CSCI 4717/5717 Major Advances

. A number of advances have occurred since the
CompUter Architecture von Neumann architecture was proposed:

—Microprocessors
—Solid-state RAM
—Family concept — separating architecture of

Topic: RISC Processors

Reading: Stallings, Chapter 13 machine from implementation
CSCl 4717 — Computer Architecture RISC Processors — Page 1 of 46 CSCl 4717 — Computer Architecture RISC Processors — Page 2 of 46 |
Major Advances (continued) Semantic Gap
+ Microprogrammed unit « Difference between operations performed in
— Microcode allows for simple programs to be HLL and those provided by architecture
executed from firmware as an action for an » Example: Assembly language level
instruction case/switch on VAX in hardware
— Microcode eases the task of designing and e Problems
implementing the control unit — inefficient execution of code
» Cache memory — speeds up memory hierarchy — excessive machine program code size
« Pipelining — reduces percentage of idle components —increased complexity of compilers
» Multiple processors — Speed through parallelism » Predominate operations

— Movement of data
— Conditional statements

CSC| 4717 — Computer Architecture RISC Processors — Page 3 of 46 CSCI 4717 — Computer Architecture RISC Processors — Page 4 of 46
Measuring Effects of Instructions Operations (continued)

» Dynamic occurrence — relative number of times

instructions tended to occur in a compiled program Machine-Instruction | Memory-Reference
. . . Dynamic Occurrence Welghted Weighted
« Static occurrence — counting the number of times sl . et . Pl c
they are seen in a program (This is a useless PO B S — S —.
measurement) T))) _)
X . . i LOOF 5% 3% 4% 32% 33% 6%
+ Machine-Instruction Weighted — relative amount of CALL - - e - o .
machine code executed as a result of this - - - - T -
instruction (based on dynamic occurrence) aoto
* Memory Reference Weighted — relative amount of OTHER &% 19 1% 2% 1%

memory references executed as a result of this
instruction (based on dynamic occurrence)

* Procedure call is most time consuming Table 13.2 from Stallings

CSCl1 4717 — Computer Architecture RISC Processors —Page 5 of 46 CSCI 4717 — Computer Architecture RISC Processors — Page 6 of 46

Operands

* Integer constants
» Scalars (80% of scalars were local to procedure)
 Array/structure
e Lunde, A. "Empirical Evaluation of Some Features
of Instruction Set Processor Architectures."
Communications of the ACM, March 1977.
— Each instruction references 0.5 operands in memory
— Each instruction references 1.4 registers

— These numbers depend highly on architecture (e.g.,
number of registers, etc.)

CSCl 4717 — Comguter Architecture RISC Processors — Page 70f46

Procedure calls
Table 13.4 from Stallings

Percentage of Executed Compiler, Interpreter, and Small Nonnumeric
Procedure Calls With Typesetter Programs

=3 arguments 0-7% 0-5%

-5 aTguments 0-3% 0%

=8 words of arguments and 1-20%% 0-6%

local scalars

12 words of arguments and 1=-6%

local scalars

This implies that the number of words required
when calling a procedure is not that high.

Operands (continued)
Table 13.3 from Stallings

Pascal C Average
Integer 16% 23% 20%
constant
Scalar 58% 53% 55%
variable
Array/ 26% 24% 25%
structure

CSCl 4717 — Computer Architecture RISC Processors — Paqe 8 of 46

CSC| 4717 — Computer Architecture RISC Processors — Page 9 of 46

Results of Research

This research suggests:

« Trying to close semantic gap (CISC) is not
necessarily answer to optimizing processor
design

¢ A set of general techniques or architectural
characteristics can be developed to improve
performance.

Reduced Instruction
Set Computer (RISC)

Characteristics of a RISC architecture (reduced
instruction set is not the only one):

 Limited/simple instruction set — Will become
clearer later

e Large number of general-purpose registers and/or
use of compiler designed to optimize use of
registers — This saves operand referencing

« Optimization of pipeline due to better instruction
design — Due to high proportion of conditional
branch and procedure call instructions

CSCl1 4717 — Computer Architecture RISC Processors —Page 11 of 46

CSCI 4717 — Computer Architecture RISC Processors — Page 10 of 46

Increasing Register Availability

There are two basic methods for improving
register use

— Software — relies on compiler to maximize
register usage

— Hardware — simply create more registers

CSCl 4717 — Computer Architecture RISC Processors — Page 12 of 46

Register Windows

* The hardware solution for making more registers
available for a process is to increase the number
of registers
— May slow decoding
— Should decrease number of memory accesses

 Allocate registers first to local variables

» A procedural call will force registers to be saved
into fast memory (cache)

* As shown in Table 13.4 (slide 9), only a small
number of parameters and local variables are
typically required

CSCl 4717 — Computer Architecture RISC Processors — Paqe 13 of 46

Register Windows (continued)

* This implies no movement of data to pass
parameters.

