
CS/EE 6710 Digital VLSI Design 
CAD Assignment #3 

Due Thursday September 21st, 5:00pm 
 
Overview: In this assignment you will design a register cell. This cell should be a single-bit 
edge-triggered D-type flip flop that you could use to make a larger register file. For example, you 
might want to put 8 of these together to make an 8-bit register, and then put 16 of those 8-bit 
registers together to make a 16-word, 8-bit wide register file. Eventually you will use this cell, or 
something similar to it, in your custom data path of your project in places where you need 
registers in your design. However, don’t stress about getting it perfect in this assignment. I’m sure 
that you’ll want to tweak some things, and probably even redesign it completely, later once you 
have a better view of the whole data path and have some more experience doing layout. Note also 
that you should still be working on things individually! We’ll form groups for CAD assignment 
number 5.  
 
The inputs to your register bit should be D, CLK, CLRb, and the outputs should be Q and Qb. 
The D input should be non-inverted (that is, a 1 on D should result in a 1 on Q after the clock, and 
0 on Qb). The register should be rising-edge triggered which means the data should be captured 
and presented to the output on the rising edge of the CLK. The CLRb signal should be active low.   
 
Implementation: There are many, many ways to build a positive edge triggered D flip flop! You 
can see quite a few ways in our textbook. See Section 1.4.9 for an example, and look ahead to 
Section 7.3 for some more examples. You can also look in other books and articles to find lots of 
other circuits and variations on the basic circuits. I’ll link some papers from the Journal of Solid 
State Circuits that discuss flip flop variations to the web site. Which one is best? It depends! It 
depends on the application, the constraints of the implementation, etc. For example, a popular 
design at the NAND-gate level that you see in many textbooks is shown in Figure 1.  This is a 
fine implementation. It has an active-low reset signal that resets the flip flop to 0, it is good at 
restricting the sampling of the D signal to the rising clock edge, but if you implemented this by 
directly translating the NAND-gates to CMOS, it would be huge! As a result, you probably 
DON”T want to use this design in your register bit.  
 

 



 
Figure 1: Positive Edge Triggered Flip Flop using Gates 

 
A more CMOS-ish version of a storage element starts from a simple feedback loop that includes a 
pair of inverters for the feedback, and a couple of transmission gates (pairs of N- and P-type 
transistors) to switch between transparent and opaque modes for the latch.  This type of simple 
gated latch is shown in Figure 2 (see also Figure 1.12 in your book).  
 

 
Figure 2: Clocked Latch Using Transmission Gates 

 
These gated latches can also be implemented by merging the transmission gates with the inverters 
that are driving them to make a “clocked inverter” or “enabled inverter” or “tri-state inverter.” 
This circuit combines the functions in a smaller layout than using both an inverter and a 
transmission gate. The clocked inverter, or enabled inverter, will drive its output with the inverted 
input if the select lines are active, and will be disconnected from the output (the output will be in 
high impedance) when the select signal is inactive. The reason we can break the connection at the 



output node of the inverter, as shown in Figure 3,  is that the P-type transistor of the transmission 
gate will only be involved in pulling the output high, and the N-type of the transmission gate will 
only be involved in pulling the output low. Thus we can break the connection and fold the P-type 
into the pullup stack and fold the N-type into the pulldown stack.  

 
Figure 3: Clocked Inverter 

 
We can use the gated latch from Figure 2 (modified to use clocked inverters from Figure 3) to 
build an edge triggered flip flop as shown in Figure 4. In this circuit the D Flip-Flip is formed 
using transmission gates and clocked inverters (see Figure 1.32 in the text for a different view of 
this circuit, but without the clear). The reset is accomplished by using NAND gates instead of 
inverters for part of the feedback path. This is technically a Master-Slave device rather than a 
“true” edge triggered device, but in practice the result is the same: the D signal is sampled on the 
rising edge of the clock signal. Implementing your register bit with this circuit would result in 
MANY fewer transistors than the Figure1 circuit.  

 

 

Figure 4: Positive Edge Triggered Flip-Flop using CMOS Structures 

 



Another variation on this theme of building a gated latch and then using the latch to build a 
master slave flip flop is shown in Figures 5 and 6. This latch has the advantage that there is never 
a drive fight for the internal node (the one that is driven by both transmission gates in Figure 2 or 
by the transmission gate and the enabled inverter in Figure 4). This latch is used in some of the 
PowerPC chips. In particular it was used in a version of the PowerPC that was built in a process 
similar to ours. If you use this circuit you will have to figure out where the clearing transistors go.  

