CSCI 4717/5717
Computer Architecture

Topic: CPU Operations and Pipelining

Reading: Stallings, Sections 12.3 and 12.4

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 1 of 43

Instruction Cycle

« Over the past few weeks, we have visited the steps the
processor uses to execute an instruction

« A single instruction may requires many steps:
— Determine address of instruction
— Fetch instruction
— Decode instruction
— Determine address(es) of source operands
— Fetch operand(s)
— Execute instruction
— Determine address(es) where result(s) are to be stored
— Store result(s)
— Check for interrupts

Instruction Cycle (continued)

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 3 of 43

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 2 of 43

Indirect Cycle

» Some instructions require operands, each of
which requires a memory access

+ With indirect addressing, an additional
memory access is required to determine
final operand address

+ Indirect addressing may be required of more
than one operand, e.g., a source and a
destination

» Each time indirect addressing is used, an
additional operand fetch cycle is required.

Data Flow

* The better we can break up the execution of an
instruction into its sub-cycles, the better we will be
able to optimize the processor’s performance

« This partitioning of the instruction’s operation
depends on the CPU design

» In general, there is a sequence of events that can
be described that make up the execution of an
instruction
— Fetch cycle
— Data fetch cycle
— Indirect cycle
— Execute cycle
— Interrupt cycle

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 4 of 43

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 5 of 43

Instruction Fetch

» PC contains address of next instruction

» Address moved to Memory Address
Register (MAR)

» Address placed on address bus

 Control unit requests memory read

» Result placed on data bus, copied to
Memory Buffer Register (MBR), then to IR

+ Meanwhile PC incremented by size of
machine code (typically one address)

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 6 of 43

Instruction Fetch (continued)

CPU

- im.-nm_-
=| |=| |=x=
|_Unit —
[i
Address Data Control

Bus Bus Bus

CSCl 4717 — Computer Architecture

CPU Design and Pipelining — Page 7 of 43

Execute Cycle

* Due to wide range of instruction complexity,
execute cycle may take one of many forms.
— register-to-register transfer
— memory or |/O read
— ALU operation

» Duration is also widely varied

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 9 of 43

Interrupt Cycle (continued)

CPU

ﬁ Memory
ﬁ Control : ;

Unit

L

Address Data Control
Bus Bus Bus

Il
NAVAY,

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 11 of 43

Data Fetch

Operand address is fetched into MBR
IR is examined to determine if indirect addressing
is needed. If so, indirect cycle is performed

— Address of location from which to fetch operand
address is calculated based on first fetch

— Control unit requests memory read
— Result (actual address of operand) moved to MBR
* Address in MBR moved to MAR
» Address placed on address bus
+ Control unit requests memory read
* Result placed on data bus, copied to MBR

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 8 of 43

Interrupt Cycle

» At the end of the execution of an instruction,
interrupts are checked

» Unlike execute cycle, this cycle is simple and
predictable

* Process
— Current PC saved to allow resumption after interrupt
— Contents of PC copied to MBR

- a;ﬁ:c{;ial memory location (e.g. stack pointer) loaded to

— MBR written to memory
— PC loaded with address of interrupt handling routine

— Next instruction (first of interrupt handler) can be
fetched

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 10 of 43

Pipelining
As with a manufacturing assembly line, the goal

of instruction execution by a CPU pipeline is to:

— break the process into smaller steps, each step
handled by a sub process

— as soon as one sub process finishes its task, it
passes its result to the next sub process, then
attempts to begin the next task

— multiple tasks being operated on simultaneously
improves performance

— No single instruction is made faster, but entire
workload can be done faster.

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 12 of 43

Breaking an Instruction into Cycles

A simple approach is to divide instruction
into two stages:

— Fetch instruction

— Execute instruction

There are times when the execution of an

instruction doesn’t use main memory

* In these cases, use idle bus to fetch next
instruction in parallel with execution.

