

MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes
- Accumulation
- Depletion
- Inversion

Transistor Characteristics

- Three conduction characteristics
- Cutoff Region
- No inversion layer in channel
- Ids = 0
- Nonsaturated, or linear region
- Weak inversion of the channel
- Ids depends on Vgs and Vds
- Saturated region
- Strong inversion of channel

- Ids is independent of Vds
- As an aside, at very high drain voltages:
- "avalanche breakdown" or "punch through"
- Gate has no control of Ids...

nMOS Cutoff: Vgs<Vt

- No channel
- $I_{d s}=0$

nMOS Saturation: Vds>Vgs-Vt

- Channel pinches off
- Conduction by drift because of positive drain voltage
- Electrons are injected into depletion region
- ${ }_{\mathrm{ds}}$ independent of V_{ds}
- We say that the current saturates
- Similar to current source

Transistor Gain

- β is the MOS transistor gain factor
- $\beta=\left(\mu \varepsilon / t_{\text {ox }}\right)(W / L)$

Layout dependent
Process-dependent

- $\mu=$ mobility of carriers
- Note that N-type is twice as good as P-type
- $\varepsilon=$ permittivity of gate insulator
- $\varepsilon=3.9 \varepsilon_{0}$ for $\mathrm{SiO}_{2}\left(\varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)$
- $T_{\mathrm{ox}}=$ thickness of gate oxide
- Also, $\varepsilon / \mathrm{t}_{\mathrm{ox}}=\mathrm{C}_{\mathrm{ox}}$ The oxide capacitance
- $\beta=\left(\mu C_{o x}\right)(W / L)=k^{\prime}(W / L)=K P(W / L)$
- Increase W/L to increase gain

Example

- We will be using a $0.6 \mu \mathrm{~m}$ process for your project
- From AMI Semiconductor
- $t_{\mathrm{ox}}=100 \AA$
- $\mu=350 \mathrm{~cm}^{2} / \mathrm{V}^{*} \mathrm{~s}$
- $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$
- Plot I_{ds} vs. V_{ds}
- $V_{\mathrm{gs}}=0,1,2,3,4,5$
- Use W/L = 4/2 λ
$\beta=\mu C_{\alpha} \frac{W}{L}=(350)\left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-4}}\right)\left(\frac{W}{L}\right)=120 \frac{W}{L} \mu A / V^{2}$

"Saturated" Transistor

- In the $0<(\mathrm{Vgs}-\mathrm{Vt})<\mathrm{Vds}$ case
- Ids Current is effectively constant
- Channel is "pinched off" and conduction is accomplished by drift of carriers
- Voltage across pinched off channel (I.e.

Vds) is fixed at $\mathrm{Vgs}-\mathrm{Vt}$

- This is why you don't use an N-type to pass 1's!
- High voltage is degraded by Vt
- If Vt is $1.0 \mathrm{v}, 5 \mathrm{v}$ in one side, 4.0 v out the other

Aside: N-type Pass Transistors

- If it weren't for the threshold drop, N-type pass transistors (without the P-type transmission gate) would be nice
- 2-way Mux Example...

N-type Pass Transistors

- One one hand, the degraded high voltage from the pass transistor will be restored by the inverter
- On the other hand, the P-device may not turn off completely resulting in extra power being used

N-type Pass Transistors

- Another option is a "keeper" transistor fed back from the output
- This pulls the internal node high when the output is 0
- But is disconnected when output is high

Make sure the size is right...

N-type Pass Transistors

- In practice, they are used fairly often, but be aware of what you're doing
- For example, read/write circuits in a Register File

Threshold Voltage: Vt

- The Vgs voltage at which Ids is essentially 0
- Vt $=.67 \mathrm{v}$ for nmos and -.92 v for pmos in our process
- Tiny Ids is exponentially related to Vgs, Vds
- Take 5720/6720 for "subthreshold" circuit ideas
- Vt is affected by
- Gate conductor material
- Gate insulator material
- Gate insulator thickness
- Channel doping
- Impurities at Si/insulator interface
- Voltage between source and substrate (Vsb)

