
1

Synthesis and Place & Route

Synopsys design compiler
Cadence SOC Encounter

CS6710 Tool Suite
Synopsys

Design Compiler

Cadence
SOC

Encounter

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

CCAR
AutoRouter

Your
Library

Verilog-XL

Verilog-XL

Behavioral
Verilog

Structural
Verilog

Circuit
Layout

LVS

Layout-XL

CSI

Design Compiler

Synthesis of behavioral to structural
Three ways to go:

1. Type commands to the design compiler shell
Start with syn-dc and start typing

2. Write a script
Use syn-script.tcl as a starting point

3. Use the Design Vision GUI
Friendly menus and graphics...

Design Compiler – Basic Flow

1. Define environment
target libraries – your cell library
synthetic libraries – DesignWare libraries
link-libraries – libraries to link against

2. Read in your structural Verilog
Usually split into analyze and elaborate

3. Set constraints
timing – define clock, loads, etc.

Design Compiler – Basic Flow

4. Compile the design
compile or compile_ultra
Does the actual synthesis

5. Write out the results
Make sure to change_names
Write out structural verilog, report, ddc, sdc
files

beh2str – the simplest script!
beh2str script
set target_library [list [getenv "LIBFILE"]]
set link_library [concat [concat "*" $target_library] $synthetic_library]
read_file -f verilog [getenv "INFILE"]
#/* This command will fix the problem of having */
#/* assign statements left in your structural file. */
set_fix_multiple_port_nets -all -buffer_constants
compile -ungroup_all
check_design
#/* always do change_names before write... */
redirect change_names { change_names -rules verilog -hierarchy -verbose }
write -f verilog -output [getenv "OUTFILE"]
quit

2

.synopsys_dc.setup
set SynopsysInstall [getenv "SYNOPSYS"]

set search_path [list . \
[format "%s%s" $SynopsysInstall /libraries/syn] \
[format "%s%s" $SynopsysInstall /dw/sim_ver] \
]
define_design_lib WORK -path ./WORK
set synthetic_library [list dw_foundation.sldb]
set synlib_wait_for_design_license [list "DesignWare-Foundation"]
set link_library [concat [concat "*" $target_library] $synthetic_library]
set symbol_library [list generic.sdb]

What beh2str leaves out...

Timing!
No clock defined so no target speed
No input drive defined so assume infinite drive
No output load define so assume something

syn-script.tcl
/uusoc/facility/cad_common/local/class/6710/synopsys

#/* search path should include directories with memory .db files */
#/* as well as the standard cells */
set search_path [list . \
[format "%s%s" SynopsysInstall /libraries/syn] \
[format "%s%s" SynopsysInstall /dw/sim_ver] \
!!your-library-path-goes-here!!]
#/* target library list should include all target .db files */
set target_library [list !!your-library-name!!.db]
#/* synthetic_library is set in .synopsys_dc.setup to be */
#/* the dw_foundation library. */
set link_library [concat [concat "*" $target_library] $synthetic_library]

syn-script.tcl
#/* below are parameters that you will want to set for each design */
#/* list of all HDL files in the design */
set myfiles [list !!all-your-files!!]
set fileFormat verilog ;# verilog or VHDL
set basename !!basename!! ;# Name of top-level module
set myclk !!clk!! ;# The name of your clock
set virtual 0 ;# 1 if virtual clock, 0 if real clock
#/* compiler switches... */
set useUltra 1 ;# 1 for compile_ultra, 0 for compile

#mapEffort, useUngroup are for
#non-ultra compile...

set mapEffort1 medium ;# First pass - low, medium, or high
set mapEffort2 medium ;# second pass - low, medium, or high
set useUngroup 1 ;# 0 if no flatten, 1 if flatten

syn-script.tcl
#/* Timing and loading information */
set myperiod_ns !!10!! ;# desired clock period (sets speed goal)
set myindelay_ns !!0.5!! ;# delay from clock to inputs valid
set myoutdelay_ns !!0.5!! ;# delay from clock to output valid
set myinputbuf !!invX4!! ;# name of cell driving the inputs
set myloadcell !!UofU_Digital/invX4/A!! ;# pin that outputs drive
set mylibrary !!UofU_Digital!! ;# name of library the cell comes from

