
1

CS/EE 5710/6710

Layout
Basic Transistor Sizing

Intro to Verilog

An Example: NOR

NOR schematic in Composer

First Layout: Follow Schematic
Note that layout of
transistors follows
the schematic

Two P-types in
series pulling up
Two N-types in
parallel pulling
down

Another Layout: Better?
Same four
transistors

But, organized
a little differently
And sized a
little differently

Use Shared Source/Drain Another Shared S/D

2

Two NOR Gates Transistor Sizing
We’ll get into the details later…
Consider a transistor’s Width and Length

Current capability is proportional to W/L
Length is almost always minimum allowed
Change width to change current capability

Sizing Rule of Thumb
Also, P-type is about twice as bad as
N-type

Has to do with hole mobility vs. electron
mobility

So, make P-types twice as wide as
N-types to start with
Unit size for transistors this semester

N-type 1.2u (contact pitch)
P-type 2.4u

Sizing Rule of Thumb
Now multiply each width by n for a series
stack of n transistors.

Stack of 2, each transistor should be 2x unit
size
Stack of 3, each transistor should be 3x unit
size

This is because series connections are
like increasing the L of the device…

Current is proportional to W/L

For example:
Notice the
difference in
width…
This roughly
equalizes the
current sourcing
capability of
pull-up and
pull-down stacks
in this gate

And now for something completely different…
A little Verilog…
Big picture: Two main Hardware
Description Languages (HDL) out there

VHDL
Designed by committee on request of the
Department of Defense
Based on Ada

Verilog
Designed by a company for their own use
Based on C

Both now have IEEE standards
Both are in wide use

3

Data Types
Possible Values:

0: logic 0, false
1: logic 1, true
X: unknown logic value
Z: High impedance state

Registers and Nets are the main data
types
Integer, time, and real are used in
behavioral modeling, and in simulation

Registers
Abstract model of a data storage element
A reg holds its value from one
assignment to the next

The value “sticks”
Register type declarations

reg a; // a scalar register
reg [3:0] b; // a 4-bit vector register

Nets
Nets (wires) model physical connections
They don’t hold their value

They must be driven by a “driver” (I.e. a gate
output or a continuous assignment)
Their value is Z if not driven

Wire declarations
wire d; \\ a scalar wire
wire [3:0] e; \\ a 4-bit vector wire

There are lots of types of regs and wires,
but these are the basics…

Memories
Verilog memory models are arrays of
regs
Each element in the memory is
addressed by a single array index
Memory declarations:

reg [7:0] imem[0:255]; \\ a 256 word 8-bit
memory
reg [31:0] dmem[0:1023]; \\ a 1k word
memory with 32-bit words

Other types
Integers:

integer i, j; \\ declare two scalar ints
integer k[7:0]; \\ an array of 8 ints

$time - returns simulation time
Useful inside $display and $monitor
commands…

Number Representations
Constant numbers can be decimal, hex,
octal, or binary
Two forms are available:

Simple decimal numbers: 45, 123, 49039…
<size>’<base><number>
base is d, h, o, or b
4’b1001 // a 4-bit binary number
8’h2fe4 // an 8-bit hex number

4

Relational Operators
A<B, A>B, A<=B, A>=B, A==B, A!=B

The result is 0 if the relation is false, 1 if the
relation is true, X if either of the operands
has any X’s in the number

A===B, A!==B
These require an exact match of numbers,
X’s and Z’s included

!, &&, ||
Logical not, and, or of expressions

{a, b[3:0]} - example of concatenation

Block Structures
Two types:

always // repeats until simulation is done
begin
…

end
initial // executed once at beginning of sim
begin
…
end

Example
Reg [1:0] a,b;
initial begin // only executed once
a = 2’b01; // initialize a
b = 2’b10; // initialize b
end

always begin // repeated until simulation done
#50 a = ~a; // a inverts every 50 time units
end

always begin // repeated until simulation done
#100 b = ~b; // b inverts every 100 time units
end

Note timing control: #50 = delay for 50 time
units

Conditional, For
If (<expr>) <statement> else <statement>

else is optional and binds with closest
previous if that lacks an else
if (index > 0)
if (rega > regb)

result = rega;
else

result = regb;
For is like C

for (initial; condition; step)
for (k=0; k<10; k=k+1)
statement;

Basic Testbench
initial
begin

a[1:0] = 2'b00;
b[1:0] = 2'b00;
cin = 1'b0;

$display("Starting...");
#20
$display("A = %b, B = %b, c = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum != 00) $display("ERROR: Sum should be 00, is %b", sum);
if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);
a = 2'b01;
#20
$display("A = %b, B = %b, c = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum != 00) $display("ERROR: Sum should be 01, is %b", sum);
if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);
b = 2'b01;
#20
$display("A = %b, B = %b, c = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum != 00) $display("ERROR: Sum should be 10, is %b", sum);
if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);
$display("...Done");
$finish;
end

Nifty Testbench
reg [1:0] ainarray [0:4]; // define memory arrays to hold input and result
reg [1:0] binarray [0:4];
reg [2:0] resultsarray [0:4];
integer i;
initial begin
$readmemb("ain.txt", ainarray); // read values into arrays from files
$readmemb("bin.txt", binarray);
$readmemb("results.txt", resultsarray);

a[1:0] = 2'b00; // initialize inputs
b[1:0] = 2'b00;
cin = 1'b0;

$display("Starting...");
#10 $display("A = %b, B = %b, c = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
for (i=0; i<=4; i=i+1) // loop through all values in the memories

begin
a = ainarray[i]; // set the inputs from the memory arrays
b = binarray[i];
#10 $display("A = %b, B = %b, c = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if ({cout,sum} != resultsarray[i])

$display("Error: Sum should be %b, is %b instead", resultsarray[i],sum); // check results array
end

$display("...Done");
$finish;
end