2nd Order Effect: Body Effect

- A second order effect that raises Vt
- Recall that Vt is affected by Vsb (voltage between source and substrate)

Normally this is constant because of common substrate

- But, when transistors are in series, Vsb (Vs - Vsubstrate) may be, changed

Vt2 > Vt1

Basic DC Equations for Ids

-Cutoff Region

- Vgs < Vt, Ids = 0
- Linear Region
- $0<\mathrm{Vds}<(\mathrm{Vgs}-\mathrm{Vt})$
 Ids $=\beta\left[(\mathrm{Vgs}-\mathrm{Vt}) \mathrm{Vds}-\mathrm{Vds}^{2} / 2\right]$
- Note that this is only "linear" if $\mathrm{Vds}^{2} / 2$ is very small, I.e. Vds << Vgs -Vt
- Saturated Region
$\rightarrow 0<(\mathrm{Vgs}-\mathrm{Vt})<\mathrm{Vds}$ Ids $=\beta\left[(\mathrm{Vgs}-\mathrm{Vt})^{2} / 2\right]$

Ids Curves

Cutoff Region
$V_{g s}<V_{t}$
$I_{d s}=0$
Triode (Linear) Region
$V_{g s}-V_{t}>V_{d s}>0$
$I_{d s}=\beta\left[\left(V_{g s}-V_{t}\right) V_{d s}-\frac{V_{d s}^{2}}{2}\right]$
Saturation Region

$$
\begin{aligned}
& V_{g s}-V_{t}>V_{d s}>0 \\
& I_{d s}=\beta \frac{\left(V_{g s}-V_{t}\right)^{2}}{2}
\end{aligned}
$$

2nd Order Effect: Velocity Saturation

- With weak fields, current increases linearly with lateral electric field
- At higher fields, carrier drift velocity rolls off and saturates
- Due to carrier scattering
- Result is less current than you think!
- For a 2μ channel length, effects start around 4 v Vdd
- For 180 nm , effects start at 0.36 v Vdd!

$2^{\text {nd }}$ Order Effect: Velocity Saturation

- When the carriers reach their speed limit in silicon...
- Means that relationship between Ids and V gs is closer to linear than quadratic
- Also the saturation point is smaller than predicted
- For example, 180nm process
- $1^{\text {st }}$ order model $=1.3 \mathrm{v}$
- Really is 0.6 v

2nd Order Effect: Body Effect ■

- A second order effect that raises Vt
- Recall that Vt is affected by Vsb (voltage between source and substrate)
- Normally this is constant because of common substrate
- But, when transistors are in series, Vsb (Vs - Vsubstrate) may be, changed

2nd Order Effect: Body Effect

- Body Effect -

Vt is a function of voltage between source and substract
$V_{t}=V_{t o}+\lambda\left[\sqrt{\left(2 \varphi_{b}+\left|V_{s b}\right|\right)}+2 \sqrt{\varphi_{b}}\right]$
$\varphi_{b}=\frac{k T}{q} \ln \left(\frac{N_{A}}{N_{i}}\right)$
$\gamma=\frac{t_{o x}}{\varepsilon_{o x}} \sqrt{2 q \varepsilon_{s i} N_{A}}=\frac{1}{C_{o x}} \sqrt{2 q \varepsilon_{s i} N_{A}}$

2nd Order Effect: Body Effect

- Consider an nmos transistor in a 180 nm process
- Nominal Vt of 0.4 v
- Body is tied to ground
- How much does the Vt increase if the source is at 1.1 v instead of 0 v ?
- Because of the body effect, Vt increases by 0.28 v to be 0.68 v !