#/* Control the writing of result files */
set runname struct ;# Name appended to output files

syn-script.tcl
#/* the following control which output files you want. They */
#/* should be set to 1 if you want the file, 0 if not */
set write_v 1 ;# compiled structural Verilog file
set write_db 0 ;# compiled file in db format (obsolete)
set write_ddc 0 ;# compiled file in ddc format (XG-mode)
set write_sdf 0 ;# sdf file for back-annotated timing sim
set write_sdc 1 ;# sdc constraint file for place and route
set write_rep 1 ;# report file from compilation
set write_pow 0 ;# report file for power estimate

3

syn-script.tcl
analyze and elaborate the files
analyze -format $fileFormat -lib WORK $myfiles
elaborate $basename -lib WORK -update
current_design $basename
The link command makes sure that all the required design
parts are linked together.
The uniquify command makes unique copies of replicated modules.
link
uniquify
now you can create clocks for the design
if { $virtual == 0 } {

create_clock -period $myperiod_ns $myclk
} else {
create_clock -period $myperiod_ns -name $myclk
}

syn-script.tcl
Set the driving cell for all inputs except the clock
The clock has infinite drive by default. This is usually
what you want for synthesis because you will use other
tools (like SOC Encounter) to build the clock tree (or define it by hand).
set_driving_cell -library $mylibrary -lib_cell $myinputbuf \

[remove_from_collection [all_inputs] $myclk]
set the input and output delay relative to myclk
set_input_delay $myindelay_ns -clock $myclk \

[remove_from_collection [all_inputs] $myclk]
set_output_delay $myoutdelay_ns -clock $myclk [all_outputs]
set the load of the circuit outputs in terms of the load
of the next cell that they will drive, also try to fix hold time issues
set_load [load_of $myloadcell] [all_outputs]
set_fix_hold $myclk

syn-script.tcl
now compile the design with given mapping effort
and do a second compile with incremental mapping
or use the compile_ultra meta-command
if { $useUltra == 1 } {

compile_ultra
} else {
if { $useUngroup == 1 } {

compile -ungoup_all -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2
} else {
compile -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2
}

}

syn-script.tcl
Check things for errors
check_design
report_constraint -all_violators
set filebase [format "%s%s" [format "%s%s" $basename "_"]

$runname]
structural (synthesized) file as verilog
if { $write_v == 1 } {

set filename [format "%s%s" $filebase ".v"]
redirect change_names { change_names -rules verilog -hierarchy -
verbose }
write -format verilog -hierarchy -output $filename

}
write the rest of the desired files... then quit

Using Scripts

Modify syn-script.tcl or write your own
syn-dc –f scriptname.tcl
Make sure to check output!!!!

Using Design Vision

You can do all of these commands from the
design vision gui if you like
syn-dv
Follow the same steps as the script

Set libraries in your own .synopsys_dc.setup
analyze/elaborate
define clock and set constraints
compile
write out results

4

Setup

File ->Setup

analyze/elaborate
File -> Analyze

File ->Elaborate

Look at results... Define clock

attributes -> specify clock

Also look at other attributes...

Compile

Design -> Compile Ultra

Timing Reports

Timing -> Report Timing Path

5

Write Results

File -> Save As...

change_names

Or, use syn-dv after script...

syn-dc –f mips.tcl
results in .v, .ddc, .sdc, .rep files
Read the .ddc file into syn-dv and use it to
explore timing...

syn-dv with mips_struct.v

File -> Read

Endpoint slack...

Timing -> Endpoint Slack

Path Slack

Timing -> Path Slack

SOC Encounter

Need structural Verilog, .sdc, library.lib,
library.lef
make a new dir for soc...
<design>.conf is also very helpful

use UofU_soc.conf as starting point.
Usual warnings about scripting...
UofU_opt.tcl is the generic script

.../local/class/6710/cadence/SOC
cad-soc

6

SOC Flow

1. Import Design
.v, .sdc, .lib, .lef – can put this in a .conf

2. Power plan
rings, stripes, row-routing (sroute)

3. Placement
place cells in the rows

4. Timing optimization – preCTS

SOC Flow

5. Synthesize clock tree
use your buf or inv footprint cells

6. timing optimization – postCTS
7. global routing

NanoRoute
8. timing optimization – postRoute
9. Add filler cells
10. Write out results

.def, _soc.v, .spef, .sdc, .lef

Design Import Floorplan

Specify -> Floorplan

Power Rings
and Stripes

Power -> Power Planning

Sroute
to

connect
things

up

Route -> Sroute

7

Place cells

Place -> Place cells...

pre-CTS timing optimization

Timing -> Optimization

Clock Tree Synthesis
clock -> create clock tree spec

clock -> specify clock tree

clock ->Synthesize clock tree

Display Clock Tree

post-CTS optimization NanoRoute

Route -> NanoRoute -> Route

8

Routed circuit postRoute optimization

Timing -> Optimization

Add Filler

Place -> Filler -> Add...