« Begin to see why compiler writers would
make better processor architects

« To make number of registers appear
unbounded, architecture should allow for
older activations to be stored in memory

CSC| 4717 — Computer Architecture RISC Processors — Page 15 of 46

Register Windows (continued)

Solution — Create multiple sets of registers, each

assigned to a different procedure

— Saves having to store/retrieve register values from
memory

— Allow adjacent procedures to overlap allowing for
parameter passing

Local
registers

Parameter
registers

Temporary
registers

Call/return

/—/%
Parameter Local
registers registers

Temporary
registers

CSCl 4717 — Computer Architecture RISC Processors — Page 14 of 46

Register
Windows
(continued)

Register Windows (continued)

* When we need to free up a window, an interrupt
occurs to store oldest window

« Only need to store parameter registers and local
registers

« Temporary registers are associated with parameter
registers of next call

« Interrupt is used to restore window after newest
function completes

« N-window register file can only hold N-1 procedure
activations

» Research showed that N=8 - 1% save or restore of
the calls and returns.

CSCI 4717 — Computer Architecture

RISC Processors — Page 16 of 46

CSCl1 4717 — Computer Architecture RISC Processors — Page 17 of 46

Register Windows — Global Variables

* Question: Where do we put global
variables?

« Could set global variables in memory

 For often accessed global variables,
however, this is inefficient

* Solution: Create an additional set of

registers for global variables. (Fixed number
and available to all procedures)

CSCl 4717 — Computer Architecture RISC Processors — Page 18 of 46

Problems with Register Windows

* Increased hardware burden

« Compiler needs to determine which
variables get the nice, high-speed registers
and which go to memory

CSCl1 4717 — Computer Architecture

RISC Processors — Paqe 19 of 46

Register Windows versus Cache
(continued)

Large Register File Cache
All local scalars Recently-used local scalars
Individual variables Blocks of memory
Compiler-assigned global vanables Recently-used global variables
Save/Restore based on procedure Save/Restore based on cache
nesting depth replacement algorithm

Register addressing Memory addressing

CSC| 4717 — Computer Architecture RISC Processors — Page 21 of 46

Register Windows versus Cache

(continued)
» There are, however, some areas where the
register windows are a better choice
— Register file more closely mimics software which
typically operates within a narrow range of
procedure calls whereas caches may thrash under
certain circumstances
— Register file wins the speed war when it comes to
decoding logic
— Good compiler design can take better advantage of
register window than cache
* Solution — use register file and instructions-only
cache

CSCl1 4717 — Computer Architecture

RISC Processors — Page 23 of 46

Register Windows versus Cache

« It could be said that register windows are
similar to a high-speed memory or cache for
procedure data

 This is not necessarily a valid comparison

CSCl 4717 — Computer Architecture RISC Processors — Page 20 of 46

Register Windows versus Cache
(continued)
There are some areas where caches are
more efficient
— They contain data that is definitely used
— Register file may not be fully used by procedure

— Savings in other areas such as code accesses
are possible with cache whereas register file
only works with local variables

CSCI 4717 — Computer Architecture RISC Processors — Page 22 of 46

Compiler-based register optimisation

* Assume a reduced number of available registers
¢ HLL do not use explicit references to registers
¢ Solution

— Assign symbolic or virtual register designations to each
declared variable

— Map limited registers to symbolic registers
— Symbolic registers that do not overlap should share register
— Load-and-store operations for quantities that overflow
number of available registers
« Goal is to decide which quantities are to be assigned
registers at any given point in program — "graph
coloring"

CSCl 4717 — Computer Architecture RISC Processors — Page 24 of 46

Graph Coloring

« Technique borrowed from discipline of topology

« Create graph — Register Interference Graph

— Each vertex is a symbolic register

— Two symbolic registers that used during the same
program fragment are joined by an edge to depict
interference

