Estimating Delays

- Would be nice to have a "back of the envelope" method for sizing gates for speed
- Logical Effort
- Book by Sutherland, Sproull, Harris
- Chapter 1 is on our web page

Logical Effort

Dentgming Fant curos circuits
fiven Sivitertened Belt typuest Devid Itarnh

Gate Delay Model

- First, normalize a model of delay to dimensionless units to isolate fabrication effects
- $d_{\text {abs }}=d \tau$
- τ is the delay of a minimum inverter driving another minimum inverter with no parasitics
- In a 0.6 u process, this is approx 40ps
- Now we can think about delay in terms of d and scale it to whatever process we're building the circuit in

Effort Delay

- The effort delay (due to load) can be further broken down into two terms
- $\mathrm{f}=\mathrm{g}$ * h
- $g=$ logical effort which captures properties of the gate's structure
- h = electrical effort which captures properties of load and transistor sizes
- $\mathrm{h}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}$
- $\mathrm{C}_{\text {out }}$ is capacitance that loads the output
- $C_{\text {in }}$ is capacitance presented at the input
- So, d = gh + p

Logical Effort

- Logical effort normalizes the output drive capability of a gate to match a unit inverter
- How much more input capacitance does a gate need to present to offer the same drive as in inverter?

(a)

(b)

(c)

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

$C_{\text {in }}=3$
$g=3 / 3$
$C_{\text {in }}=4$
$\mathrm{~g}=4 / 3$
$C_{\text {in }}=5$
$g=5 / 3$

Electrical Effort

- Value of logical effort g is independent of transistor size
- It's related to the ratios and the topology
- Electrical effort h captures the drive capability of the transistors via sizing
- Electrical effort $\mathrm{h}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}$
- Note that as transistor sizes for a gate increase, h decreases because $C_{\text {in }}$ goes up

Delay Estimation

Delay Estimation

A
B
Remember, τ in
Our process ~ 40 ps
A_delay $=\mathrm{g} * \mathrm{~h}+\mathrm{p}=1 *(\mathrm{CinB} / \mathrm{Cin} \mathrm{A})+1$
$=1 *(4 * \operatorname{Cin} \mathrm{~A} / \mathrm{Cin} \mathrm{A})+1=4+1=5$ time units

$\sim 200 \mathrm{ps}$

A
B
A_delay $=\mathrm{g}^{*} \mathrm{~h}+\mathrm{p}=(4 / 3) *(\operatorname{CinB} / \operatorname{Cin} \mathrm{A})+2 * 1$
Cin_B $=4 * 3=12$. \quad Cin_A $=4$
A_delay $=(4 / 3) *(12 / 4)+2=4+2=6$ units $\quad \sim 240 \mathrm{ps}$
Nand2 worse because of higher parasitic delay than inverter.
Note that g*h term was same for both because NAND2 sized to provide same current drive.

Example: Ring Oscillator

- Estimate the frequency of an N -stage ring oscillator

Logical Effort: $\mathrm{g}=$ Electrical Effort: $\mathrm{h}=$ Parasitic Delay: $\mathrm{p}=$ Stage Delay: d= Period of osc =

Example: Ring Oscillator

- Estimate the frequency of an N -stage ring oscillator

Logical Effort: g=1
Electrical Effort: h=1
Parasitic Delay: p=1
Stage Delay: d=2 so $d_{\text {abs }}=80 p s$
Period: $2 *{ }^{*}{ }^{*} \mathrm{~d}_{\text {abs }}=4.96 \mathrm{~ns}$, Freq $=\sim 200 \mathrm{MHz}$

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $\quad \mathrm{g}=$
Electrical Effort: h =
Parasitic Delay: p=
Stage Delay: d=

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

The FO4 delay is about 200 ps in $0.6 \mu \mathrm{~m}$ process
Logical Effort: $\quad \mathrm{g}=1$ 60 ps in a 180 nm process
Electrical Effort: $\mathrm{h}=4$
$\mathrm{f} / 3 \mathrm{~ns}$ in an $f \mu \mathrm{~m}$ process Parasitic Delay:
p=1
Stage Delay:
$d=g h+p=5$

- If Cin $=x$, Cout $=10 x$, thus $h=10$
- $g=9 / 3=3$
- $d=g h+p=3 * 10+4 * 1=34(1360 \mathrm{ps})$

Multi Stage Delay

MultiStage Delay

- Recall rule of thumb that said to balance the delay at each stage along a critical path
- Concepts of logical effort and electrical effort can be generalized to multistage paths

Path logical effort $=\mathrm{g} 1 * \mathrm{~g} 2 * \mathrm{~g} 3 * \mathrm{~g} 4$
In general, Path logic effort $G=\Pi g(i)$
Path electrical effort $\mathrm{H}=$ Cout $/ \mathrm{Cin}_{\text {first_gate }}$
Must remember that electrical effort only is concerned with effect of logic network on input drivers and output load.

