is used.

• In a separate file

7

Introduction to JavaScript – Page 37 of 47CSCI 2910 – Client/Server-Side Programming

Events
• Sometimes, you will need to execute a section

of JavaScript code in response to an event.
• Events are things that happen to an object.

– For example, assume we have an object "person".
– An event might be that their eyes become dry.

What would they do? Blink!
person.onDryEyes = blink();

– The object in this example is "person".
– "blink()" is a method or function.
– The event is "onDryEyes".

Introduction to JavaScript – Page 38 of 47CSCI 2910 – Client/Server-Side Programming

Events (continued)
• Examples of events for your HTML pages include:

– onLoad
– onClick
– onMouseOver
– onMouseOut

• Each of these events can execute a script.
• Events must be placed in a tag. For example:

<a href="somesite.htm" onClick =
"javascript:function();">link text

Introduction to JavaScript – Page 39 of 47CSCI 2910 – Client/Server-Side Programming

Object Models
JavaScript provides access to a number of
different components on the client’s side:
– HTML elements
– Browser information
– JavaScript-specific objects

Introduction to JavaScript – Page 40 of 47CSCI 2910 – Client/Server-Side Programming

Object Models (continued)
• As stated earlier, JavaScript is an object-

based language. Can you name some
objects related to the client viewing a page?

• To support standard implementation across
all browsers and applications, a set of object
models has been created for use with
JavaScript.
– Browser Object Model (BOM)
– Document Object Model (DOM)

Introduction to JavaScript – Page 41 of 47CSCI 2910 – Client/Server-Side Programming

Browser Object Model
• The BOM defines the components and

hierarchy of the collection of objects that
define the browser window.

• For the most part, we will only be working
with the following components of the BOM.

• window object

• location object

• history object

• document object

• navigator object

• screen object

Introduction to JavaScript – Page 42 of 47CSCI 2910 – Client/Server-Side Programming

Window Object

Window
object

History
object

Location
object

Navigator
object

Screen
object

Document
object

• Top level in the BOM
• Allows access to properties and method of:

– display window
– browser itself
– methods thing such as error message and alert boxes
– status bar

8

Introduction to JavaScript – Page 43 of 47CSCI 2910 – Client/Server-Side Programming

Document Object
• Top of the Document Object Model (DOM).
• This is probably the one you’ll use most.
• Allows access to elements of the displayed

document such as images and form inputs.
• The root that leads to the arrays of the

document: forms[] array, links[] array, and
images[] array.

• Least compliance to standard here –
Netscape 6, Opera 6, and Mozilla 1.0 are
the best.

Introduction to JavaScript – Page 44 of 47CSCI 2910 – Client/Server-Side Programming

Navigator Object
• Provides access to information and methods

regarding the client’s browser and operating
system.

• Commonly used to determine client’s
browser capabilities so page can be
modified real time for best viewing.

• Example: A script may check the browser
type in order to modify CSS styles.

Introduction to JavaScript – Page 45 of 47CSCI 2910 – Client/Server-Side Programming

History Object
• Provides access to the pages the client has

visited during the current browser session.
• Methods such as back() and forward() can

be used to move through the history.
• Can also be used to jump to any point in the

history.
• As with any browser history, it only allows

for a single path.

Introduction to JavaScript – Page 46 of 47CSCI 2910 – Client/Server-Side Programming

Other BOM Objects
• Location Object – Provides access to and

manipulation of the URL of the loaded page.
• Screen Object – Provides access to information

about the client’s display properties such as
screen resolution and color depth.

• More information can be found at:
http://javascript.about.com/library/bltut22.htm
http://www-128.ibm.com/developerworks/web/library/wa-jsdom/

Introduction to JavaScript – Page 47 of 47CSCI 2910 – Client/Server-Side Programming

Document Object Model
• Document is modeled as a tree.
• DOM Changes based on page displayed. Example:
<html>
<head>
<title>My Page</title>

</head>
<body>
<h1>My Page</h1>
<p name=“bob” id=“bob”>
Here’s the first
paragraph.</p>

<p name=“jim” id=“jim”>
Here’s the second paragraph.</p>

</body>
</html>

html

head body

title h1 p

bob jim

• Another example can be found at:
http://oopweb.com/JavaScript/Documents/jsintro/Volume/part2/part2.htm

