

 The always statement creates always @ sensitivity LHS = expression; @ sensitivity controls when LHS can only be reg type expression can contain either wire or reg type mixed with operators Logic reg c, b; wire a; always @(a, b) c = ~(a & b); always @* c = ~(a & b); Storage reg Q; wire clk; always @(posedge clk) Q <= D; 	Synthesis: Always Statement
	 Interviewed with the second term of term

	Example: Counter
	module counter (clk, clr, load, in, count); parameter width=8; input clk, clr, load; input [width-1 : 0] in; output [width-1 : 0] count; reg [width-1 : 0] tmp;
	<pre>always @(posedge clk or negedge clr) begin if (!clr) tmp = 0; else if (load) tmp = in; else tmp = tmp + 1; end assign count = tmp; endmodule</pre>

	Priority Encode	ers 🗖
	<pre>// // Priority encoders // // Allen Tanner // module prior_enc(x,y,z, a,b,c,d,e,f); output reg x,y,z; input a,b,c,d,e,f;</pre>	
ŀ	<pre>always@(a,b,c,d,e,f,g) begin {x,y,z} = 3'b0; if ((a==1) && (b==1))z = 1; if ((c==1) && (d==1))y = 1; if ((e==1) && (f==1))x = 1; end endmodule // prior_enc</pre>	aif z
		eY
		g x

	Get off my Cas	e 🗖
	<pre>// Case tests // Allen Tanner // reg sel; initial begin \$display("We've only just begun"); #1 \$display("\n Driving 0"); sel = 0; #1 \$display("\n Driving 1"); sel = 1; #1 \$display("\n Driving x");</pre>	We've only just begun Driving 0 CASEZa : Logic 0 on sel CASEZ : Logic 0 on sel CASEZ : Logic 0 on sel CASE : Logic 0 on sel Driving 1 CASE : Logic 1 on sel CASEZ : Logic 1 on sel CASEZ : Logic 1 on sel
	<pre>sel = 1²bx; #1 \$display ("\n Driving z"); sel = 1²bz; #1 \$finish; end always @ (sel) case (sel) 1²b0 : \$display("CASE : Logic 0 on a 1²b1 : \$display("CASE : Logic 1 on a 1²bx : \$display("CASE : Logic x on a 1²bx : \$display("CASE : Logi</pre>	Driving x CASEZa : Logic x on sel CASEZ : Logic x on sel CASEX : Logic 0 on sel CASE : Logic x on sel Driving z CASE : Logic z on sel CASEX : Logic 0 on sel CASEX : Logic 0 on sel
	<pre>always @ (sel) casex (sel) 1'b0 : \$display("CASEX : Logic 0 on a 1'b1 : \$display("CASEX : Logic 1 on a 1'bx : \$display("CASEX : Logic x on a 1'bz : \$display("CASEX : Logic x on a 1'bz : \$display("CASEX : Logic z on a endcase</pre>	<pre>CASEZa : Logic 1 on sel L20 "testfixture.new": \$fi sel"); sel"); sel");</pre>
	always @ (sel) casez (sel) 1'b0 : \$display("CASEZ : Logic 0 on 1 1'b1 : \$display("CASEZ : Logic 1 op 1'bx : \$display("CASEZ : Logic 0 on 1 1'bz : \$display("CASEZ : Logic 0 on 1 endcase always @ (sel)	Order Matters
	<pre>l'bl : \$display("CASEZa : Logic 1 on : 1'b0 : \$display("CASEZa : Logic 0 on : 1'bc : \$display("CASEZa : Logic x on : 1'bz : \$display("CASEZa : Logic z on : endcase</pre>	<pre>sel"); sel"); sel"); sel");</pre>

