

A Brief History

- 1958: First integrated circuit
- Flip-flop using two transistors
- Built by Jack Kilby at Texas Instruments
- 2003
- Intel Pentium 4μ processor (55 million transistors)
- 512 Mbit DRAM (> 0.5 billion transistors)
- 53\% compound annual growth rate over 45 years
- No other technology has grown so fast so long

D Driven by miniaturization of transistors

- Smaller is cheaper, faster, lower in power!
- Revolutionary effects on society

Transistor Types

ㅁ Bipolar transistors

- npn or pnp silicon structure
- Small current into very thin base layer controls large currents between emitter and collector
- Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
- nMOS and pMOS MOSFETS
- Voltage applied to insulated gate controls current between source and drain
- Low power allows very high integration

```
\<\:Circuits & Layout
CMOS VLSI Design
```


MOS Integrated Circuits

- 1970's processes usually had only nMOS transistors
- Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM
Intel 4004 4-bit μ Proc
[1980s-present: CMOS processes for low idle power
1: Circuits \& Layout

Corollaries

Many other factors grow exponentially

CMOS Gate Design

 - Activity:- Ex: clock frequency, processor performance
- Sketch a 4-input CMOS NAND gate

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
- Series nMOS: $Y=0$ when both inputs are 1
- Thus $Y=1$ when either input is 0
- Requires parallel pMOS
- Rule of Conduction Complements

- Pull-up network is dual of pull-down
- Parallel -> series, series -> parallel

```
\begin{tabular}{|c|c|c|}
\hline 1: Circuits \& Layout & CMOS VLSI Design & Slide \\
\hline
\end{tabular}
```


Signal Strength

- Strength of signal
- How close it approximates ideal voltage source
- $V_{D D}$ and GND rails are strongest 1 and 0
- nMOS pass strong 0
- But degraded or weak 1
- pMOS pass strong 1
- But degraded or weak 0

Thus nMOS are best for pull-down network

Pass Transistors

I Transistors can be used as switches

$\stackrel{g}{\stackrel{g}{\leftrightharpoons}}$	$\begin{gathered} \mathrm{g}=0 \\ \mathrm{~s} \rightarrow 0-\mathrm{d} \end{gathered}$	Input $\mathrm{g}=1$ Output $0 \longrightarrow \rightarrow$ strong 0
	$\begin{gathered} \mathrm{g}=1 \\ \mathrm{~s} \rightarrow 0 \rightarrow \mathrm{~d} \end{gathered}$	$\xrightarrow[1 \rightarrow \rightarrow]{\mathrm{g}=1} \text { degraded } 1$
$\stackrel{g}{\frac{1}{\mathrm{~g}} \mathrm{~d}}$	$\begin{gathered} \mathrm{g}=0 \\ \mathrm{~s} \rightarrow \mathrm{O}_{\rightarrow \rightarrow-} \mathrm{d} \end{gathered}$	Input $\mathrm{g}=0$ Output $0 \longrightarrow$ - degraded 0
	$\begin{gathered} \mathrm{g}=1 \\ \mathrm{~s} \rightarrow-\infty=\mathrm{d} \end{gathered}$	$\xrightarrow[\rightarrow \rightarrow-\text { strong } 1]{\mathrm{g}=0}$
1: Circuits \& Layout	CMOS VLSI Design	Slide 20

Tristates

- Tristate buffer produces Z when not enabled

EN	A	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

1

Tristate Inverter

I \quad Tristate inverter produces restored output

- Violates conduction complement rule
- Because we want a Z output

Gate-Level Mux Design

- $Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)
\square How many transistors are needed? 20

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
- Only 4 transistors

4:1 Multiplexer

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
- Two levels of 2:1 muxes
- Or four tristates

