CSCl14717/5717
Computer Architecture

Topic: CPU Registers

Reading: Stallings, Sections 10.3, 10.4, 12.1, and 12.2

CSCl1 4717 — Computer Architecture CPU Registers — Page 1 of 35

CPU Internal Design Issues

« CPU design and operating system design
are closely linked

« Compiler also has heavy dependence on
CPU design

How Many Instructions are Needed?

Instruction sets have been designed with
* Small numbers of instructions
* Hundreds of instructions

« Trend today is to use “enough” to get the job
done well (more on this in the RISC/CISC
discussions to come)

CSCl 4717 — Computer Architecture CPU Registers — Page 2 of 35

CSCI 4717 — Computer Architecture CPU Registers — Page 3 of 35

How Many Instructions are Needed?

 Until the 1980s, the trend was to construct
more and more complex instruction sets
containing hundreds of instructions and
variations

* Intent was to provide mechanisms to bridge
the semantic gap, the difference in high and
low level functioning of the computer

Bridging the Semantic Gap

« Reconcile the views of the HLL programmer and
the assembly level programmer

» Provide a diverse set of instructions in an attempt
to match the programming style of HLL

« Permit the compiler to “bridge the gap” with a
single instruction rather than synthesizing a series
of instructions

« Did not always have the desired impact

CSCI 4717 — Computer Architecture CPU Registers — Page 4 of 35

CSCl1 4717 — Computer Architecture CPU Registers — Page 5 of 35

Attributes of a Good Instruction
Set

« Wulff asserts that compiler writers might make the
better architects because they have had to deal
with poor architecture decisions

CSCI 4717 — Computer Architecture CPU Registers — Page 6 of 35




Wulff's Attributes of a Good Instruction Set

Complete: be able to construct a machine-level

program to evaluate any computable function

Efficient: frequently performed functions should be

done quickly with few instructions

» Regular and complete classes of instructions:
provide “logical” set of operations

¢ Orthogonal: define instructions, data types, and

addressing independently

Additional attribute: Compatible: with existing H/'W

and S/W in a product line

CSCl1 4717 — Computer Architecture CPU Registers — Page 7 of 35

Addresses in an Instruction

« In a typical arithmetic or logical instruction, 3
references are required

— 2 operands
—aresult

* These addresses can be explicitly given or implied
by the instruction

3 address instructions

« Both operands and the destination for the result are
explicitly contained in the instruction word

« Example: X=Y +Z

« With memory speeds (due to caching) approaching
the speed of the processor, this gives a high degree
of flexibility to the compiler

« Avoid the hassles of keeping items in the register
set -- use memory as one large set of registers

« This format is rarely used due to the length of
addresses themselves and the resulting length of
the instruction words

CSCl 4717 — Computer Architecture CPU Registers — Page 8 of 35

CSCI 4717 — Computer Architecture CPU Registers — Page 9 of 35

2 address instructions

< One of the addresses is used to specify both
an operand and the result location

Example: X=X +Y
* Very common in instruction sets

Supported by heavy use in HLL of
operations such as A += B or C <<=3;

ADD A,B A=A+B

1 address instructions

* When only a single reference is allowed in
an instruction, another reference must be
included as part of the instruction

« Traditional accumulator-based operations

« Example: Acc = Acc + X

 For an instruction such as A += B, code
must first load A into an accumulator, then
add B.

LOAD A
ADD B

CSCI 4717 — Computer Architecture CPU Registers — Page 10 of 35

CSCl1 4717 — Computer Architecture CPU Registers — Page 11 of 35

0 address instructions

« All addresses are implied, as in register-based
operations — e.g., TBA (transfer register B to A)

« Stack-based operations

« All operations are based on the use of a stack in
memory to store operands

« Interact with the stack using push and pop
operations

CSCI 4717 — Computer Architecture CPU Registers — Page 12 of 35




Trade off Resulting from Fewer Addresses

Fewer addresses in the instruction results in:
* More primitive instructions
» Less complex CPU

