
1

Intro to PHP – Page 1 of 43CSCI 2910 – Client/Server-Side Programming

CSCI 2910 
Client/Server-Side Programming

Topic: Intro to PHP
Reading: Chapters 1 and 2
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Today’s Goals
Today’s lecture will cover:
• Differences between server-side and client-

side operation
• Format of a PHP file
• Syntax of PHP code and similarities 

between PHP code and JavaScript code
• Data types

Intro to PHP – Page 3 of 43CSCI 2910 – Client/Server-Side Programming

Web Scripting with PHP
PHP has many benefits:
• Open Source
• Flexible for integration with HTML – HTML easily 

supports the use of the PHP scripting tags
• Suited to complex projects – database support, vast 

libraries, and the power of the server allow PHP to 
satisfy very complex programming needs.

• Fast at running scripts – Even though PHP is a 
scripting language, the architecture of the scripting 
engine provides for fast execution.

• Platform and O/S portable – PHP runs on a variety of 
different platforms and operating systems
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General Format of a PHP File
• A block of PHP script is embedded within an 

HTML file using the <?php and ?> tags.
• Can also use <script language="PHP"> and 

</script> 
• The PHP script engine does not like the tag 

<?xml version="1.0" encoding="ISO-8859-1"?>
– Engine is interpreting <? ... ?>  as executable script  
– Remove them from your XML template to create a 

PHP template.
– Could use PHP script to generate <?xml> tag
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General Format of a PHP File 
(continued)

• Just like JavaScript, whitespace is ignored.
• Just like JavaScript, end lines with 

semicolon (;).
• Unlike JavaScript, PHP code is executed at 

server and replaced with resulting output. 
• The file must have the extension ".php".  

Server needs this in order to know to run the 
file through the PHP script engine before 
sending output to client.
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PHP "Hello, World!"
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 

<head>
<title>Simple XHTML Document</title>
</head>
<body>
<h1>
<?php

print "Hello, World!";
?>
</h1>
</body>
</html>
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JavaScript "Hello, World!"
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> 

<head>
<title>Simple XHTML Document</title>
</head>
<body>
<h1><script language="javascript" type="text/javascript">
document.writeln("Hello, World!");
</script>
</h1>
</body>
</html>
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The Difference – "View Source"
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PHP Comments
• As in JavaScript, there are two methods for 

inserting comments into your code. They 
are:
– Block comments
– End of line comments

• We don't need to comment out code for 
browsers since code is executed on server.
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Block Comments
/* This is a block comment. It 
is surrounded by the 
slash/asterisk and 
asterisk/slash that indicate the 
beginning and ending of a 
comment. A block comment may 
span multiple lines. */
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End of Line Comments
// This is an end of line comment.
// Everything from the double
// slashes to the end of the line
// is ignored. 
// To use this method over
// multiple lines, each line must
// have its own set of double
// slashes.

# This is also an end of line
# comment
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Outputting Results
• Just like JavaScript, there are a number of 

ways to output results that are to become part 
of the HTML file.

• The earlier example uses the print command 
to output a string.

• print can also be used to output values or 
variables. 

• The following slide presents examples of valid 
print statements.
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print Examples
print "Hello, World";

print 123;  // Outputs "123"

$outputString = "Hello, World!";

print $outputString;
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echo Statement
• The echo statement similar to print
• echo, however, can take on a sequence of 

arguments separated by commas.
• Example:

$outputString = "The answer is ";
echo $outputString, 42, "!";

• This outputs "The answer is 42!"
• print cannot combine elements like this.
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Escape Characters
• Because of the number of reserved characters in 

PHP, escaping is necessary.
• Characters are escaped by preceding them with a 

backslash (\).
• Characters that need escaped include ', ", \, $, and ?.
• Whitespace including carriage returns are allowed as 

part of a string, but they are then output as part of the 
string.  Of course, in HTML, carriage returns are 
considered whitespace and are ignored.

• As in JavaScript, single quotes can be used without 
escaping within double quoted strings and vice versa.
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Printing Characters Not Available on Keyboard
• Escaping can also be used to display 

ISO-8859-1 characters that are not present on the 
keyboard.

• This is done by taking the ISO-8859-1 hex value and 
placing it after "\x".

• The ISO-8859-1 hex values can be found using the 
Character Map application found in Accessories 
System Tools.

