
1

Input/Output– Page 1 of 51CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Input/Output

Reading: Stallings, Chapter 7

Input/Output– Page 2 of 51CSCI 4717 – Computer Architecture

General Description of I/O

Wide variety of peripherals
• Delivering different amounts of data
• At different speeds
• In different formats (bit depth, etc.)

Input/Output– Page 3 of 51CSCI 4717 – Computer Architecture

Closing the Gap

• Need I/O modules to act as bridge
between processor/memory bus and the
peripherals

Processor Bus
I/O

Module

External
sensors

and
controls

Device
Interface

Device
Interface

Device
Interface

Input/Output– Page 4 of 51CSCI 4717 – Computer Architecture

External Devices
• External devices are needed as a means of

communication to the outside world (both input and
output – I/O)

• Types
– Human readable – communication with user

(monitor, printer, keyboard, mouse)
– Machine readable – communication with

equipment (hard drive, CDROM, sensors, and
actuators)

– Communication – communication with remote
computers/devices (Can be any of the first two or
a network interface card or modem)

Input/Output– Page 5 of 51CSCI 4717 – Computer Architecture

Generic Device Interface
Configuration

Input/Output– Page 6 of 51CSCI 4717 – Computer Architecture

Device Interface Components
• The control logic is the I/O module's interface to the device
• The data channel passes the collected data from or the data

to be output to the device. On the opposite end is the I/O
module, but eventually it is the processor.

• The transducer acts as a converter between the digital data
of the I/O module and the signals of the outside world.
– Keyboard converts motion of key into data representing

key pressed or released
– Temperature sensor converts amount of heat into a digital

value
– Disk drive converts data to electronic signals for controlling

the read/write head

2

Input/Output– Page 7 of 51CSCI 4717 – Computer Architecture

I/O Module Functions

• Control & Timing
• Processor Communication
• Device Communication
• Data Buffering
• Error Detection

Input/Output– Page 8 of 51CSCI 4717 – Computer Architecture

I/O Module: Control and Timing

• Required because of multiple devices all
communicating on the same channel

• Example
– CPU checks I/O module device status
– I/O module returns status
– If ready, CPU requests data transfer
– I/O module gets data from device
– I/O module transfers data to CPU
– Variations for output, DMA, etc.

Input/Output– Page 9 of 51CSCI 4717 – Computer Architecture

I/O Module: Processor
Communication

• Commands from processor – Examples: READ
SECTOR, WRITE SECTOR, SEEK track
number, and SCAN record ID.

• Data – passed back and forth over the data bus
• Status reporting – Request from the processor

for the I/O Module's status. May be as simple as
BUSY and READY

• Address recognition – I/O device is setup as a
block of one or more addresses unique to itself

Input/Output– Page 10 of 51CSCI 4717 – Computer Architecture

Other I/O Module Functions
• Device Communication – specific to each device
• Data Buffering – Due to the differences in speed

(device is usually orders of magnitude slower) the
I/O module needs to buffer data to keep from tying
up the CPU's bus with slow reads or writes

• Error Detection – simply distributing the need for
watching for errors to the module. They may
include:
– Malfunctions by device (paper jam)
– Data errors (parity checking at the device level)
– Internal errors to the I/O module such as buffer overruns

Input/Output– Page 11 of 51CSCI 4717 – Computer Architecture

I/O Module Structure

Input/Output– Page 12 of 51CSCI 4717 – Computer Architecture

I/O Module Level of Operation

• How much control will the CPU be required to
handle?

• How much will the CPU be allowed to handle?
• What will the interface look like, e.g., Unix treats

everything like a file
• Support multiple or single device
• Will additional control be needed for multiple

devices on a single port (e.g., serial port versus
USB)

3

Input/Output– Page 13 of 51CSCI 4717 – Computer Architecture

Input/Output Techniques

• Programmed I/O – poll and response
• Interrupt driven – module calls for CPU

when needed
• Direct Memory Access (DMA) – module

has direct access to specified block of
memory

Input/Output– Page 14 of 51CSCI 4717 – Computer Architecture

Addressing I/O Devices
“Memory-Mapped I/O”

• Data transfer is the same as a memory
access (chip selects)