 

Figure 5: An Alternative Gated Latch 
 

 
Figure 6: An Alternative Master Slave Flip Flop 

 
This assignment is flexible: your register bit can be designed however you like (as long as it has 
the right functionality: a positive edge triggered flip flop with an active-low clear signal), but we 
recommend that it look a lot more like Figure 4 or 6 than Figure 1! You can make an even more 
compact circuit using dynamic or pseudo-dynamic circuits that we haven’t talked about, or by 
using two-phase or other clocking schemes. These are also not recommended because they’re 



tricky and increase the demands on verification in order to ensure a working circuit. However, if 
you find a variation on the Flip-Flop theme that you’d like to try, by all means experiment with it! 
Analog simulation will tell you a lot about how the circuit is going to work.  

 

Layout Considerations: Since this cell may become part of your datapath, you should pay 
careful attention to the layout aspects. Consider this a bit-sliced component with a target bit-slice 
height of 20-40 microns (this is the space between the power wire on the top and the ground wire 
on the bottom), and you should try to make the width (bit pitch) as small as possible (60-100 
microns?). See the handout on routing on the web page for more information about bit-slice pitch 
and over-cell routing. You can also use the same vdd/gnd spacing as for the standard cell library 
so that this bit could fit in your library. Chapter 4 in the Lab Manual has details about the 
standard cell template.  
 
Try to picture how this register bit will work in building either a single register, or a register file. 
Think about how this might all fit together with an ALU, shifter, etc in a datapath. In particular, 
think about the direction of data flow, the direction of vdd/gnd routing, and the routing of control 
lines. Look at Figure 7 for an example of this idea. This example is an adder instead of a register, 
but the idea of planning for how the cells will fit together is the same.  Notice how the adder 
inputs come in from the top, and the sum output goes out the bottom. The carry inputs come in 
the left and leave out the right. This way you can tile the cells together to make larger adders and 
the carry signal will be connected because of the abutment of the cells. For your register cell, I 
would plan on the top wire being vdd and the bottom being gnd. Then I would have the D input 
come in the top, and the Q and Qb leave from the bottom. Then I would think about routing the 
clock and clear signal through the cell horizontally so that the clear and clock will make contact 
with another flip flop cell abutted next to this one. That way you can put a row of these bits 
together and make a register with all the D inputs coming in the top and all the Q and Qb’s 
leaving from the bottom. This is shown in stick-diagram form (just the connections, not the 
transistors) in Figure 8.  
 

 

Figure 7: An Adder Slice 



 
Thinking about these issues ahead of time will make your datapath a more manageable design. 
On the other hand, don’t get caught up in trying to make everything perfect with this cell. At the 
very least, many of your designs won’t be used because we’ll be forming teams in the future, and 
you’ll likely use only one of the team member’s old designs. Even if your cell is the one that’s 
used, you’ll have a chance (and will probably want to) modify it (I would be very surprised if any 
cells designed early in the semester make it through to the end!).  
 

Figure 8: Three registers tiled together 

 
Procedure: Design and simulate your register bit. The bit should implement a positive edge 
triggered flip flop with an active-low clear signal. In particular, do the following:  
 

Schematic view: Create a schematic for your register bit using nmos and pmos transistors 
from the NCSU_Analog_Parts or the UofU_Analog_Parts library. Simulate the schematic 
using Verilog to make sure it is functioning properly. Remember that you get transistors with 
delay if you use the UofU_Analog_Parts versions.  
 
A note about the simulation – Notice that the cell in Figure 2 has a node that is driven by 
one of two transmission gates (or enabled inverters) depending on the level of the Clock. This 
is an interesting node because depending on how the Clock and Clock-bar signals are 
generated there will be a short amount of time where both transmission gates are on, or a 
short amount of time where both are off. If both are on, then there is the potential for a drive 
fight where both transmission gates are trying to drive that node to a different value. As long 
as the overlap is short, this will cause no real problems and the node will resolve quickly to 
one level or another when there is only one transmission gate driving the node. If both 
transmission gates turn off for a short time, nothing will be driving that node, but that’s OK 
too because the capacitance of that node will hold it at its old value until one of the gates 
turns on. This is all accurately modeled in the analog simulator. However, this is NOT 
accurately modeled in the Verilog switch-level simulation unless you give the simulation 
some help!  
 
