Points missed:	Student's Name:	

Total score: ____/100 points

East Tennessee State University – Department of Computer and Information Sciences CSCI 2710 (Tarnoff) – Discrete Structures TEST 2 for Fall Semester, 2004

Read this before starting!

- This test is closed book and closed notes
- You may *NOT* use a calculator
- All answers must have a box drawn around them. This is to aid the grader (who might not be me!) Failure to do so might result in no credit for answer.
- If you perform work on the back of a page in this test, indicate that you have done so in case the need arises for partial credit to be determined.
- Statement regarding academic misconduct from Section 5.7 of the East Tennessee State University Faculty Handbook, June 1, 2001:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense the penalty is permanent expulsion."

A short list of some tautologies:

1.
$$(p \land q) \Rightarrow p$$

3.
$$p \Rightarrow (p \lor q)$$

5.
$$\sim p \Rightarrow (p \Rightarrow q)$$

7.
$$((p \Rightarrow q) \land p) \Rightarrow q$$

$$0 \quad ((n \Rightarrow a) \land \neg a) \Rightarrow \cdots$$

9.
$$((p \Rightarrow q) \land \neg q) \Rightarrow \neg p$$

2.
$$(p \land q) \Rightarrow q$$

4.
$$q \Rightarrow (p \lor q)$$

6.
$$\sim (p \Rightarrow q) \Rightarrow p$$

8.
$$((p \lor q) \land \sim p) \Rightarrow q$$

10.
$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

Mathematical induction:

If $P(n_0)$ is true and assuming P(k) is true implies P(k+1) is true, then P(n) is true for all $n \ge n_0$

Permutations and Combinations:

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 $_{n}C_{r} = \frac{n!}{r!(n-r)!}$

Properties of Relations:

- A relation is reflexive if a R a, for all $a \in A$.
- A relation is irreflexive if $a \not R a$, for all $a \in A$.
- A relation is symmetric if whenever a R b, then b R a.
- A relation is asymmetric if whenever a R b, then $b \not R a$.
- A relation is antisymmetric if whenever a R b and b R a, then a = b.
- A relation is transitive if whenever a R b and b R c, then a R c.
- A relation is called an equivalence relation if it is reflexive, symmetric, and transitive.

the h	e e	For each of t	ies listed on the coversheet. (See table under the four arguments, identify which tautology the space provided. (2 points each)
1.	If it is thundering, then there is lightning There is thunder	2.	It is either raining or snowing It isn't raining
,	There is lightning		It must be snowing

1.	if it is thundering, then there is rightning	∠.	it is citien railing	5 or snowing	
	There is thunder		It isn't raining		
	There is lightning		It must be snowing	ng	
	Answer:		Answer:		
3.	Either Ed is short or Ed is tall Ed is not short	4.	If I drive to school I am on time for o	ol, I will be late to class	
	Ed is fiot short		I didn't drive to se		
	Answer:		Answer:		
5.	This test is easy	6.	Matthew is my so	on	
	Either I studied well or this test is easy		Matthew is a chil	d of mine	
	Answer:		Answer:		
For	the next four arguments, indicate which are val	lid and w	hich are invalid. (2 points each)	
7.	If I publish a novel, I will be famous If I am famous, I will be happy	8.	If I drive to school, I will be late to class I was late to class		
	I am happy, therefore, I published a novel		I drove to school		
	□ Valid □ Invalid		□ Valid	☐ Invalid	
9.	If I try hard, then I will succeed If I succeed, then I will be happy I am not happy, therefore, I didn't try hard	10.	Pete is the name of my pet The only dogs I own are black labs Pete is a black lab		
	□ Valid □ Invalid		□ Valid	☐ Invalid	
Sele	following seven problems present seven situative the formula, n^r , ${}_{n}P_{r}$, ${}_{n}C_{r}$, or ${}_{(n+r-1)}C_{r}$, that will identify the values of r and n . (4 points each)	ll comput			
11.	Compute the number of 4-digit ATM PINs who	ere duplic	ate digits are allow	ved.	
	a.) n^r b.) ${}_{n}P_r$ c.) ${}_{n}C_r$, d.)	$(n+r-1)$ C_r	<i>n</i> =	r =	
12.	Compute the number of different 5 card hands	can be dr	awn from a deck of	f 52 cards.	

b.) $_{n}P_{r}$ c.) ${}_{n}C_{r}$, d.) ${}_{(n+r-1)}C_{r}$ a.) n^r *n* = _____ *r* = _____ 13. How many committees of 5 people can be created from a group of 8 people?