* Instructions with shorter length — fit more
into memory

» More total instructions in a program
 Longer, more complex programs

* Faster fetch/execution of instructions
» Longer execution times

CSCl1 4717 — Computer Architecture CPU Registers — Page 13 of 35

Example: 2 address
Y = (A-B) / (C+D*E)

MOV YA
SUBY.,B
MOV T,D
MUL T,E
ADDT,C
DIVY,T

Example: 3 Addresses
Y = (A-B) / (C+D*E)

SUBY,AB
MUL T,D,E
ADDT,T,C
DIVYY, T

CSCl1 4717 — Computer Architecture CPU Registers — Page 14 of 35

Example: 1 address
Y = (A-B) / (C+D*E)

LOAD D
MUL E
ADD C
STORE Y
LOAD A
SUB B
DIVY
STOREY

CSC| 4717 — Computer Architecture CPU Registers — Page 15 of 35

CSCI 4717 — Computer Architecture CPU Registers — Page 16 of 35

Example: 0 address — Convert to postfix
(reverse Polish) notation:

PUSH A
Y = (A-B) / (C+D*E) PUSH B
b SuB
ecomes PUSH C
PUSH D
- | *.
Y = AB-CDE*+/ PUSH E
MUL
This is "Postfix" or "Reverse ADD
Polish Form" from tree DIV
searching. POP Y

Design Decisions

« Operation repertoire
— How many ops?
— What can they do?
— How complex are they?
« Data types — various types of operations
and how they are performed
* Instruction formats
— Length of op code field
— Number of addresses

CSCl1 4717 — Computer Architecture CPU Registers — Page 17 of 35

CSCI 4717 — Computer Architecture CPU Registers — Page 18 of 35




CPU Internal Design Issues

From our discussion of the architecture of

the computer, we've put some requirements

on the CPU:

— Fetch instructions from memory

— Interpret instructions to determine action that is
required

— Fetch data that may be required for execution
(could come from memory or I/O)

— Process data with arithmetic, logic, or some
movement of data

— Write data to memory or 1/10

CSCl1 4717 — Computer Architecture CPU Registers — Page 19 of 35

CPU Internal Structure (continued)

« Arithmetic Logic Unit
— Status flags
— Shifter
— Complementer
— Arithmetic logic
— Boolean logic
« Internal CPU bus to pass data back and
forth between items of CPU

CPU Internal Structure

Design Arithmetic and Logic Unit
decisions

here affect
instruction
set design

-~
Yy

r 3

Reghsders

L A 4

F S T Y

CSCl1 4717 — Computer Architecture CPU Registers — Page 20 of 35

CSC| 4717 — Computer Architecture CPU Registers — Page 21 of 35

CPU Internal Structure (continued)

Registers

e CPU must have some working space
(temporary storage) to remember things
—Data
— location of last instruction or next instruction
— instruction as it's working with it

* Number and function vary between
processor designs

« One of the major design decisions

« Absolute top level of memory hierarchy

CPU Internal Structure (continued)

Two types of registers:

« User-visible registers -- allow for operations
with minimal interaction with main memory
(programmer takes place of cache
controller)

« Control and Status Registers -- with correct
privileges, can be set by programmer.
Lesser privileges may provide read-only
capability.

CSCl1 4717 — Computer Architecture CPU Registers — Page 23 of 35

CSCI 4717 — Computer Architecture CPU Registers — Page 22 of 35

CPU Internal Structure (continued)

« Control unit -- managing operation of all
CPU items

« Internal CPU bus to pass data back and
forth between items of CPU

CSCI 4717 — Computer Architecture CPU Registers — Page 24 of 35




User Visible Registers

» Accessed through machine/assembly
language instructions
— General Purpose
— Data
— Address
— Condition Codes

« Represent complete user-oriented view of
processor -- therefore, storing and later
restoring of all user-visible registers
effectively resets processor back to stored
state

CSCl1 4717 — Computer Architecture

CPU Registers — Page 25 of 35

Register Design Issues

The range of design decisions goes from...