* This is called instruction prefetch

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 13 of 43

Improved Performance of Prefetch

Without prefetch:

Instruction 1 Instruction 2 Instruction 3 Instruction 4

| fetch | exec | fetch | exec | fetch | exec | fetch | exec |

With prefetch:

Instruction 1 |fetch exec

Instruction 2 fetch | exec
Instruction 3 fetch | exec
Instruction 4 fetch | exec
CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 15 of 43

Three Cycle Instruction

The number of cycles it takes to execute a single
instruction is further reduced (to approximately a
third) if we break an instruction into three cycles
(fetch/decode/execute).

Instruction 1 Instruction 2 Instruction 3 Instruction 4

f_%_%_%/_H
[FlofefrfofJefrfofefrfofe]

Instruction 1 | FIDIJE
Instruction 2 F{D|E
Instruction 3 FIDJ|E
Instruction 4 FIDJE
CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 17 of 43

Instruction Prefetch

Instruction Instruction

Result

Execute |

() Simplificd view

Wait New address Wait

| Result

Instruction Tnstruction

Exceute

Discard

by Expanded view

CSCl 4717 — Computer Architecture

CPU Design and Pipelining — Page 14 of 43

Improved Performance of Prefetch (continued)

» Examining operation of prefetch appears to
take half as many cycles as the number of
instructions increases

» Performance, however, is not doubled:

— Fetch usually shorter than execution

— Any jump or branch means that prefetched
instructions are not the required instructions
Add more stages to improve performance

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 16 of 43

Pipelining Strategy

* If instruction execution could be broken into more
pieces, we could realize even better performance
— Fetch instruction (FI) — Read next instruction into buffer
— Decode instruction (DI) — Determine the opcode

— Calculate operands (CO) — Find effective address of
source operands

— Fetch operands (FO) — Get source operands from
memory

— Execute instructions (El) — Perform indicated operation
— Write operands (WO) — Store the result

* This decomposition produces nearly equal
durations

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 18 of 43

Sample Timing Diagram for Pipeline

[N EAEN Kl EA KN EA BN EN U RN NEd R Rl
oo o

tat oot ot gL iwe! 0

'
Instructlon | W=se—sesie—e—a— L 3 3 3 1 6 0
. Lo, tmameotpolgiwel fo1 b b4 44
menc o) 1 ')])) 1 . 1 '))))

I T O T T TN S A T R
. — T Ry T L L R S S
D) i] :]]) i] i]]]])
. — Vo Lol FoLELAwWer L b 8 b
structio 1 | reb—b—————— 1 0 1
i) 1] :]]) 1 : 1]]]])
oo s O FLBLACOM DR ELIWOL b b a4
Instruction 5 T o S N
I T S T A - - A A S T B B
P4 8 4 LEIDLICOVFOLELAWO) 4 4 b
Instructiond + 0« 0 0 o
LI T T R S - - A T B
lostruction | 1 ' & 1 11 FI g 00y 6k FOby KLy Wiy '
I T TS T T N - N - |
Instruction § : ' s : s ' : o g D 0, FO g EL g Wi, !
T S R S - R A A A A B
ostruction® 1 1 P or 0o M IR, L
CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 19 of 43

In-Class Exercise

+ Redraw the figure from the previous slide the
execution of 7 instruction on a 4-stage pipeline
(fetch instruction - Fl, decode instruction and
calculate addresses - DA, fetch operands - FO,
execute - EX).

Problems with Previous Figure
(Important Slide!)

» Assumes that each instruction goes through all six
stages of pipeline

* |tis possible to have Fl, FO, and WO happening at
the same time

« Even with the more detailed decomposition, some
stages will still take more time

« Conditional branches cause even greater
disruption to pipeline than with prefetch

« Interrupts, like conditional branches, will disrupt
pipeline

* CO and FO stages may depend on results of
previous instruction at a point before the WO
stage writes the results

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 20 of 43

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 21 of 43

Disruptions to Pipeline

» Resource limitations — if the same resource
is required for more than one stage of the
pipeline, e.g., the system bus

+ Data hazards — if a subsequent instruction
depends on the outcome of a previous
instruction, it must wait for the first
instruction to complete

