
1

RISC Processors – Page 1 of 46CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: RISC Processors

Reading: Stallings, Chapter 13

RISC Processors – Page 2 of 46CSCI 4717 – Computer Architecture

Major Advances
A number of advances have occurred since the
von Neumann architecture was proposed:
– Microprocessors
– Solid-state RAM
– Family concept – separating architecture of

machine from implementation

RISC Processors – Page 3 of 46CSCI 4717 – Computer Architecture

Major Advances (continued)
• Microprogrammed unit

– Microcode allows for simple programs to be
executed from firmware as an action for an
instruction

– Microcode eases the task of designing and
implementing the control unit

• Cache memory – speeds up memory hierarchy
• Pipelining – reduces percentage of idle components
• Multiple processors – Speed through parallelism

RISC Processors – Page 4 of 46CSCI 4717 – Computer Architecture

Semantic Gap
• Difference between operations performed in

HLL and those provided by architecture
• Example: Assembly language level

case/switch on VAX in hardware
• Problems

– inefficient execution of code
– excessive machine program code size
– increased complexity of compilers

• Predominate operations
– Movement of data
– Conditional statements

RISC Processors – Page 5 of 46CSCI 4717 – Computer Architecture

Measuring Effects of Instructions

• Dynamic occurrence – relative number of times
instructions tended to occur in a compiled program

• Static occurrence – counting the number of times
they are seen in a program (This is a useless
measurement)

• Machine-Instruction Weighted – relative amount of
machine code executed as a result of this
instruction (based on dynamic occurrence)

• Memory Reference Weighted – relative amount of
memory references executed as a result of this
instruction (based on dynamic occurrence)

• Procedure call is most time consuming

RISC Processors – Page 6 of 46CSCI 4717 – Computer Architecture

Operations (continued)

Table 13.2 from Stallings

2

RISC Processors – Page 7 of 46CSCI 4717 – Computer Architecture

Operands
• Integer constants
• Scalars (80% of scalars were local to procedure)
• Array/structure
• Lunde, A. "Empirical Evaluation of Some Features

of Instruction Set Processor Architectures."
Communications of the ACM, March 1977.
– Each instruction references 0.5 operands in memory
– Each instruction references 1.4 registers
– These numbers depend highly on architecture (e.g.,

number of registers, etc.)

RISC Processors – Page 8 of 46CSCI 4717 – Computer Architecture

Operands (continued)
Table 13.3 from Stallings

25%24%26%Array/
structure

55%53%58%Scalar
variable

20%23%16%Integer
constant

AverageCPascal

RISC Processors – Page 9 of 46CSCI 4717 – Computer Architecture

Procedure calls
Table 13.4 from Stallings

This implies that the number of words required
when calling a procedure is not that high.

RISC Processors – Page 10 of 46CSCI 4717 – Computer Architecture

Results of Research
This research suggests:
• Trying to close semantic gap (CISC) is not

necessarily answer to optimizing processor
design

• A set of general techniques or architectural
characteristics can be developed to improve
performance.

RISC Processors – Page 11 of 46CSCI 4717 – Computer Architecture

Reduced Instruction
Set Computer (RISC)

Characteristics of a RISC architecture (reduced
instruction set is not the only one):

• Limited/simple instruction set – Will become
clearer later

• Large number of general-purpose registers and/or
use of compiler designed to optimize use of
registers – This saves operand referencing

• Optimization of pipeline due to better instruction
design – Due to high proportion of conditional
branch and procedure call instructions

RISC Processors – Page 12 of 46CSCI 4717 – Computer Architecture

Increasing Register Availability
There are two basic methods for improving
register use
– Software – relies on compiler to maximize

register usage
– Hardware – simply create more registers

3

RISC Processors – Page 13 of 46CSCI 4717 – Computer Architecture

Register Windows
• The hardware solution for making more registers

available for a process is to increase the number
of registers
– May slow decoding
– Should decrease number of memory accesses

• Allocate registers first to local variables
• A procedural call will force registers to be saved

into fast memory (cache)
• As shown in Table 13.4 (slide 9), only a small

number of parameters and local variables are
typically required

RISC Processors – Page 14 of 46CSCI 4717 – Computer Architecture

Register Windows (continued)
Solution – Create multiple sets of registers, each
assigned to a different procedure
– Saves having to store/retrieve register values from

memory
– Allow adjacent procedures to overlap allowing for

parameter passing

Parameter
registers

Local
registers

Temporary
registers

Parameter
registers

Local
registers

Temporary
registers

Call/return

RISC Processors – Page 15 of 46CSCI 4717 – Computer Architecture

Register Windows (continued)
• This implies no movement of data to pass

parameters.
• Begin to see why compiler writers would

make better processor architects
• To make number of registers appear

unbounded, architecture should allow for
older activations to be stored in memory

RISC Processors – Page 16 of 46CSCI 4717 – Computer Architecture

Register
Windows

(continued)

RISC Processors – Page 17 of 46CSCI 4717 – Computer Architecture

Register Windows (continued)
• When we need to free up a window, an interrupt

occurs to store oldest window
• Only need to store parameter registers and local

registers
• Temporary registers are associated with parameter

registers of next call
• Interrupt is used to restore window after newest

function completes
• N-window register file can only hold N-1 procedure

activations
• Research showed that N=8 1% save or restore of

the calls and returns.