The help Verilog needs is to know that the internal node has a capacitance that holds its value 
if both transmission gates are off. To do this you need to have the netlisting process (the 



process that generates a simulation netlist from your schematic – this happens automatically 
when you fire up the Verilog interactive simulator) extract that node as a “trireg” instead of a 
“wire.” In order to do this, you need to put an attribute on the wire so that Cadence knows it’s 
supposed to be a trireg. This procedure is described in Chapter 4, Section 4.4.4 of the Lab 
Manual.  
 
Select the wire and select Edit->Properties->Object in the schematic editor. In the dialog box 
that pops up select “ADD” to add a new property. The name of the new property is netType 
(make sure it’s spelled that way), the type of the property is string, and the value is trireg. 
Also, I like to turn on the display of the value so that by looking at the schematic you can tell 
that that wire has been designated a trireg. If you do this with any wire that has the potential 
to be undriven for any amount of time you will be able to simulate your latch with Verilog.   
 
Another note about simulation – If you use nmos and pmos transistors to make a 
transmission gate you need to be very careful to get them pointing the correct way. Note how 
the transistors are oriented when you put them in an inverter (without rotating the transistor 
symbols). There is a little arrow on the side of the transistor that is closest to the power 
supply. That is, the “leg” with the arrow is on the top for the pmos (close to vdd), and on the 
bottom for the nmos (close to gnd). These are the source connections to the transistors which 
is why they are always connected to the power supplies. The drain is the other side. The 
output of the inverter is connected to the drains. When you make a transmission gate you 
need to keep this in mind. The input to the transmission gate should be the source (arrow-side 
of the transistor), and the output should be the drain (non-arrow-side) for both nmos and 
pmos devices. The Verilog built-in transistor models always pass data from source to drain. 
That is, the drain is considered the output. If you orient the transistors in some other way the 
transmission gate will not simulate correctly in Verilog-XL (again, it will work fine in 
SpectreS). If you have a situation where you really need bi-directional data transfer in a 
transistor, you can use the bi_nmos and bi_pmos cells in the Analog_Parts libraries, but 
typically a transmission gate doesn’t need this bidirectional data flow.  
 
Schematic Justification: Write a few lines about what D-type flip-flop circuit you’ve chosen 
to build and why you chose that circuit. Describe briefly how your circuit latches values, and 
how it clears its value.  
 
Layout view: Create layout for your register bit. Keep in mind that you want to be able to tile 
these together to make a multi-bit wide register, and that you may also want to tile the multi-
bit registers to make a register file. You want to make sure that when you tile the layout in 
Virtuoso that you don’t violate design rules in the cell or between cells when they’re placed 
next to each other. Run DRC on your cell, and LVS comparing it to the schematic view.  
 
Analog Simulation: Do an analog simulation of your register bit extracted layout. Add a 
capacitance to ground of 100fF to the output Q node and another to the output Qb node to 



model the load that the register will be driving (use the “cap” cell from the 
NCSU_Analog_Parts Lib for the capacitor). Use this simulation to find the rise and fall 
times and propagation delays for your register bit. The rise time is defined as how long it 
takes for the output of the flip flop to rise from 10% to 90% of its steady state value. The fall 
time is from 90% to 10% of its steady state value (i.e. vdd or gnd are steady state values). 
Propagation delay (for this assignment) is defined as how long it takes from a 30% input level 
to a 70% output level. The propagation delay you are measuring is from the rising clock as 
the input to a changing Q at the output. There may be a different propagation delay for Q 
rising and for Q falling. Check them both.  You should also be able to determine the setup 
and hold times. That is, how close to the clock can the data change and still result in valid 
data being latched? How close do you have to come for the data to be latched incorrectly? For 
how long after the clock do you need to keep the data around to get the right value latched in 
the flip-flop? The setup and hold measurements will require doing a few simulations and 
changing the relative times of the clock and data transitions until things mess up. You don’t 
need to go overboard on picosecond resolution on this, but do try to come up with something 
reasonable.  
 
Layout view of an 8-bit register: Create a layout for an 8-bit register by tiling 8 of your 
register bits together. You don’t need to simulate this. This is just to demonstrate that your 
flip flop can be tiled into a register correctly. Make a schematic and DRC and LVS the layout 
to show that the CLOCK and CLRb signals are, in fact, connected in the layout.  
 
Turn in hard copy of the FF schematic, Verilog testbenches, schematic justification, layout, 
LVS log, analog simulation results, and a table of propagation delays, rise and fall times, and 
setup and hold times for your register bit. Also include layout, schematic, and LVS for the 8-
bit register.  

 