— Two symbolic vertices linked must have different "colors",
i.e., will have to use different registers

— Goal is to avoid "number of colors" exceeding number of
available registers

— Symbolic registers that go past number of actual registers
must be stored in memory

CSCl 4717 — Computer Architecture RISC Processors — Paqe 25 of 46

CISC versus RISC

» Complex instructions are possibly more
difficult to directly associate w/a HLL
instruction — many compilers may just take
the simpler, more reliable way out

» Optimization more difficult with complex
instructions

» Compilers tend to favor more general,
simpler commands, so savings in terms of
speed may not be realized either

Graph Coloring (continued)

() Time sequence of sctive use of registers

(b} Reghster interference graph

CSCl 4717 — Computer Architecture RISC Processors — Page 26 of 46

CSC| 4717 — Computer Architecture RISC Processors — Page 27 of 46

CISC versus RISC (continued)

CISC programs may take less memory

« Not necessarily an advantage with cheap
memory

« |s an advantage due to fewer page faults

« May only be shorter in assembly language
view, not necessarily from the point of view
of the number of bits in machine code

Additional Design Distinctions

* Further characteristics of RISC
— One instruction per cycle
— Register-to-register operations
— Simple addressing modes
— Simple instruction formats
» There is no clear-cut design for one or the
other

» Many processors contain characteristics of
both RISC and CISC

CSCI 4717 — Computer Architecture

RISC Processors — Page 28 of 46

CSCl1 4717 — Computer Architecture RISC Processors — Page 29 of 46

RISC — One Instruction per Cycle

* Cycle = machine cycle

« Fetch two operands from registers — very simple
addressing mode

« Perform an ALU operation

» Store the result in a register

* Microcode should not be necessary at all —
hardwired code

« Format of instruction is fixed and simple to decode

¢ Burden is placed on compiler rather than

processor — compiler runs once, application runs
many times

CSCl 4717 — Computer Architecture RISC Processors — Page 30 of 46

RISC — Register-to-Register Operations

¢ Only LOAD and STORE operations should
access memory

« ADD Example:
— RISC — ADD and ADD with carry
— VAX — 25 different ADD instructions

CSCl1 4717 — Computer Architecture

RISC Processors — Paqe 31 of 46

Simple addressing modes

* Register
« Displacement
e PC-relative

* No indirect addressing — requires two
memory accesses

* No more than one memory addressed
operand per instruction

< Unaligned addressing not allowed, i.e.,
addressing only on breaks of 2 or 4

« Simplifies control unit

CSCl 4717 — Computer Architecture RISC Processors — Page 32 of 46

Simple instruction formats

Instruction length is fixed — typically 4 bytes
* One or a few formats are used

Instruction decoding and register operand
decoding occurs at the same time

Simplifies control unit

CSC| 4717 — Computer Architecture RISC Processors — Page 33 of 46

Characteristics of Some Processors

Ml £

MAURTHC
M RS 8300

fesel 082

CSCI 4717 — Computer Architecture RISC Processors — Page 34 of 46

MIPS Instruction Format (Fig. 13.8)

Register-Immediate Instruction
31 26 25 21 20 16 15 0
‘ Operation ‘ Src reg ‘ Dest reg | Immediate data ‘

Branch Instruction
31 26 25 21 20 16 15 0
‘ Operation ‘ Srcreg 1 ‘ Srcreg 2 | Branch/address displacement ‘

Register-to-Register Instruction
31 26 25 21 20 16 15 11 10 6 5
‘ Operation ‘ Srcreg 1 ‘ Srcreg 2 ‘ Dest reg Shift Function ‘

Jump/Call Instruction
31 26 25 0
‘ Operation ‘ Target address ‘

CSCl1 4717 — Computer Architecture RISC Processors — Page 35 of 46

MIPS Instruction Format (continued)

* What is the largest immediate integer that
can be subtracted from a register?

« How far away from the current instruction
can a branch instruction go?

« What is the memory range for a jump or call
instruction?

« Why might a branch operation require two
registers instead of referencing flags?

CSCl 4717 — Computer Architecture RISC Processors — Page 36 of 46

Delayed Branch

« Traditional pipelining disposes of instruction
loaded in pipe after branch

« Delayed branching executes instruction
loaded in pipe after branch

* NOOP can be used if instruction cannot be
found to execute after JUMP. This makes it
S0 no special circuitry is needed to clear the
pipe.