2nd Order Effect

- Channel Length Modulation -

Channel length is a function of Vds. When Vds increase, the depletion region of the pinch off at drain shorten the channel length.
$L_{\text {eff }}=L=L_{\text {short }}$
$L_{\text {short }}=\sqrt{2 \frac{\varepsilon_{s i}}{q N_{A}}\left(V_{d s}-\left(V_{g s}-V_{t}\right)\right)}$
$I d s=\frac{k W}{2 L}\left(V_{g s}-V_{t}\right)^{2}\left(1+\lambda V_{d s}\right)$

$2^{\text {nd }}$ Order Effect

- Mobility Variation -

The mobility of the carrier decreases when the carrier density increases. Therefore, when Vgs is large. The density of the carrier in the channel increases. As a result, the mobility decreases.

$$
\begin{aligned}
& \mu=\frac{\text { Average_carrier_drift_velocity }(V)}{\text { Electrical_Frield }(E)} \\
& \mu_{n}=600 \mathrm{~cm}^{2} / V \cdot \mathrm{sec} \\
& \mu_{p}=250 \mathrm{~cm}^{2} / V \cdot \mathrm{sec}
\end{aligned}
$$

$2^{\text {nd }}$ Order Effect

- Fowler-Nordheim Tunneling

When the gate oxide is very thin, a current can flow from gate to source by electron tunneling through the gate oxide.

$$
\begin{aligned}
& I_{F N=}=C_{1} W L E_{o x}^{2} e^{\frac{-E_{o}}{E_{o x}}} \\
& E_{o x}=\frac{V g s}{t_{o x}}
\end{aligned}
$$

- Drain Punchthrough

When the drain voltage is high enough, the depletion region around the drain may extend to the source. Thus, causing current to flow irrespective of the gate voltage.

$2^{\text {nd }}$ Order Effect

- Impact Ionization - Hot Electrons

When the source-drain electric field is too large, the electron speed will be high enough to break the electron-hole pair. Moreover, the electrons will penerate the gate oxide, causing a gate current.

- Subthreshold Region

The cutoff region is also referred to as the subthreshold region, where Ids increase exponentially with Vds and Vgs.

Inverter Switching Point

- Inverter switching point is determined by ratio of $\beta n / \beta p$
- If $\beta n / \beta p=1$, then switching point is $V d d / 2$ - If W/L of both N and P transistors are equal
- Then $\beta \mathrm{n} / \beta \mathrm{p}=\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=$ electron mobility / hole mobility
- This ratio is usually between 2 and 3
- Means ratio of $\mathrm{W}_{\text {ptree }} / W_{\text {ntree }}$ needs to be between 2 and 3 for $\beta n / \beta p=1$
- For this class, we'll use $\mathrm{W}_{\text {ptree }} / \mathrm{W}_{\text {ntree }}=2$

Inverter Operating Regions

Region	NMOS	PMOS
A	Off	Linear
B	Sat	Linear
C	Sat	Sat
D	Linear	Sat
E	Linear	Off

Gate Sizes

- Assume minimum inverter is $\mathrm{Wp} / \mathrm{Wn}=$ 2/1 ($\mathrm{L}=\mathrm{Lmin}, \mathrm{Wn}=\mathrm{Wmin}, \mathrm{Wp}=2 \mathrm{Wn}$)
- This becomes a $1 x$ inverter
- To drive larger capacitive loads, you need more gain, more Ids
- Increase widths to get $2 x$ inverter
- Wp/Wn is still $2 / 1$, but Wp and Wn are double the size
- For most gates, diminishing returns after about $4 x$ size

Inverter β Ratios

Inverter Noise Margin

How much noise can a gate see before it doesn't work right?

Performance Estimation

- First we need to have a model for resistance and capacitance
- Delays are caused (to first order) by RC delays charging and discharging capaciters
- All these layers on the chip have R and C associated with them
- Mostly this is handled in the Spectre simulator
- But it's good to have an idea what's going on

Resistance

- $R=(\rho / t)(L / W)=R s(L / W)$
> $\rho=$ resistivity of the material
- t = thickness
- Rs = sheet resistance in $\Omega /$ square
- Typical values of Rs

	Min	Typ	Max
M3	0.03	0.04	0.05
M1, M2	0.05	0.07	0.1
Poly	15	20	30
Silicide	2	3	6
Diffusion	10	25	100
Nwell	1 k	2 k	5 k

Routing Capacitance

- First order effect is layer->substrate
- Approximate using parallel plate model
- $C=(\varepsilon / t) A$
- $\varepsilon=$ permittivity of insulator
- $t=$ thickness of insulator
- A = area
- Fringing fields increase effective area
- Capacitance between layers becomes very complex!
- Crosstalk issues...