Summary - multistage networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G=\prod g_{i}$
- Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$
- Path Effort $\quad F=\prod f_{i}=\prod g_{i} h_{i}$
- Can we write F = GH?

Branching Effort

- Remember branching effort
- Accounts for branching between stages in path

$$
b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}}
$$

$B=\prod^{b_{i}}$

Note:
$\prod_{i}=B H$

- Now we compute the path effort - $\mathrm{F}=\mathrm{GBH}$

Multistage Delays

- Path Effort Delay $D_{F}=\sum f_{i}$
- Path Parasitic Delay $P=\sum p_{i}$
- Path Delay $D=\sum d_{i}=D_{F}+P$

Designing Fast Circuits

$$
D=\sum d_{i}=D_{F}+P
$$

Delay is smallest when each stage bears same effort

$$
\hat{f}=g_{i} h_{i}=F^{\frac{1}{N}}
$$

Thus minimum delay of N stage path is

$$
D=N F^{\frac{1}{N}}+P
$$

This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

Minimizing Path Delay

The absolute delay will have the parasitic delays of each stage summed together.

However, can focus on just Path effort F for minimization purposes since parasitic delays are constant.
For an N -stage network, the path delay is least when each stage in the path bears the same stage effort.

$$
\mathrm{f}(\mathrm{~min})=\mathrm{g}(\mathrm{i}) * \mathrm{~h}(\mathrm{i})=\mathrm{F}^{1 / \mathrm{N}}
$$

Minimum achievable path delay

$$
\mathrm{D}(\min)=\mathrm{N}^{*} \mathrm{~F}^{1 / \mathrm{N}}+\mathrm{P}
$$

Note that if $\mathrm{N}=1$, then $\mathrm{d}=\mathrm{f}+\mathrm{p}$, the original single gate equation.

Choosing Transistor Sizes \quad

Remember that the stage effort $\mathrm{h}(\mathrm{i})$ is related to transistor sizes.
$\mathrm{f}(\mathrm{min})=\mathrm{g}(\mathrm{i}) * \mathrm{~h}(\mathrm{i})=\mathrm{F}^{1 / \mathbf{N}}$

So

$$
\mathrm{h}(\mathrm{i}) \min =\mathrm{F}^{1 / \mathbf{N}} / \mathrm{g}(\mathrm{i})
$$

To size transistors, start at end of path, and compute:

$$
\operatorname{Cin}(\mathrm{i})=\mathrm{gi} * \operatorname{Cout}(\mathrm{i}) / \mathrm{f}(\mathrm{~min})
$$

Once $\operatorname{Cin}(i)$ is know, can distribute this among transistors of that stage.

Example, continued

The effort of each stage will be:

$$
f \min =\left(G^{*} B * H\right)^{1 / 3}=(2.37 * 1.0 * 1.0)^{1 / 3}=1.33=4 / 3
$$

Cin of last gate should equal:

$$
\begin{aligned}
\text { Cin last gate }(\min) & =\mathrm{gi} * \operatorname{Cout}(\mathrm{i}) / \mathrm{f}(\min) \\
& =4 / 3 * \mathrm{C} /(4 / 3)=\mathrm{C}
\end{aligned}
$$

Cin of middle gate should equal:
Cin middle gate $=\mathrm{gi} *$ Cin last gate $/ \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * \mathrm{C} /(4 / 3)=\mathrm{C}
$$

All gates have same input capacitance, distribute it among transistors.

Another Example, Larger Load

Let Load $=8 \mathrm{C}$, what changes?
$\mathrm{Cin}=\mathrm{C}$

Size the transistors of the nand2 gates for the three stages shown.