• 80x86 example, any assembly language
command accessing memory use memory
read (^MRDC) and write (^MWTC) lines

• Can use ALL memory instructions which is
much greater than I/O instructions

Input/Output– Page 15 of 51CSCI 4717 – Computer Architecture

Addressing I/O Devices
“Isolated I/O”

• Data transfer uses the same address lines
but different read/write control lines

• 8086 example, in and out commands use
same bus with different read (^IORC) and
write (^IOWC) lines

• Limited number of instructions to choose
from

Input/Output– Page 16 of 51CSCI 4717 – Computer Architecture

Programmed I/O –
CPU has direct control over I/O

• Processor requests operation with commands sent
to I/O module
– Control – telling a peripheral what to do
– Test – used to check condition of I/O module or device
– Read – obtains data from peripheral so processor can read

it from the data bus
– Write – sends data using the data bus to the peripheral

• I/O module performs operation
• When completed, I/O module updates its status

registers
• Sensing status – involves polling the I/O module's

status registers

Input/Output– Page 17 of 51CSCI 4717 – Computer Architecture

Programmed I/O (continued)

• I/O module does not inform CPU directly
• CPU may wait or do something and come back

later
• Wastes CPU time because typically processor is

much faster than I/O
– CPU acts as a bridge for moving data between I/O

module and main memory, i.e., every piece of data
goes through CPU

– CPU waits for I/O module to complete operation

Input/Output– Page 18 of 51CSCI 4717 – Computer Architecture

Programmed I/O Example
Motorola 68HC11 Serial Communications
• Memory-mapped control registers

– SCCR1(0x102C)

– SCCR2 (0x102D)

• Memory-mapped status register SCSR (0x102E)

RWURETEILIERIETCIETIE

0FENFORIDLERDRFTCTDRE

000WAKEM0T8R8

4

Input/Output– Page 19 of 51CSCI 4717 – Computer Architecture

Programmed I/O Example (continued)
Control:
• Transmit enable (TE) – Set to one in order to

enable serial output
• Receive enable (RE) – Set to one in order to

enable serial input
Status:
• Transmit data register empty (TDRE) – Set to one

to indicate data can be placed in buffer
• Transmit complete (TC) – zero means character is

being sent; one means transmitter idle
• Receive data register full – Set to a one when

received data needs to be read

Input/Output– Page 20 of 51CSCI 4717 – Computer Architecture

Programmed I/O Example (continued)
“Transmitting a character”

SCCR2 |=0x08; // Set TE to 1
while !end_of_stream
{

while !(SCSR & 0x80); // Wait until TDRE=1
SCDR = next_byte_to_send;

}

Input/Output– Page 21 of 51CSCI 4717 – Computer Architecture

Programmed I/O Example (continued)
“Receiving a character”

SCCR2 |=0x04; // Set RE to 1
while !(SCSR & 0x20); // Wait until RDRF=1

received_byte = SCDR;

Input/Output– Page 22 of 51CSCI 4717 – Computer Architecture

Interrupt Driven I/O

• Overcomes CPU waiting
• Requires setup code and interrupt service

routine
• No repeated CPU checking of device
• I/O module interrupts when ready
• Still requires CPU to be go between for

moving data between I/O module and
main memory

Input/Output– Page 23 of 51CSCI 4717 – Computer Architecture

Analogy: Exception Handling
• Before exception handling, functions would indicate

an error with a return value
– Calling code would check return code and handle error

accordingly
– Code littered with extra if-statements
– Ex: if(myFunction() == -1) printf("Error occurred.");

• Exception handling creates some sort of error flag.
– Third party code watches for flag, and if it gets set,

executes error handler.
– Allows for single error handler and cleaner code

• Configuration consists of trigger, listener, and handler

Input/Output– Page 24 of 51CSCI 4717 – Computer Architecture

Basic Interrupt I/O Operation

• CPU initializes the process
• I/O module gets data from peripheral while

CPU does other work
• I/O module interrupts CPU
• CPU requests data

I/O module transfers data

5

Input/Output– Page 25 of 51CSCI 4717 – Computer Architecture

CPU
Viewpoint

Input/Output– Page 26 of 51CSCI 4717 – Computer Architecture

CPU Viewpoint (continued)