Distributed RC on Wires

- Wires look like distributed RC delays
- Long resistive wires can look like transmission lines
- Inserting buffers can really help delay

- Tn = RCn(n+1)/2
- $T=k R C L 2 / 2$ as the number of segments becomes large
- $K=$ constant (I.e. 0.7)
- R = resistance per unit length
- $C=$ capacitance per unit length

L = length of wire

RC Wire Delay Example

的的

- $R=20 \Omega / s q$
- $C=4 \times 10^{-4} \mathrm{pF} / \mathrm{um}$
- $L=2 \mathrm{~mm}$
- $\mathrm{K}=0.7$
- T = kRCL²/2
- $T=(0.7)(20)\left(4 \times 10^{-15}\right)(2000)^{2} / 2 \mathrm{~s}$
\rightarrow delay $=11.2 \mathrm{~ns}$

RC Wire/Buffer Delay Example

- Now split into 21 mm segments with a buffer
- T = $\left.2 \times(0.7)(20)\left(4 \times 10^{-15}\right)(1000)^{2}\right) / 2+$ Tbuf $=5.6 \mathrm{~ns}+$ Tbuf
- Assuming Tbuf is less than 5.6 ns (which it will be), the split wire is a win

Another Example: Clock

- 50 pF clock load distributed across 10 mm chip in 1 um metal
- Clock length $=20 \mathrm{~mm}$
- $\mathrm{R}=0.05 \Omega / \mathrm{sq}, \mathrm{C}=50 \mathrm{pF} / 20 \mathrm{~mm}$
- $T=(0.7)(R C / 2) L^{2}=\left(6.25 \times 10^{-17}\right)(20,000)^{2}$ $=17.5 \mathrm{~ns}$

Different Distribution Scheme

- Put clock driver in the middle of the chip
- Widen clock line to 20 um wires
- Clock length $=10 \mathrm{~mm}$
- $\mathrm{R}=0.05 \Omega / \mathrm{sq}, \mathrm{C}=50 \mathrm{pF} / 20 \mathrm{~mm}$

- $T=(0.7)(R C / 2) L^{2}=\left(0.31 \times 10^{-17}\right)(10,000)^{2}$ $=0.22 \mathrm{~ns}$
- Reduces R by a factor of 20, L by 2
- Increases C a tiny bit

Capacitance Design Guide

- Get a table of typical capacitances per unit square for each layer
- Capacitance to ground
- Capacitance to another layer
- Add them up...
- See, for example, Tables 4.8, 4.9 in your book

Wire Length Design Guide \square

- How much wire can you use in a conducting layer before the RC delay approaches that of a unit inverter?
- Metal3 = 2,500u
- Metal2 = 2,000u
- Metal1 = 1,250u
- Silicide $=150 u$
- Poly = 50u
- Diffusion = 15u

Propagation Delay

Recall that it takes time to charge capacitors
Recall that the gate of a transistor looks like a capacitor

- Wires have resistance and capacitance also!

Where to Measure Delay?

If use 50% point (input) to 50% point (output), can produce negative delays (slow input slope, fast output slope).

A better way is to use the 30% and 70% points on the signals.

What Affects Gate Delay?

- Environment
- Increasing Vdd decreases delay
- Decreasing temperature decreases delay
- Fabrication effects, fast/slow devices
- Usually measure delay for at least three cases:
- Best - high Vdd, low temp, fast N, Fast P
- Worst - low Vdd, high temp, slow N, Slow P
- Typical - typ Vdd, room temp (25C), typ N, typ P

Process Corners

- When parts are specified, under what operating conditions?
- Temp: three ranges
- Commercial: 0 C to 70 C
- Industrial: -40 C to 85 C
- Military: -55 C to 125 C - Vdd: Should vary $\pm 10 \%$
- 4.5 to 5.5 v for example
- Process variation:
- Each transistor type can be slow or fast

What Else Affects Gate Delay?