« Itis left up to the compiler to rearrange
instructions or add NOOPs

CSCl 4717 — Computer Architecture RISC Processors — Paqe 37 of 46

Delayed Branch (continued)

Address Normal Branch Delaved Branch Optimized
Delayed Branch
100 LOAD XA LOAD XA LOAD XA
10 ADD LA ADD 1LA JUMP 105
102 JUMP 108 JUMP 106 ADD 1A
103 ADD AB NOOP ADD AR
104 SUB OB ADD AR SUB OB
104 STORE AZ SUB CB STORE AZ

106 STORE AZ

L
L
s [T

WAL T E

a2 gL

wanoans L 1 HE

Delayed wsromzaz b L
Branch
(continued) N

1oz IUr s O E

T B B [

I STORE AT 1 ' ' ' T]

b RESC Pl mith Imserted NOOP

meoanaa [0 | ®

101 JU 108 i 3

EATE, A i E

105 STORE AT T 3

CSCl 4717 — Computer Architecture RISC Processors — Page 38 of 46

CSC| 4717 — Computer Architecture RISC Processors — Page 39 of 46

Delayed Load

« Similar to delayed branch in that an
instruction that doesn't use register being
loaded can execute during the D phase of a
load instruction

 During a load, processor "locks" register
being loaded and continues execution until
instruction requiring locked register is
referenced

« Left up to the compiler to rearrange
instructions

Problem 13.6 from Textbook
S:=0;
forK:=1t0100do S:=S-K;

-- translates to --

LD R1,0 ;keep value of S in R1

LD R2,1 ;keep value of K in R2
LP SUB R1,R1, R2 S:=S-K

BEQ R2, 100, EXIT :done if K =100

ADD R2,R2,1 ;else increment K

JMP LP ;back to start of loop

Where should the compiler add NOOPs or rearrange instructions?

CSCI 4717 — Computer Architecture

RISC Processors — Page 40 of 46

CSCl1 4717 — Computer Architecture RISC Processors — Page 41 of 46

RISC Pipelining

« Pipelining structure is simplified greatly thus
making delay between stages much less apparent
and simplifying logic of the stages

¢ ALU operations
— | instruction fetch
— E: execute (register-to-register)

« Load and store operations
— I:instruction fetch
— E: execute (calculates memory address)

— D: Memory (register-to-memory or memory-to-register
operations)

CSCl 4717 — Computer Architecture RISC Processors — Page 42 of 46

Comparing the Effects of Pipelining

Sequential execution — obviously inefficient

Load A«M [I]E[D]

Load BeM [1]E[D]

Add Ci=A+B [TE]

Store M+ C [TTE[D]
Branch X lIIE‘

CSCl 4717 — Computer Architecture RISC Processors — Paqe 43 of 46

Comparing the Effects of Pipelining
(continued)

Permitting two memory accesses at one time
allows for fully pipelined operation (dual-port RAM)

Load A« M

Load BeM

NOOP [1TE]

Add CeA4+B [1]E]

Store MeC [1]E]D]
Branch X 1[E
NOOP [1]E]

Comparing the Effects of Pipelining
(continued)

* Two-way pipelined timing — | and E stages of two different
instructions can be performed simultaneously
« Yields up to twice the execution rate of sequential

e Problems

— Causes wait state load AeM [T[E[D
with accesses to lod BeM [0] [E[D
memory

— Branch disrupts flow SR o E
(NOOP instruction Store MeC
can be inserted by Branch X 1] [E]
assembler or

. NOOP I[E

compiler)

CSCl 4717 — Computer Architecture RISC Processors — Page 44 of 46

Comparing the Effects of Pipelining
(continued)
¢ Since E is usually longer, break E into two parts

— E1 —register file read
— E2 — ALU operation and register write

» Because of RISC design,

this is not as difficult to Lot A M [TEJED]

do and up to four : o -

h . ond B¢ [EED]

instructions can be under — e

way at one time .

. Ad CeAsD T[E[E:

(potential speedup of 4) :“_ Ll_?_ TEES
Branch X 1 E, |Es
NOOP [TEE]
NOOP [T]EfEs]

RISC Processors — Page 46 of 46

CSC| 4717 — Computer Architecture RISC Processors — Page 45 of 46

CSCI 4717 — Computer Architecture