Get off my	Case 🗖
<pre>// Case tests // Allen Tanner Link // reg [15:0]opcode; initial begin \$display("We've only just begun"); #1 \$display(" Driving add"); opcode = 16'b1000_1000_1010_1111; #1 \$display (" Driving subtract"); opcode = 16'b0100_0100_1010_1111; #1 \$display (" Driving mutiply"); opcode = 16'b0010_0010_1010_1111; #1 \$finish; and</pre>	We've only just begun Driving add CASEZ. Opcode: add CASEX. Opcode: add Driving subtract CASEX. Opcode: subtract CASEZ. Opcode: subtract Driving mutiply CASEZ. Opcode: multiply CASEX. Opcode: multiply
<pre>always @ (opcode) casex (opcode) 16'blx2?_xxxx_xxxx_xxxx : \$display("CAS 16'bxlxx_xxxx_xxxx_xxxx : \$display("CAS endcase always @ (opcode) casez (opcode) 16'bl???_zzzz_zzzz_zzzz : \$display("CAS 16'b???_zzzz_zzzz_zzz : \$display("CAS 16'b???_zzzz_zzzz_zzz : \$display("CAS 16'b????_zzzz_zzzz_zzz : \$display("CAS endcase</pre>	L18 "testfixture.new": \$fir SEX. Opcode: add"); SEX. Opcode: subtract"); SEX. Opcode: multiply"); SEZ. Opcode: add"); SEZ. Opcode: subtract"); SEZ. Opcode: multiply");

		Textbook FSM
		// Verilog HDL for "Ax", "see4" "behavioral" // Four in a row detector - Allen Tanner
		<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4;</pre>
		<pre>// define state encodings as parameters parameter [2:0] s0 = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;</pre>
		<pre>// define reg vars for state register and next_state logic reg [2:0] state, next_state;</pre>
		//define state register (with asynchronous active-low clear) always @(posedge clk or negedge clr)
		<pre>if (clr==0) state = s0; else state = next_state; end</pre>
		// define combinational logic for next_state always @(insig or state) begin
		<pre>case (state) s0: if (insig) next_state = s1; else next_state = s0; s1: if (insig) next_state = s2;</pre>
		<pre>else next_state = s0; s2: if (insig) next_state = s3; else next_state = s0;</pre>
		<pre>s3: if (insig) next_state = s4; else next_state = s0; s4: if (insig) next_state = s4; else next state = s0;</pre>
		<pre>default: next_state = s0; endcase end</pre>
		<pre>// now set the saw4. This could also be done in an always // block but in that case, saw4 would have to be // defined as a reg. assign saw4 = state == s4;</pre>
		endmodule

Documented FSM
// Verilog HDL for "Ax", "see4" "behavioral" // Four in a row detector - Allen Tanner
<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4;</pre>
<pre>parameter [2:0] s0 = 3'b000; // initial state, saw at least 1 zero parameter [2:0] s1 = 3'b001; // saw 1 one parameter [2:0] s2 = 3'b010; // saw 2 ones parameter [2:0] s3 = 3'b011; // saw 3 ones parameter [2:0] s4 = 3'b100; // saw at least, 4 ones</pre>
reg [2:0] state, next_state;
<pre>always @(posedge clk or posedge clr) // state register begin if (clr) state <= s0; else state <= next_state; end</pre>
<pre>always @(insig of state) // next state logic begin</pre>
<pre>selse next_state = s0; s1: if (insig) next_state = s4; else next_state = s0; s1: if (insig) next_state = s4; else next_state = s0; s4: if (insig) next_state = s4; else next_state = s0;</pre>
default: next_state = s0; endcase end
assign saw4 = state == s4;
endmodule