• Issue read command
Do other work

• Check for interrupt at end of each
instruction cycle (NO CODE IS INVOLVED
IN THIS)

• I/O module issues interrupt request

Input/Output– Page 27 of 51CSCI 4717 – Computer Architecture

CPU Viewpoint (continued)
I/O module issues interrupt request forcing processor to:
• Save context on stack

– Registers (this may have to be done by ISR)
– Pointers including PC/IP, but not SP
– Flags (Program Status Word)

• Send acknowledgement so I/O module can release request
• Process interrupt by loading address of ISR into PC/IP
• Interrupt must save results of ISR because more than likely,

returning from the interrupt will erase all indications that it
happened at all

• Retrieve context including PC/IP

Input/Output– Page 28 of 51CSCI 4717 – Computer Architecture

Interrupt I/O Example
(continued from programmed I/O)

Control:
• Transmit interrupt enable (TIE) – set to one

enables interrupt when TDRE is set to one
• Transmit complete interrupt enable (TCIE) –

set to one enables interrupt when TC is set
to one

• Receive interrupt enable (RIE) – set to one
enables interrupt when RDRF is set to one or
when error occurs

Input/Output– Page 29 of 51CSCI 4717 – Computer Architecture

Interrupt I/O Example (continued)

Status:
• Overrun error (OR) – set to one when

character received but there was no room in
SCDR

• Noise flag (NF) – set to one when noise is
detected on receive input

• Framing error (FE) – set to one when
received data had error with framing bits

Input/Output– Page 30 of 51CSCI 4717 – Computer Architecture

Interrupt I/O Example (continued)
“Transmitting a character”

SCCR2 |=0x88; // Set TIE and TE to 1
setISR(&ser_tx_ISR());
// At this point, processor can do something else

void INTERRUPT ser_tx_ISR()
{

SCDR = next_byte_to_send;
}

6

Input/Output– Page 31 of 51CSCI 4717 – Computer Architecture

Interrupt I/O Example (continued)
“Receiving a character”

SCCR2 |=0x24; // Set RIE and RE to 1
setISR(&ser_rx_ISR());
// At this point, processor can do something else

void INTERRUPT ser_rx_ISR()
{

if ((SCSR & 0x2E) == 0x20)
received_byte = SCDR;

else if ((SCSR & 0xE) != 0) process_error();
}

Input/Output– Page 32 of 51CSCI 4717 – Computer Architecture

Design Issues

• Resolution of multiple interrupts – How do
you identify the module issuing the
interrupt?

• Priority – How do you deal with multiple
interrupts at the same time or interrupting
in the middle of an interrupt?

Input/Output– Page 33 of 51CSCI 4717 – Computer Architecture

Identifying Interrupting Module

• Different interrupt line for each module
• Limits number of devices
• Even with this method, there are often

multiple interrupts still on a single interrupt
lined

• Priority is set by hardware

Input/Output– Page 34 of 51CSCI 4717 – Computer Architecture

Software poll

• Single interrupt line – when interrupt
occurs, CPU then goes out to check who
needs attention

• Slow
• Priority is set by order in which CPU

polls devices

Input/Output– Page 35 of 51CSCI 4717 – Computer Architecture

Daisy Chain or Hardware poll

• Interrupt Acknowledge sent down a chain
• Module responsible places unique vector

on bus
• CPU uses vector to identify handler

routine
• Priority is set by order in which

interrupt acknowledge gets to I/O
modules, i.e., order of devices on the
chain

Input/Output– Page 36 of 51CSCI 4717 – Computer Architecture

Bus Arbitration
• Allow multiple modules to control bus (See

“Method of Arbitration,” p. 75)
• I/O Module must claim the bus before it can raise

interrupt
• Can do this with:

– Bus controller/arbiter
– Distribute control to devices

• Must be one master, either processor or other
device

• Device that "wins" places vector on bus uniquely
identifying interrupt

• Priority is set by priority in arbitration, i.e.,
whoever is currently in control of the bus

7

Input/Output– Page 37 of 51CSCI 4717 – Computer Architecture

Example:
82C59A
(Fig. 7.9)