» Conditional program flow — the next
instruction of a branch cannot be fetched
until we know that we're branching

Effects of a Branch in a Pipeline

Time Branch Pralty

Jrf2afs]s)s]r|s]ofmwufrz]is]]
PRt co! Fot e wo! 1} ' 1} . 1} 1} . 1}
R T T B
Tostruction | b . . n " . 5 - 3 . il g = g
5 H CELY DY C0Y Fo Y ELYWOr ' 3 . 3 " " I
Instruction 2+ oo
I A A A M A T T B T T BB
e ey et ot el i Tk S Tt (SRR Tt e O e
1l) . LY 0 Fooe EL sWoe
e e " [} [l [} 1 [} 1 " 1 " . " [} [} [}
| I [SN (R [(b (S (SR Tl) e (e |
.] L) . OFL D80 Fe '] .] ' . .
Instruction 4 I e H Voo
T T T R A e A S T B T T B R
R T S S N A S S R S S BB
T
Instruction 5 1 e e T Voo
I T T S R S S S R T T BB
: O T S T 1 A S - S S BN
Instruction & [} I 1 i T i 3 " 1 " 1
I T T T T R S T R S T SR
R A R S
tion 7 Vo FR L RO B -
Instruction 7 ' . . 1 ' 1 — H ' N H H H H
- T S R A S S R T S BT
- - - - - - '||'||1.illlltl'}1:ll||' :

Instruction 15 ! I S L KA R
S S s et et Ton: I e e et St B S
S [N S S (e B oy e g
wtcot o Wiy
Instruction 16 0 1 01 b1 b i B O P

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 22 of 43

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 23 of 43

Flow of a
Six Stage
Pipeline

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 24 of 43

[o wol| DORREE

Alternative .7 -
Pipeline gon s [
Depiction o Dor A
jonoon Juoonm)
« [e=al=]alw] o [ee[ele =] u]
I CELEEE) - G
Soooonn T o]

More Roadblocks to Realizing Full Speedup

* There are two additional factors that
frustrate improving performance using
pipelining
— Overhead required between stages such as
buffer-to-buffer transfers

— The amount of control logic required to handle
memory and register dependencies and to
control the pipeline itself

+ With each added stage, the hardware
needed to support pipelining requires careful
consideration and design

w [e[u[e]ulu] "
un BlE D lh u
o EE e
. o 7]
CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 25 of 43

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 26 of 43

Pipeline Performance Equations

Here are some simple measures of pipeline
performance and relative speed up:

t = time for one stage

T, = maximum stage delay

d = delay of latches between stages
k = number of stages

t=max[t]+d=rt,+d 1<i<k

Pipeline Performance Equations (continued)

* In general, d is equivalent to a clock pulse and
Tn >>d.

* For n instructions with no branches, the total time
required to execute all n instructions through a
k-stage pipeline, T, is:

T=k+(n-1)

« It takes k cycles to fill the pipeline, then once cycle
each for the remaining n-1 instructions.

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 27 of 43

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 28 of 43

Speedup Factor

» For a k-stage pipeline, the ideal speedup calculated with
respect to execution without a pipeline is:

S, =T,/T,
=nkt/k+ (-1
=nk/[k+(n-1)]

* Asn > «, the speed up goes to k

» The potential gains of a pipeline are offset by increased
cost, delay between stages, and consequences of a
branch.

In-Class Exercise

« Assume that we are executing 1.5x108
instructions using a 6-stage pipeline.

* If there is a 10% chance that an instruction
will be a conditional branch and a 50%
chance that a conditional branch will be
taken, how long should it take to execute
this code?

+ Assume a single stage takes t seconds.

