

nMOS Saturation: Vds>Vgs-Vt

- ▶ Conduction by drift because of positive drain voltage
- ▶ Electrons are injected into depletion region
- ▶ I_{ds} independent of V_{ds}
- ▶ We say that the current saturates
- Similar to current source

Basic N-Type MOS Transistor

- ▶ Conditions for the regions of operation
 - ▶ Cutoff: If Vgs < Vt, then Ids is essentially 0</p>
 ▶ Vt is the "Threshold Voltage"
 - ▶ Linear: If Vgs>Vt and Vds < (Vgs Vt) then Ids depends on both Vgs and Vds
 - ▶ Channel becomes deeper as Vgs goes up
 - ▶ Saturated: If Vgs>Vt and Vds > (Vgs Vt) then Ids is essentially constant (Saturated)

Transistor Gain In β is the MOS transistor gain factor In β = (με/t_{ox})(W/L) Layout dependent Process-dependent In μ = mobility of carriers In Note that N-type is twice as good as P-type In ε = 3.9 ε₀ for SiO₂ (ε₀ = 8.85x10⁻¹⁴ F/cm) In τ_{ox} = thickness of gate oxide In β = (μC_{ox})(W/L) = k'(W/L) = KP(W/L) Increase W/L to increase gain

Threshold Voltage: Vt The Vgs voltage at which Ids is essentially 0 Vt = .67v for nmos and -.92v for pmos in our process Tiny Ids is exponentially related to Vgs, Vds Take 5720/6720 for "subthreshold" circuit ideas Vt is affected by Gate conductor material Gate insulator material Gate insulator thickness Channel doping Impurities at Si/insulator interface Voltage between source and substrate (Vsb)

Basic DC Equations for Ids

- ▶ Vgs < Vt, Ids = 0
- ▶ Linear Region
 - ▶ 0 < Vds < (Vgs Vt)

 Ids = β[(Vgs Vt)Vds Vds²/2]

 $\frac{1}{V}$ Vds $\frac{1}{V}$ Ids

- ▶ Saturated Region
 - 0 < (Vgs − Vt) < Vds Ids = β[(Vgs − Vt)²/2]

2nd Order Effect: Velocity Saturation

- ▶ This is a basic difference between longand short-channel devices
 - ▶ The strength of the horizontal EM field in a short channel device causes the carriers to reach their velocity limit early
 - ▶ Devices saturate faster and deliver less current than the quadratic model predicts

2nd Order Effect: Velocity Saturation

- ▶ Consider two devices with the same W/L ratio in our process (Vgs=5v, Vdd=5v)
 - ▶ 100/20 vs 4.6/1.2
 - ▶ They should have the same current...
 - ▶ Because of velocity saturation in the shortchannel device, it has 47% less current!

- Nominal Vt of 0.4v
- ▶ Body is tied to ground
- ▶ How much does the Vt increase if the source is at 1.1v instead of 0v?
- ▶ Because of the body effect, Vt increases by 0.28v to be 0.68v!

2nd Order Effect

Channel length is a function of Vds. When Vds increase, the depletion region of the pinch off at drain shorten the channel length.

$$L_{eff} = L = L_{short}$$

$$L_{short} = \sqrt{2 \frac{\varepsilon_{si}}{qN_A} (V_{ds} - (V_{gs} - V_t))}$$

$$Ids = \frac{kW}{2L} (V_{gs} - V_t)^2 (1 + \lambda V_{ds})$$

2nd Order Effect

The mobility of the carrier decreases when the carrier density increases. Therefore, when Vgs is large. The density of the carrier in the channel increases. As a result, the mobility decreases.

$$\mu = \frac{A \textit{verage} _ \textit{carrier} _ \textit{drift} _ \textit{velocity}(V)}{Electrical} _ Frield (E)$$

$$\mu_n = 600 \, cm^2 \, / \, V \cdot \sec$$

$$\mu_p = 250 \, cm^2 \, / \, V \cdot \sec$$

2nd Order Effect

Fowler-Nordheim Tunneling

When the gate oxide is very thin, a current can flow from gate to source by electron tunneling through the gate oxide.

$$I_{FN} = C_1 W L E_{ox}^2 e^{\frac{-E_o}{E_{ox}}}$$

$$E_{ox} = \frac{Vgs}{t_{ox}}$$

· Drain Punchthrough

When the drain voltage is high enough, the depletion region around the drain may extend to the source. Thus, causing current to flow irrespective of the gate voltage.

► Shockley models have limited value ► Not accurate enough for modern transistors ► Too complicated for much hand analysis ► Simplification: treat transistor as resistor ► Replace I_{ds}(V_{ds}, V_{gs}) with effective resistance R ► I_{ds} = V_{ds}/R ► R averaged across switching of digital gate ► Too inaccurate to predict current at any given time ► But good enough to predict RC delay

What About Gates in Series Basically we want every gate to have the delay of a "standard inverter" Standard inverter starts with 2/1 P/N ratio Gates in series? Sum the conductance to get the series conductance βn-eff = 1/(1/β1 + 1/β2 + 1/β3) βn-eff = βn/3 Effect is like increasing L by 3 Compensate by increasing W by 3

Power Dissipation Three main contributors: Static leakage current (P_s) Dynamic short-circuit current during switching (P_{sc}) Dynamic switching current from charging and discharging capacitors (P_d) Becoming a HUGE problem as chips get bigger, clocks get faster, transistors get leakier! Power typically gets dissipated as heat...

Static Leakage Power

- ▶ Reverse bias diode leakage between diffusion and substrate (PN junctions)
- ▶ Subthreshold conduction in the transistors
- ▶ Leakage current can be described by the diode current equation
 - $I_0 = i_s(e^{qV/kT} 1)$
 - ▶ Estimate at 0.1nA 0.5nA per device at room temperature

Static Leakage Power

- ▶ That's the leakage current
- ▶ For static power dissipation:
 - ▶ Ps = SUM of (I X Vdd) for all n devices
 - ➤ For example, inverter at 5v leaks about 1-2 nW in a .5u technology
 - ▶ Not much...
 - ...but, it gets MUCH worse as feature size shrinks!

Short-Circuit Dissipation When a static gate switches, both N and P devices are on for a short amount of time Thus, current flows during that switching time

Dynamic Dissipation

- ▶ By far the largest component of power dissipation
- ► Pd = C_L Vdd² f
- Watch out for large capacitive nodes that switch at high frequency
 - ▶ Like clocks...

Total Power

- ▶ These are pretty rough estimates
- ▶ It's hard to be more precise without CAD tool support
 - ▶ It all depends on frequency, average switching activity, number of devices, etc.
 - ▶ There are programs out there that can help
- ▶ But, even a rough estimate can be a valuable design guide
- $P_{total} = P_s + P_{sc} + P_d$