• For example, the character "¼" has the hexadecimal 
ISO-8859-1 value bc16. This can be represented with 
\xbc.

• print "\xbc tsp" prints the string "¼ tsp"
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In-Class Exercise
• Earlier it was stated that the PHP script engine does 

not like the tag 
<?xml version="1.0" encoding="ISO-8859-1"?>.

• How might we still incorporate this tag in the file we 
send to the browser without causing problems for 
the PHP engine?
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Variable Declarations
• PHP interprets the dollar sign ($) followed by a 

letter or an underscore (_) to be a variable name.
• Variables do not need to be declared before you 

use them.
• Example: $var1 = 25;
• To help set off a variable identifier within a string, 

you can surround it with curly brackets.
• This will become helpful when we start discussing 

arrays and objects.
• Example: echo "The value is {$var1}." will display 

"The value is 25."
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Data Types
• Scalar types

– boolean
– float
– integer
– string

• Compound types
– array
– object
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Using Scalar Types
• A boolean variable can be assigned only 

values of true or false.

$answer = false;
$finished = true;

• An integer is a whole number (no decimal 
point)

$age = 31;
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Using Scalar Types (continued)
• A float has a decimal point and may or may not have 

an exponent

$price = 12.34;
$avog_num = 6.02e23; //6.02x10^23

• A string is identified as a sequence of characters

$name = "John Smith";

• Strings can be concatenated using a dot (.)

$name = "John" . " Smith";
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Constants
• Constants associate a name with a scalar value.
• Constants are defined using the function define().

define("PI", 3.141593);

• There are a number of predefined constants.  These 
include:
– M_E = 2.718281828459
– M_PI = 3.1415926535898
– M_2_SQRTPI = 1.1283791670955   (Square root of pi)
– M_1_PI = 0.31830988618379   (Square root of 1/pi)
– M_SQRT2 = 1.4142135623731   (Square root of 2)
– M_SQRT1_2 = 0.70710678118655   (Square root of ½)
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Arithmetic Operators

$y will contain 2$y = 14 % 3;Modulo%
$y will contain 8$y = 7;

$y++;
Increment++

$y will contain 6$y = 7;
$y--;

Decrement--

$y will contain 16$z = 4;
$y = $z * 4;

Multiplication*
$y will contain 7$y = 14 / 2;Division/

$y will contain 2$y = 3;
$y = $y – 1;

Subtraction–

$y will contain 4$y = 2 + 2;Addition+
ResultExampleOperationOperator
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Bitwise Logical Operations
• ~ Bitwise NOT operator: Inverts each bit of the

single operand placed to the right of the
symbol

• & Bitwise AND: Takes the logical-bitwise AND
of two values

• | Bitwise OR operator: Takes the logical-
bitwise OR of two values 

• ^ Bitwise XOR: Takes the logical-bitwise
exclusive-OR of two values
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Bitwise Shift Operations
• << Left shift: Shifts the left operand left by the 

number of places specified by the right
operand filling in with zeros on the right side.

• >> Sign-propagating right shift: Shifts the left
operand right by the number of places
specified by the right operand filling in with
the sign bit on the left side. 

• >>> Zero-fill right shift operator:  Shifts the
left operand right by the number of places
specified by the right operand filling in with
zeros on the left side.
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Flow Control
• As in JavaScript, flow control consists of a 

number of reserved words combined with 
syntax to allow the computer to decide 
which parts of code to execute, which to 
jump over, and which to execute multiple 
times.

• For the most part, the flow control that you 
learned for JavaScript is the same for PHP.
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If-Statement
• The code below represents the syntax of a 

typical if-statement:
if ($grade > 93)

print "Student's grade is A";

• If grade was 93 or below, the computer 
would simply skip this instruction.
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If-Statement (continued)
• Just like JavaScript, multiple instructions 

may be grouped using curly brackets. For 
example:

if ($grade > 93)

{

print "Student's grade is A";

$honor_roll_value = true;

}
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If-Statement (continued)
• As in JavaScript, the programmer can string together 

if-statements to allow the computer to select from one 
of a number of cases using elseif and else. (Note that 
JavaScript allows else if while PHP uses elseif.)