a.) n^r

b.) $_{n}P_{r}$

c.) ${}_{n}C_{r}$,

d.) $_{(n+r-1)}C_r$

n = _____ *r* = _____

14.	How many	ways	can the le	tters	in the wor	rd M	ICHAEL b	e arrang	ed?		
	a.) <i>n</i> ^r	b.)	$_{n}P_{r}$	c.)	$_{n}C_{r}$,	d.)	$_{(n+r-1)}C_r$		<i>n</i> =		r =
15.	5. Assume you need to buy 10 bottles of soda from a selection of {Coke, Pepsi, Dr. Pepper, and S How many ways could you do this?									per, and Sprite}.	
	a.) <i>n</i> ^r	b.)	$_{n}P_{r}$	c.)	$_{n}$ C $_{r}$,	d.)	$_{(n+r-1)}C_r$		<i>n</i> =		r =
16.	How many	three-	digit num	bers	are there	in ba	se-5? Assı	ıme lead	ing zeros	are include	ed as digits.
	a.) <i>n</i> ^r	b.)	$_{n}P_{r}$	c.)	$_{n}C_{r}$,	d.)	$_{(n+r-1)}C_r$		<i>n</i> =		r =
17.	How many as 4 & 3.	differe	ent ways o	can 2	six-sided	dice	come up?	There is	s no ordei	·, e.g., 3 &	4 are the same
	a.) <i>n</i> ^r	b.)	$_{n}P_{r}$	c.)	$_{n}$ C $_{r}$,	d.)	$_{(n+r-1)}C_r$		<i>n</i> =		r =
18.	True or fals allowed, r n		_				<i>n</i> items w	here ord	er doesn't	matter and	l duplicates are
19.	Which of the combination							culate the	e number	of availabl	e license plate
	a.) ${}_{26}C_3 \cdot {}_{10}C_6$ e.) ${}_{(36+6-1)}C_6$	C_3 C_6	b.) ₍₂₆ f.) 26	+ 10 - 3·10 ³	C_{10}	c.) g.)	$^{1}_{26}P_{3} \cdot {}_{10}P_{3}$ $^{1}_{26}C_{3} \cdot 10^{3}$		d.) _{(26 + 1} h.) None	${}_{0-1)}P_6$ e of the abo	ove
20.			-		-	-	-	_	-	-	werball option ight powerball?
	a.) 45:1	b.) 44:1		c.) 60C5·4	4:60	C ₅ ·45	d.) 45C	1:1	f.) None	of the above
21.	Let $A = \{a,$	b} and	$d B = \{1, 1\}$	2, 3}	. List all	of the	e elements	in $A \times B$. (3 poin	ats)	
22.	If $ A = 5$ an	d B =	= 10, then	the	cardinality	of A	$A \times B$ is: (2)	2 points)			
	a.) 5·10	b.)	10 ⁵	c.)	5 ¹⁰	d.)	$_{5}C_{10}$	d.) ₅ P ₁₀	f.)	None of th	e above
rela whe	-	resent tion is	ed either a reflexive	as su , irre	bsets of A eflexive, sy	$\times A$, matrices,	or digra	phs. For	each proble	b, c, d}. The em, determine or transitive.
23.	$R = \{(a,b), (a,b), (a$	(a,c), ((a,d), (b,c)) , (b	,d), (c,d)	}					
□r	eflexive	□ irre	eflexive		symmetri	c	□ asymn	netric	□ antisy	mmetric	☐ transitive
24.	$R = A \times A$										
□r	eflexive	□ irre	eflexive		symmetri	c	□ asymn	netric	□ antisy	mmetric	☐ transitive

25. 0 1 0 1 1 0 1 1 0 1 0 0

 \square reflexive \square irreflexive \square symmetric \square asymmetric \square antisymmetric \square transitive

 \square reflexive \square irreflexive \square symmetric \square asymmetric \square antisymmetric \square transitive

27. a b

 \square reflexive \square irreflexive \square symmetric \square asymmetric \square antisymmetric \square transitive

The next three problems represent relations across the Cartesian product $A \times A$ where $A = \{1, 2, 3, 4, 5\}$.

28. Write the set of ordered pairs represented by the relation matrix (4 points)

 $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

29. Convert the following digraph to a matrix. (3 points)

30. Fill out the table below listing the in-degree and out degree of each element for the digraph of the previous problem. (4 points)

	1	2	3	4	5
In-Degree					
Out-Degree					

31. Create the digraph of the relation $R = A \times A$ for the set $A = \{a, b, c\}$. (3 points)

32. Select only one of the following statements to prove true using mathematical induction. (7 points)

a.)
$$2 + 4 + 6 + \dots + 2n = n(n + 1)$$

b.)
$$1 + 2^1 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$$

c.)
$$1 + a^1 + a^2 + a^3 + \dots + a^{n-1} = \frac{a^n - 1}{a - 1}$$