Write Results...

Design -> Save -> Netlist

Design -> Save -> DEF

Encounter Scripting

Usual warnings – know what’s going on!
Use UofU_opt.tcl as a starting point
SOC has a floorplanning stage that you may
want to do by hand

write another script to read in the floorplan and
go from there...

Use encounter.cmd to see the text versions of
what you did in the GUI...

UofU_opt.tcl

set the basename for the config and floorplan files. This
will also be used for the .lib, .lef, .v, and .spef files...
set basename “mips"

set the name of the footprint of the clock buffers
in your .lib file
set clockBufName inv

set the name of the filler cells - you don't need a list
if you only have one
set fillerCells FILL
#set fillerCells [list FILL FILL2]

9

UofU_opt.tcl
###
You may not have to change things below this line - but check!

You may want to do floorplanning by hand in which case you
have some modification to do!
###

Set some of the power and stripe parameters - you can change
these if you like - in particular check the stripe space (sspace)
and stripe offset (soffset)!
set pwidth 9.9
set pspace 1.8
set swidth 4.8
set sspace 249
set soffset 126

UofU_opt.tcl
Import design and floorplan
If the config file is not named $basename.conf, edit this line.
loadConfig $basename.conf 0
commitConfig
Make a floorplan - this works fine for projects that are all
standard cells and include no blocks that need hand placement...
setDrawMode fplan
floorPlan -site core -r 1.0 0.70 30.0 30.0 30.0 30.0
fit
Save deisgn so far
saveDesign "fplan.enc"
saveFPlan [format "%s.fp" $basename]

UofU_opt.tcl
Make power and ground rings - $pwidth microns wide with $pspace
spacing between them and centered in the channel
addRing -spacing_bottom $pspace -width_left $pwidth -width_bottom

$pwidth -width_top $pwidth -spacing_top $pspace -layer_bottom
metal1 -center 1 -stacked_via_top_layer metal3 -width_right $pwidth -
around core -jog_distance $pspace -offset_bottom $pspace -layer_top
metal1 -threshold $pspace -offset_left $pspace -spacing_right $pspace -
spacing_left $pspace -offset_right $pspace -offset_top $pspace -
layer_right metal2 -nets {gnd! vdd! } -stacked_via_bottom_layer metal1 -
layer_left metal2

UofU_opt.tcl
Make Power Stripes. This step is optional. If you keep it in remember to
check the stripe spacing (set-to-set-distance = $sspace)
and stripe offset (xleft-offset = $soffset))
addStripe -block_ring_top_layer_limit metal3 -max_same_layer_jog_length 3.0

-snap_wire_center_to_grid Grid -padcore_ring_bottom_layer_limit metal1
-set_to_set_distance $sspace -stacked_via_top_layer metal3
-padcore_ring_top_layer_limit metal3 -spacing $pspace -xleft_offset $soffset
-merge_stripes_value 1.5 -layer metal2 -block_ring_bottom_layer_limit metal1
-width $swidth -nets {gnd! vdd! } -stacked_via_bottom_layer metal1

#
Use the special-router to route the vdd! and gnd! nets
sroute -jogControl { preferWithChanges differentLayer }

#
Save the design so far
saveDesign "pplan.enc"

UofU_opt.tcl
Read the script...

place
pre-CTS optimization
clock tree synthesis
post-CTS optimization
routing
post-ROUTE optimization
add filler
write out results

Read back to icfb

File -> Import -> DEF

10

Change abstract to layout cellviews
Edit -> Search

DRC, Extract

Import Verilog

File -> Import -> Verilog

LVS...

Schematic view LVS Result

Yay!

Summary

Behavioral -> structural -> layout
Can be automated by scripting, but make
sure you know what you’re doing

on-line tutorials for TCL
Google “tcl tutorial”

Synopsys documentation for design_compiler
encounter.cmd (and documentation) for SOC

End up with placed and routed core layout
or BLOCK for later use...