RISC Processors – Page 18 of 46CSCI 4717 – Computer Architecture

Register Windows – Global Variables

• Question: Where do we put global
variables?

• Could set global variables in memory
• For often accessed global variables,

however, this is inefficient
• Solution: Create an additional set of

registers for global variables. (Fixed number
and available to all procedures)

4

RISC Processors – Page 19 of 46CSCI 4717 – Computer Architecture

Problems with Register Windows
• Increased hardware burden
• Compiler needs to determine which

variables get the nice, high-speed registers
and which go to memory

RISC Processors – Page 20 of 46CSCI 4717 – Computer Architecture

Register Windows versus Cache
• It could be said that register windows are

similar to a high-speed memory or cache for
procedure data

• This is not necessarily a valid comparison

RISC Processors – Page 21 of 46CSCI 4717 – Computer Architecture

Register Windows versus Cache
(continued)

RISC Processors – Page 22 of 46CSCI 4717 – Computer Architecture

Register Windows versus Cache
(continued)

There are some areas where caches are
more efficient
– They contain data that is definitely used
– Register file may not be fully used by procedure
– Savings in other areas such as code accesses

are possible with cache whereas register file
only works with local variables

RISC Processors – Page 23 of 46CSCI 4717 – Computer Architecture

Register Windows versus Cache
(continued)

• There are, however, some areas where the
register windows are a better choice
– Register file more closely mimics software which

typically operates within a narrow range of
procedure calls whereas caches may thrash under
certain circumstances

– Register file wins the speed war when it comes to
decoding logic

– Good compiler design can take better advantage of
register window than cache

• Solution – use register file and instructions-only
cache

RISC Processors – Page 24 of 46CSCI 4717 – Computer Architecture

Compiler-based register optimisation
• Assume a reduced number of available registers
• HLL do not use explicit references to registers
• Solution

– Assign symbolic or virtual register designations to each
declared variable

– Map limited registers to symbolic registers
– Symbolic registers that do not overlap should share register
– Load-and-store operations for quantities that overflow

number of available registers
• Goal is to decide which quantities are to be assigned

registers at any given point in program – "graph
coloring"

5

RISC Processors – Page 25 of 46CSCI 4717 – Computer Architecture

Graph Coloring
• Technique borrowed from discipline of topology
• Create graph – Register Interference Graph

– Each vertex is a symbolic register
– Two symbolic registers that used during the same

program fragment are joined by an edge to depict
interference

– Two symbolic vertices linked must have different "colors",
i.e., will have to use different registers

– Goal is to avoid "number of colors" exceeding number of
available registers

– Symbolic registers that go past number of actual registers
must be stored in memory

RISC Processors – Page 26 of 46CSCI 4717 – Computer Architecture

Graph Coloring (continued)

RISC Processors – Page 27 of 46CSCI 4717 – Computer Architecture

CISC versus RISC

• Complex instructions are possibly more
difficult to directly associate w/a HLL
instruction – many compilers may just take
the simpler, more reliable way out

• Optimization more difficult with complex
instructions

• Compilers tend to favor more general,
simpler commands, so savings in terms of
speed may not be realized either

RISC Processors – Page 28 of 46CSCI 4717 – Computer Architecture

CISC versus RISC (continued)
CISC programs may take less memory
• Not necessarily an advantage with cheap

memory
• Is an advantage due to fewer page faults
• May only be shorter in assembly language

view, not necessarily from the point of view
of the number of bits in machine code

RISC Processors – Page 29 of 46CSCI 4717 – Computer Architecture

Additional Design Distinctions

• Further characteristics of RISC
– One instruction per cycle
– Register-to-register operations
– Simple addressing modes
– Simple instruction formats

• There is no clear-cut design for one or the
other

• Many processors contain characteristics of
both RISC and CISC

RISC Processors – Page 30 of 46CSCI 4717 – Computer Architecture

RISC – One Instruction per Cycle

• Cycle = machine cycle
• Fetch two operands from registers – very simple

addressing mode
• Perform an ALU operation
• Store the result in a register
• Microcode should not be necessary at all –

hardwired code
• Format of instruction is fixed and simple to decode
• Burden is placed on compiler rather than

processor – compiler runs once, application runs
many times

6

RISC Processors – Page 31 of 46CSCI 4717 – Computer Architecture

RISC – Register-to-Register Operations

• Only LOAD and STORE operations should
access memory

• ADD Example:
– RISC – ADD and ADD with carry
– VAX – 25 different ADD instructions