Input slew and output load both effect timing. For a FIXED input slope, FIXED environment, a simple timing model is:
delay $=$ Tnoload $+\mathrm{K}^{*}$ Cload
Tnoload is the delay of the gate with no external load.
K is different for TPLH, TPHL since it represents the channel resistance. Same equation is used for Slew values.

Effective Resistance

- Shockley models have limited value
- Not accurate enough for modern transistors
- Too complicated for much hand analysis - Simplification: treat transistor as resistor - Replace $\mathrm{I}_{\mathrm{ds}}\left(\mathrm{V}_{\mathrm{ds}}, \mathrm{V}_{\mathrm{gs}}\right)$ with effective resistance R

$$
I_{d s}=V_{d s} / R
$$

- R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
- But good enough to predict RC delay

RC Delay Model

- Use equivalent circuits for MOS transistors
- Ideal switch + capacitance and ON resistance
- Unit nMOS has resistance R, capacitance C
- Unit pMOS has resistance $2 R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to

RC Values

- Capacitance

- $C=C_{g}=C_{s}=C_{d}=2 \mathrm{fF} / \mu \mathrm{m}$ of gate width
- Values similar across many processes
- Resistance
- $\mathrm{R} \approx 6 \mathrm{~K} \Omega^{*} \mu \mathrm{~m}$ in 0.6 um process
- Improves with shorter channel lengths
- Unit transistors
- May refer to minimum contacted device (4/2 λ)
- Or maybe $1 \mu \mathrm{~m}$ wide device
- Doesn't matter as long as you are consistent

Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

- Estimate the delay of a fanout-of-1

 inverter

What About Gates in Series

- Basically we want every gate to have the delay of a "standard inverter"
- Standard inverter starts with $2 / 1 \mathrm{P} / \mathrm{N}$ ratio
- Gates in series? Sum the conductance to get the series conductance
- β n-eff $=1 /(1 / \beta 1+1 / \beta 2+1 / \beta 3)$
- βn-eff $=\beta n / 3$
- Effect is like increasing L by 3
- Compensate by increasing W by 3

Static Leakage Power

- Small static leakage current due to:
- Reverse bias diode leakage between diffusion and substrate (PN junctions)
- Subthreshold conduction in the transistors
- Leakage current can be described by the diode current equation
- $\mathrm{I}_{\mathrm{o}}=\mathrm{i}_{\mathrm{s}}(\mathrm{eqV} / \mathrm{kT}-1)$
- Estimate at $0.1 \mathrm{nA}-0.5 n \mathrm{~A}$ per device at room temperature

Static Leakage Power

- That's the leakage current
- For static power dissipation:
- Ps = SUM of (I X Vdd) for all n devices
- For example, inverter at 5 v leaks about 1-2
nW in a .5u technology
- Not much...
- ...but, it gets MUCH worse as feature size shrinks!

Short-Circuit Dissipation

- When a static gate switches, both N and P devices are on for a short amount of time
- Thus, current flows during that switching time

Short-Circuit Dissipation

- So, with short-circuit current on every transition of the output, integrate under that current curve to get the total current
- It works out to be:
- Psc = B/12(Vdd $-2 \mathrm{Vt})^{3}($ Trf / Tp)
- Assume that $\mathrm{Tr}=\mathrm{Tf}, \mathrm{V}$ tn $=-\mathrm{V} t \mathrm{p}$, and $\mathrm{Bn}=\mathrm{Bp}$
- Note that Psc depends on B, and on input waveform rise and fall times

Dynamic Dissipation

- Charging and discharging all those capacitors!
- By far the largest component of power dissipation
- $\mathrm{Pd}=\mathrm{C}_{\mathrm{L}} \mathrm{Vdd}^{2} \mathrm{f}$
- Watch out for large capacitive nodes that switch at high frequency
- Like clocks...

Total Power

- These are pretty rough estimates
- It's hard to be more precise without CAD tool support
- It all depends on frequency, average switching activity, number of devices, etc.
- There are programs out there that can help
- But, even a rough estimate can be a valuable design guide
- $P_{\text {total }}=P_{s}+P_{s c}+P_{d}$