• For example:

if ($grade > 93)

print "Student's grade is an A";
elseif ($grade > 89)

print Student's grade is an A-";

else
print "Student did not get an A";

Intro to PHP – Page 30 of 43CSCI 2910 – Client/Server-Side Programming

Comparison Operators
• > Returns true if the first value is greater

than the second
• >= Returns true if the first value is greater

than or equal to the second
• < Returns true the first value is less than 

the second
• <= Returns true if the first value is less than 

or equal to the second
• == Returns true if first value is equal to second
• != Returns true if first value is not equal to

second



6

Intro to PHP – Page 31 of 43CSCI 2910 – Client/Server-Side Programming

Logical Operators
• ! Returns true if its operand is zero or

false
• && Returns false if either operand is zero

or false
• || Returns false if both operands are zero

or false
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Switch-Statement
• The switch statement can be used as an 

alternative to the if, elseif, else method.

switch($menu)
{

case 1:
print "You picked one";
break;

case 2:
print "You picked two";
break;

default:
print "You did not pick one or two";
break;

}
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Switch-Statement (continued)
• Note that if a break is not encountered at the 

end of a case, the processor continues through 
to the next case.

• Example: If $var1=1, it will print both lines.

switch($var1)
{

case 1:
print "The value was 1";

default:
print "Pick another option";
break;

}
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While-loop
• PHP uses the while-loop just like 

JavaScript.
• Like the if-statement, this format also uses a 

condition placed between two parenthesis
• As long as the condition evaluates to true, 

the program continues to execute the code 
between the curly brackets in a round-robin 
fashion.
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While-loop (continued)
• Format:

while(condition)
{
statements to execute

}

• Example:

$count = 1;
while($count < 72)
{
print "$count ";
$count++;

}
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do … while loop
• The do … while loop works the same as a while 

loop except that the condition is evaluated at 
the end of the loop rather than the beginning

• Example:

$count = 1;
do
{

print "$count ";
$count++;

}while($count < 72);
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for-loop
• In the two previous cases, a counter was 

used to count our way through a loop.
• This task is much better suited to a for-loop.

for ($count = 1; $count < 72; $count++)
{

print "$count ";
}

• A "break" can be used to break out of a loop 
earlier. 
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In-Class Exercise
Convert the JavaScript shown below to PHP?

<script language="javascript" type="text/javascript">
<!--

value = 34.5;
for(i = 0; i < 10; i++)
{
document.writeln("34.5/(2^" + i + ") is " + value);
document.writeln("<br />");
value = value/2;

}
//-->
</script>
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Type Conversion
• Different programming languages deal with 

variable types in different ways. Some are strict 
enforcing rules such as not allowing an integer 
value to be assigned to a float.

• The process of converting from one data type to 
another is called "casting".

• To convert from one type to another, place the 
type name in parenthesis in front of the variable to 
convert from.

• In some cases, there are functions that perform 
the type conversion too.
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Some Examples of Type Conversion
• $ivar = (int) $var;
• $ivar = (integer) $var;
• $ivar = intval($var);
• $bvar = (bool) $var;
• $bvar = (boolean) $var;
• $fvar = (float) $var;
• $fvar = floatval($var);
• $svar = (string) $var;
• $svar = stringval($var);
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Examples of Type Conversion 
(continued)

0"foo"true0"foo"
6"6 feet"true6"6 feet"
10"10"true10"10"
0"0"false0"0"

3.8"3.8"true33.8
0"0"false00
0""false0false
1"1"true1true
0""false0null

Cast to floatCast to stringCast to boolCast to intValue
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Type Conversion (continued)
• PHP can automatically convert types too.
• If a variable is used as if it were a different type, 

the PHP script engine assumes a type 
conversion is needed and does it for you.

• Examples:

$var = "100" + 15;   // var$ set to integer = 115
$var = "100" + 15.0; // var$ set to float = 115
$var = 15 + " bugs"; // var$ set to integer = 15
$var = 15 . " bugs"; // var$ set to string = "15 bugs"
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In-Class Exercise
Identify the errors in the following PHP script.

<?php
strvar1 = "<h1 align="center">Integer 

Squares from 0 to 9</h1>"
prints strvar
prints "<ul>"
for(i = 0; i < 9; i+)
{

isquared = i * i
prints "<li>Square root of " + i + 

" is " + isquared + "</li>"
}
prints "</ul>"
?>