RISC Processors – Page 32 of 46CSCI 4717 – Computer Architecture

Simple addressing modes

• Register
• Displacement
• PC-relative
• No indirect addressing – requires two

memory accesses
• No more than one memory addressed

operand per instruction
• Unaligned addressing not allowed, i.e.,

addressing only on breaks of 2 or 4
• Simplifies control unit

RISC Processors – Page 33 of 46CSCI 4717 – Computer Architecture

Simple instruction formats

• Instruction length is fixed – typically 4 bytes
• One or a few formats are used
• Instruction decoding and register operand

decoding occurs at the same time
• Simplifies control unit

RISC Processors – Page 34 of 46CSCI 4717 – Computer Architecture

Characteristics of Some Processors

RISC Processors – Page 35 of 46CSCI 4717 – Computer Architecture

MIPS Instruction Format (Fig. 13.8)

Operation Src reg Dest reg Immediate data
31 26 25 21 20 16 15 0

Register-Immediate Instruction

Operation Src reg 1 Src reg 2 Branch/address displacement
31 26 25 21 20 16 15 0

Branch Instruction

Operation Src reg 1 Src reg 2
31 26 25 21 20 16 15 0

Register-to-Register Instruction

Dest reg Shift Function
11 10 6 5

Operation Target address
31 26 25 0

Jump/Call Instruction

RISC Processors – Page 36 of 46CSCI 4717 – Computer Architecture

MIPS Instruction Format (continued)

• What is the largest immediate integer that
can be subtracted from a register?

• How far away from the current instruction
can a branch instruction go?

• What is the memory range for a jump or call
instruction?

• Why might a branch operation require two
registers instead of referencing flags?

7

RISC Processors – Page 37 of 46CSCI 4717 – Computer Architecture

Delayed Branch
• Traditional pipelining disposes of instruction

loaded in pipe after branch
• Delayed branching executes instruction

loaded in pipe after branch
• NOOP can be used if instruction cannot be

found to execute after JUMP. This makes it
so no special circuitry is needed to clear the
pipe.

• It is left up to the compiler to rearrange
instructions or add NOOPs

RISC Processors – Page 38 of 46CSCI 4717 – Computer Architecture

Delayed Branch (continued)

RISC Processors – Page 39 of 46CSCI 4717 – Computer Architecture

Delayed
Branch

(continued)

RISC Processors – Page 40 of 46CSCI 4717 – Computer Architecture

Delayed Load
• Similar to delayed branch in that an

instruction that doesn't use register being
loaded can execute during the D phase of a
load instruction

• During a load, processor "locks" register
being loaded and continues execution until
instruction requiring locked register is
referenced

• Left up to the compiler to rearrange
instructions

RISC Processors – Page 41 of 46CSCI 4717 – Computer Architecture

Problem 13.6 from Textbook
S := 0;
for K :=1 to 100 do S := S – K;

-- translates to --

LD R1, 0 ;keep value of S in R1
LD R2, 1 ;keep value of K in R2

LP SUB R1, R1, R2 ;S := S – K
BEQ R2, 100, EXIT ;done if K = 100
ADD R2, R2, 1 ;else increment K
JMP LP ;back to start of loop

Where should the compiler add NOOPs or rearrange instructions?
RISC Processors – Page 42 of 46CSCI 4717 – Computer Architecture

RISC Pipelining
• Pipelining structure is simplified greatly thus

making delay between stages much less apparent
and simplifying logic of the stages

• ALU operations
– I: instruction fetch
– E: execute (register-to-register)

• Load and store operations
– I: instruction fetch
– E: execute (calculates memory address)
– D: Memory (register-to-memory or memory-to-register

operations)

8

RISC Processors – Page 43 of 46CSCI 4717 – Computer Architecture

Comparing the Effects of Pipelining
Sequential execution – obviously inefficient

RISC Processors – Page 44 of 46CSCI 4717 – Computer Architecture

Comparing the Effects of Pipelining
(continued)

• Two-way pipelined timing – I and E stages of two different
instructions can be performed simultaneously

• Yields up to twice the execution rate of sequential
• Problems

– Causes wait state
with accesses to
memory

– Branch disrupts flow
(NOOP instruction
can be inserted by
assembler or
compiler)

RISC Processors – Page 45 of 46CSCI 4717 – Computer Architecture

Comparing the Effects of Pipelining
(continued)

Permitting two memory accesses at one time
allows for fully pipelined operation (dual-port RAM)

RISC Processors – Page 46 of 46CSCI 4717 – Computer Architecture

Comparing the Effects of Pipelining
(continued)

• Since E is usually longer, break E into two parts
– E1 – register file read
– E2 – ALU operation and register write

• Because of RISC design,
this is not as difficult to
do and up to four
instructions can be under
way at one time
(potential speedup of 4)