Path logic effort $=\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2=4 / 3 * 4 / 3 * 4 / 3=2.37$
Branching effort $\mathrm{B}=1.0$ (no off-path load)
Electrical effort $\mathrm{H}=\mathrm{Cout} / \mathrm{Cin}=8 \mathrm{C} / \mathrm{C}=8.0$
Min delay achievable $=3^{*}\left(\mathrm{G}^{*} \mathrm{~B}^{*} \mathrm{H}\right)^{1 / 3}+3\left(2^{*}\right.$ pinv $)$

$$
=3 *(2.37 * 1 * 8)^{1 / 3}+3(2 * 1.0)=14.0
$$

8C Load Example Cont.

The effort of each stage will be:

$$
\mathrm{f} \min =\left(\mathrm{G}^{*} \mathrm{~B} * \mathrm{H}\right)^{1 / 3}=(2.37 * 1.0 * 8)^{1 / 3}=2.67=8 / 3
$$

Cin of last gate should equal:
Cin last gate $(\min)=\mathrm{gi} *$ Cout $(\mathrm{i}) / \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * 8 \mathrm{C} /(8 / 3)=4 \mathrm{C}
$$

Cin of middle gate should equal:
Cin middle gate $=\mathrm{gi} *$ Cin last gate $/ \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * 4 \mathrm{C} /(8 / 3)=2 \mathrm{C}
$$

Note that each stage gets progressively larger, as is typical with a multi-stage path driving a large load.

Example 1.6 from Chap 1

Size path from A to B

Path logic effort $\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2=4 / 3 * 4 / 3 * 4 / 3=2.37$
Branch effort, $1^{\text {st }}$ stage $=(y+y) / y=2$.
Branch effort, $2^{\text {nd }}$ stage $=(\mathrm{z}+\mathrm{z}+\mathrm{z}) / \mathrm{z}=3$
Path Branch effort B $=2 * 3=6$.
Path electrical effort $\mathrm{H}=$ Cout $/ \mathrm{Cin}=4.5 \mathrm{C} / \mathrm{C}=4.5$
Path stage effort $=\mathrm{F}=\mathrm{G} * \mathrm{~B} * \mathrm{H}=2.37 * 6 * 4.5=64$.
Min delay $=\mathrm{N}(\mathrm{F})^{1 / \mathrm{N}}+\mathrm{P}=3 *(64)^{1 / 3}+3(2$ pinv $)=18.0$ units

Example 1.6 Continued

Stage effort of each stage should be:

$$
f(\min)=(\mathrm{F})^{1 / \mathrm{N}}=(\mathrm{GBH})^{1 / \mathrm{N}}=(64)^{1 / 3}=4
$$

Determine Cin of last stage:

$$
\operatorname{Cin}(\mathrm{z})=\mathrm{g} * \operatorname{Cout} / \mathrm{f}(\mathrm{~min})=4 / 3 * 4.5 \mathrm{C} / 4=1.5 \mathrm{C}
$$

Determine Cin of middle stage:
$\operatorname{Cin}(\mathrm{y})=\mathrm{g} *(3 * \operatorname{Cin}(\mathrm{z})) / \mathrm{f}(\mathrm{min})=4 / 3 *(3 * 1.5 \mathrm{C}) / 4=1.5 \mathrm{C}$
Is first stage correct?
$\operatorname{Cin}(\mathrm{A})=\mathrm{g} *(2 * \operatorname{Cin}(\mathrm{y})) / \mathrm{f}(\min)=4 / 3 *(2 * 1.5 \mathrm{C}) / 4=\mathrm{C}$.
Yes, self-consistent.

Example: 3-stage path

 \square- Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Logical Effort
G =
Electrical Effort $\mathrm{H}=$
Branching Effort $\mathrm{B}=$
Path Effort
Best Stage Effort $\hat{f}=$
Parasitic Delay $\quad \mathrm{P}=$
Delay
$\mathrm{D}=$

Example: 3-stage path

Logical Effort G = (4/3)*(5/3)*(5/3) = 100/27
Electrical Effort $\quad \mathrm{H}=45 / 8$
Branching Effort $B=3 * 2=6$
Path Effort $\quad F=G B H=125$
Best Stage Effort $\hat{f}=\sqrt[3]{F}=5$
\square
Parasitic Delay $\quad P=2+3+2=7$
Delay
$D=3 * 5+7=22=4.4$ FO4