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 29 of 43

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 30 of 43

Dealing with Branches

A variety of approaches have been used to
reduce the consequences of branches
encountered in a pipelined system:

— Multiple Streams

— Prefetch Branch Target

— Loop buffer

— Branch prediction

— Delayed branching

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 31 of 43

Multiple Streams

» Branch penalty is a result of having two possible
paths of execution

Solution: Have two pipelines

+ Prefetch each branch into a separate pipeline

» Once outcome of conditional branch is
determined, use appropriate pipeline

Competing for resources — this method leads to
bus & register contention

» More streams than pipes — multiple branches lead
to further pipelines being needed

Prefetch Branch Target

» Target of branch is prefetched in addition to
instructions following branch

» Keep target until branch is executed
* Used by IBM 360/91

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 32 of 43

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 33 of 43

Loop Buffer

+ Add a small, very fast memory
Maintained by fetch stage of pipeline

+ Use it to contain the n most recently fetched
instructions in sequence.

Before taking a branch, see if branch target is in
buffer

Similar in concept to a cache dedicated to
instructions while maintaining an order of
execution

» Used by CRAY-1

Loop Buffer Benefits

» Particularly effective with loops if the buffer is large
enough to contain all of the instructions in a loop.
Instructions only need to be fetched once.

« If executing from within the buffer, buffer acts like
a prefetch by having all of the instructions already
loaded into high-speed memory without having to
access main memory or cache.

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 34 of 43

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 35 of 43

Loop Buffer Diagram

Eranch address

Instruction to be
Loop Buffer decoded in case of hit
(256 bytes) :

Most significant address hits
E— 8 s
compared to determine a hit

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 36 of 43

Branch Prediction

* There are a number of methods that processors
employ to make an educated guess as to the
direction a branch may take.

» Static
— Predict never taken
— Predict always taken
— Predict by opcode
» Dynamic — depend on execution history
— Taken/not taken switch
— Branch history table

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 37 of 43

Dynamic Branch Strategies

» Attempt to improve accuracy by basing prediction

on history

Dedicate one or more bits with each branch

instruction to reflect recent history of instruction

Not stored in memory, rather in high-speed

storage

— one possibility is in cache with instructions (history is
lost when instruction is replaced)

— another is to keep a small table with recently executed
branch instructions (Could use a tag-like structure with
low order bits of instruction's address to point to a line.)

CSC| 4717 — Computer Architecture CPU Design and Pipelining — Page 39 of 43

Branch Prediction State Diagram

* Must get two disagreements in a row before switching
prediction

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 41 of 43

Static Branch Strategies

* Predict Never Taken
— Assume that jump will not happen
— Always fetch next instruction
— 68020 & VAX 11/780

— VAX will not prefetch after branch if a page fault would

result (This is a conflict between the operating system
and the CPU design)

+ Predict always taken
— Assume that jump will happen
— Always fetch target instruction
+ Predict by Opcode

— Some instructions are more likely to result in a jump
than others

— Can get up to 75% success

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 38 of 43

Taken/Not taken switch

+ Storing one bit for history:
— 0: last branch not taken
— 1: last branch taken
— Shortcoming is with loops where first branch is always

predicted wrong since last time through loop, CPU didn’t
branch. Also predicts wrong on last pass through loop.

+ Storing two bits for history:
— 00: branch not taken, followed by branch taken
— 01: branch taken, followed by branch not taken
— 10: two branch taken in a row
— 11: two branch not taken in a row
— Can be optimized for loops

CSCI 4717 — Computer Architecture CPU Design and Pipelining — Page 40 of 43

Branch History Table

There are three things that should be kept in the
branch history table

— Address of the branch instruction
— Bits indicating branch history

— Branch target information, i.e., where do we go if
we decide to branch?

CSCl 4717 — Computer Architecture CPU Design and Pipelining — Page 42 of 43

Delayed Branch

» Possible to improve pipeline performance by
rearranging instructions

« Start making calculations for branch earlier so that
pipeline can filled with real processing while branch
is being assessed

» Chapter 13 will examine this in greater detail

ADD r1,5 ADD r1,5 CMP r2, 10
CMP r2, 10 CMP r2, 10 BNE GO_HERE
BNE GO_HERE |BNE GO_HERE |ADD r1,5

NOP

wo/delayed branch |w/delayed branch |w/delayed branch

CSCl1 4717 — Computer Architecture CPU Design and Pipelining — Page 43 of 43