« Make all registers general purpose
— Increase flexibility and programmer options
— Increase instruction size & complexity

* Make them specialized
— Smaller more specialized (faster) instructions
— Less flexibility

CSC| 4717 — Computer Architecture

General Purpose Registers

May be true general purpose -- can contain the
operand for any opcode

May be restricted -- floating point only, integer only,
address only

May be used for data or addressing -- some may
do either address or data, in some cases there
may be a clear distinction between data and
address registers

Accumulator - Data

Addressing

— Segment

— Index -- may be autoindexed

— Stack

CSCl1 4717 — Computer Architecture

CPU Registers — Page 26 of 35

Register Design Issues (continued)

How many general purpose registers?

Number affects instruction set design => more
registers means more operand identifier bits
Between 8 — 32

Remember that the registers are at top of hierarchy
- faster than cache

The fewer GP registers, the more memory
references

More does not necessarily reduce memory
references and takes up processor real estate

RISC needs are different and will be discussed
later

CPU Registers — Page 27 of 35

CSCI 4717 — Computer Architecture

CPU Registers — Page 28 of 35

Register Design Issues (continued)

How big do we make the registers?
« Address -- large enough to hold full address
 Data -- large enough to hold full word

« Often possible to combine two data registers
--e.g. AH + AL = AX

« Example: Do we link the design of registers
to a standard, e.g., C programming
—double int a;
—long int a;

CSCl1 4717 — Computer Architecture

Condition Code Registers (flags)

Sets of individual bits each with a unique
purpose (e.g. result of last operation was zero)
Opcodes can read flag values to determine
effect/operation (e.g., conditional jumps)
Automatically set as a result of some
operations

Some processors allow user to set or clear
them explicitly

Collected into group and referred to as a single
register (CCR)

CPU Registers — Page 29 of 35

CSCI 4717 — Computer Architecture

CPU Registers — Page 30 of 35




Control & Status Registers

Types of control & status registers

» Registers for movement of data between CPU
and memory
— Program Counter (PC)
— Instruction Register (IR)
— Memory Address Register (MAR)
— Memory Buffer Register (MBR)

» Optional buffers used to exchange data between
ALU, MBR, and user-visible registers

« Program Status Word (PSW)

Address pointers used for control

« Built-in processor I/O control & status registers

CSCl1 4717 — Computer Architecture CPU Registers — Page 31 of 35

Control & Status Registers (continued)

« Memory Address Register (MAR)

— Memory address of current memory location to
fetch

— Could be instruction or data
* Memory Buffer Register (MBR)

— Last word read from memory (instruction or
data)

— Word to be stored to memory

CSC| 4717 — Computer Architecture

CPU Registers — Page 33 of 35

Control & Status Registers (continued)

» Address pointers used for control
— Interrupt vectors
— System stack pointer

— Page table pointer for hardware supported
virtual memory

— Chip select controls
» On processor 1/0
— Status and control to operate the I/O

—E.qg., serial ports -- bps rate, interrupt enables,
buffer registers, etc.

CSCl1 4717 — Computer Architecture CPU Registers — Page 35 of 35

Control & Status Registers (continued)

* Program Counter (PC)

— Automatically incremented to next instruction as
part of operation of current instruction

— Can also be changed as result of jump
instruction
« Instruction Register (IR)
— Most recently fetched instructions

— Where instruction decoder examines opcode to
figure out what to do next

CSCl1 4717 — Computer Architecture CPU Registers — Page 32 of 35

Control & Status Registers (continued)

Program Status Word (PSW) — May be exactly the same
thing as user-visible condition code register

« A set of bits which include condition codes

— Sign of last result

— Zero

— Carry

— Equal

— Overflow

— Interrupt enable/disable

— Supervisor
* Examples: Intel ring zero, kernel mode
« Allows privileged instructions to execute
« Used by operating system
« Not available to user programs

CSCI 4717 — Computer Architecture CPU Registers — Page 34 of 35