Input/Output– Page 38 of 51CSCI 4717 – Computer Architecture

82C59A (continued)

• 80386 has one interrupt line
• 8259A has 8 interrupt lines

Input/Output– Page 39 of 51CSCI 4717 – Computer Architecture

82C59A Sequence of Events
• 82C59A accepts interrupts
• 82C59A determines priority

– Fully nested IR0 (highest) through IR7 (lowest)
– Rotating – after interrupt is serviced, it goes to bottom

of priority list
– Special mask – allows individual interrupts to be

disabled
• 82C59A signals 8086 (raises INTR line)
• CPU Acknowledges with INTA line
• 82C59A puts correct vector on data bus
• CPU processes interrupt

Input/Output– Page 40 of 51CSCI 4717 – Computer Architecture

Direct Memory Access (DMA)

• Impetus behind DMA – Interrupt driven
and programmed I/O require active CPU
intervention (All data must pass through
CPU)

• Transfer rate is limited by processor's
ability to service the device

• CPU is tied up managing I/O transfer

Input/Output– Page 41 of 51CSCI 4717 – Computer Architecture

DMA (continued)

• Additional Module (hardware) on bus
• DMA controller takes over bus from CPU

for I/O
– Waiting for a time when the processor doesn't

need bus
– Cycle stealing – seizing bus from CPU (more

common)

Input/Output– Page 42 of 51CSCI 4717 – Computer Architecture

DMA Operation

• CPU tells DMA controller:
– whether it will be a read or write operation
– the address of device to transfer data from
– the starting address of memory block for the

data transfer
– the amount of data to be transferred

• DMA performs transfer while CPU does
other processes

• DMA sends interrupt when completed

8

Input/Output– Page 43 of 51CSCI 4717 – Computer Architecture

DMA
Function

Input/Output– Page 44 of 51CSCI 4717 – Computer Architecture

Cycle Stealing

• DMA controller takes over bus for a cycle
• Transfer of one word of data
• Not an interrupt – CPU does not switch

context
• CPU suspended just before it accesses

bus – i.e. before an operand or data fetch
or a data write

• Slows down CPU but not as much as CPU
doing transfer

Input/Output– Page 45 of 51CSCI 4717 – Computer Architecture

In-class discussion

• What effect does caching memory have on
DMA?

• Hint: How much are the system buses
available?

Input/Output– Page 46 of 51CSCI 4717 – Computer Architecture

DMA Configurations

Single Bus, Detached DMA controller
– Each transfer uses bus twice – I/O to DMA

then DMA to memory
– CPU is suspended twice

Input/Output– Page 47 of 51CSCI 4717 – Computer Architecture

DMA Configurations (continued)
Single Bus, DMA controller integrated into I/O module

– Controller may support one or more devices
– Each transfer uses bus once – DMA to memory
– CPU is suspended once

Input/Output– Page 48 of 51CSCI 4717 – Computer Architecture

DMA Configurations (continued)
Separate I/O Bus

– Bus supports all DMA enabled devices with single
DMA controller

– Each transfer uses bus once – DMA to memory
– CPU is suspended once

9

Input/Output– Page 49 of 51CSCI 4717 – Computer Architecture

Evolutions of I/O Methods
Growth of more sophisticated I/O devices
1.Processor directly controls device
2.Processor uses Programmed I/O
3.Processor uses Interrupts
4.Processor uses DMA
5.Some processing moved to processors in I/O

module that access programs in memory and
execute them on their own without CPU
intervention (I/O Module referred to as an I/O
Channel)

6.Distributed processing where I/O module is a
computer in its own right(I/O Module referred to
as an I/O Processor)

Input/Output– Page 50 of 51CSCI 4717 – Computer Architecture

I/O Channels (continued)

• I/O Channel is extension of DMA concept
• CPU instructs the I/O channel to execute a

program in memory
• Following these instructions, the I/O channel

does the transfer of data itself
• Architecture

– Selector – one device transferring block of data at a
time

– Multiplexor – TDM

Input/Output– Page 51 of 51CSCI 4717 – Computer Architecture

I/O Channels
(continued)