Example: 3-stage path

- Work backward for sizes
$y=$
$x=$

Example 1.7 from Chap 1

$\mathrm{Cin}=10 \mathrm{u}$ gate cap

Path logic effort $\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2 * \mathrm{~g} 3=1 * 5 / 3 * 4 / 3 * 1=20 / 9$
Path Branch effort B = 1
Path electrical effort $\mathrm{H}=$ Cout/Cin $=20 / 10=2$
Path stage effort $=\mathrm{F}=\mathrm{G} * \mathrm{~B} * \mathrm{H}=(20 / 9) * 1 * 2=40 / 9$
For Min delay, each stage has effort $(F)^{1 / \mathrm{N}}=(40 / 9)^{1 / 4}=1.45$
$\mathrm{z}=\mathrm{g} *$ Cout $/ \mathrm{f}(\mathrm{min})=1 * 20 / 1.45=14$
$\mathrm{y}=\mathrm{g} * \operatorname{Cin}(\mathrm{z}) / \mathrm{f}(\mathrm{min})=4 / 3 * 14 / 1.45=13$
$\mathrm{x}=\mathrm{g} * \operatorname{Cin}(\mathrm{y}) / \mathrm{f}(\min)=5 / 3 * 13 / 1.45=15$
Note: Don't care about parasitics for gate sizing, only if you want to know absolute delay...

Misc. Comments

- Note that you never size the first gate
- This gate is assumed to be fixed
- If you were allowed to size it, the algorithm would try to make it as large as possible
- This is an estimation algorithm
- Authors claim that sizing a gate by 1.5x too big or small still results in a path delay within 15\% of minimum

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4<\rho<6$ gives delay within 15% of optimal
- We can be sloppy!
- I like $\rho=4$

How many stages?

- In all cases: $\mathrm{G}=1, \mathrm{~B}=1$, and $\mathrm{H}=25$
- Path delay is $N(25)^{1 / N}+N P_{\text {inv }}$
- $N=1, D=26$ units
- $N=3, D=11.8$ units
- $N=5, D=14.5$ units
- Since $N=3$ is best, each stage will bear an effort of $(25)^{1 / 3}=2.9$
- So, each stage is $\sim 3 x$ larger than the last
- In general, the best stage effort is between 3 and 4 (not e as often stated)
- The e value doesn't use parasitics...

Choosing the Best \# of Stages

- You can solve the delay equations to determine the number of stages N that will achieve the minimum delay
- Approximate by $\mathrm{Log}_{4} \mathrm{~F}$

Path Effort F	$\begin{gathered} \text { Best } \\ N \end{gathered}$	$\begin{gathered} \text { Min Delay } \\ D \end{gathered}$	Stage effort f
0-5.83	1	1.0-6.8	0-5.8
5.83-22.3	2	6.8-11.4	2.4-4.7
22.3-82.2	3	11.4-16.0	2.8-4.4
82.2-300	4	16.0-20.7	3.0-4.2
300-1090	5	20.7-25.3	3.1-4.1
1090-3920	6	25.3-29.8	3.2-4.0

Example

- String of inverters driving an off-chip load
- Pad cap and load = 40pf
- Equivalent to 20,000 microns of gate cap
- Assume first inverter in chain has 7.2 u of input cap
- How many stages in inv chain?
- $\mathrm{H}=20,000 / 7.2=2777$
- From the table, 6 stages is best
- Stage effort $=\mathrm{f}=(2777)^{1 / 6}=3.75$
- Path delay $D=6 * 3.75+6 * P i n v=28.5$
- D = 1.14 hs if $\tau=40$ ps

Summary

- Compute path effort F = GBH
- Use table, or estimate $\mathrm{N}=\log _{4} \mathrm{~F}$ to decide on number of stages
- Estimate minimum possible delay
$\mathrm{D}=\mathrm{NF}^{1 / \mathrm{N}}+\Sigma \mathrm{p}_{\mathrm{i}}$
- Add or remove stages in your logic to get close to N
- Compute effort at each stage $f=F^{1 / N}$
- Starting at output, work backwards to compute transistor sizes $\mathrm{C}_{\text {in }}=\left(\mathrm{g}_{\mathrm{i}} / \mathrm{f}\right) \mathrm{C}_{\text {out }}$

Limits of Logical Effort

- Chicken and egg problem
- Need path to compute G
- But don't know number of stages without G
- Simplistic delay model
- Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
- Maximum speed only
- Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~ 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4} \mathrm{~F}$ FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
- But requires practice to master