FSM 🗖
<pre>// Verilog HDL for "Ax", "see4" "behavioral" // Four in a row detector - Allen Tanner</pre>
<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4;</pre>
<pre>parameter [2:0] s0 = 3'b000; // initial state, saw at least 1 zero parameter [2:0] s1 = 3'b001; // saw 1 one parameter [2:0] s2 = 3'b010; // saw 2 ones parameter [2:0] s3 = 3'b011; // saw 3 ones parameter [2:0] s4 = 3'b100; // saw at least, 4 ones</pre>
reg [2:0] state; wire [2:0] next_state;
assign next_state = {3{(state == s0) && !insig}} & s0 {3{(state == s0) && insig}} & s1 {3{(state == s1) && !insig}} & s0 {3{(state == s1) && insig}} & s2 {3{(state == s2) && !insig}} & s0
<pre>{3{(state == s2) && insig}} & s3 {3{(state == s3) && !insig}} & s0 {3{(state == s3) && insig}} & s4 {3{(state == s4) && insig}} & s0 {3{(state == s4) && !insig}} & s4</pre>
<pre>always @(posedge clk or posedge clr) // state register begin</pre>
assign saw4 = state == s4; endmodule

One-Hot FSM
// Verilog HDL for "Ax", "see4" "behavioral" // Four in a row detector - Allen Tanner
<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4;</pre>
reg s0; // initial state, saw at least 1 zero reg s1; // saw 1 one reg s2; // saw 2 ones reg s4; // saw at least, 4 ones
<pre>always @(posedge clk or posedge clr) // state register begin if (clr) begin s0 <= 1'b1; s1 <= 1'b0; s3 <= 1'b0; s3 <= 1'b0; s4 <= 1'b0; end else begin</pre>
assign saw $4 = s4;$
endmodule

Or	ne-Ho	ot FSM	Cou	nting) 🗖
Baseline - 5 400	00005	TimeA - 0			
Cursor-Baseline = -789	,000ps Cursor ▼ 0 1		2.000,000ps		Bas TimeB = 5,610,40 [4,000,000ps 5,000,0 10000000000000000000000000000000
	1 0 0 0 0 0				

Oops 🗖
<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4; wire s0, s1, s2, N2, N3, N4, N5, n9, n10, n11, n14, n15, n16, n17, n18,</pre>
<pre>DFF s1_reg (.D(N2), .CLK(clk), .nCLR(n15), .Q(s1)); DFF s1_reg (.D(N2), .CLK(clk), .nCLR(n15), .Q(s1)); DFF s4_reg (.D(N5), .CLK(clk), .nCLR(n15), .Q(saw4), .QB(n9)); DFF s3_reg (.D(N4), .CLK(clk), .nCLR(n15), .QB(n10)); TIELO U20 (.Y(n11)); INV U21 (.A(clr), .Y(n15)); AOI U22 (.A(n16), .B(n17), .C(insig), .Y(n14)); NOR2 U23 (.A(s2), .B(s1), .Y(n17)); NOR2 U24 (.A(s0), .B(n18), .Y(n16)); INV U25 (.A(n19), .Y(N5));</pre>
<pre>NAND2 U27 (.A(n9), .B(n10), .Y(n12)); NAND2 U27 (.A(n9), .B(n10), .Y(n12)); INV U28 (.A(n20), .Y(N4)); NAND2 U29 (.A(insig), .B(s2), .Y(n20)); INV U30 (.A(n21), .Y(N3)); NAND2 U31 (.A(insig), .B(s1), .Y(n21)); INV U32 (.A(n22), .Y(N2)); NAND2 U33 (.A(insig), .B(s0), .Y(n22)); endmodule</pre>

That's better
<pre>module see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4; wire ns0, N0, N1, N2, N4, N5, n1, n9, n10, n11, n12, n13, n14, n15; DFF s4_reg (.D(N5), .CLK(clk), .nCLR(n1), .Q(saw4), .QB(n9)); DFF s3_reg (.D(N2), .CLK(clk), .nCLR(n1), .QB(n12)); DFF s2_reg (.D(N1), .CLK(clk), .nCLR(n1), .QB(n10)); DFF s1_reg (.D(N0), .CLK(clk), .nCLR(n1), .QB(n11)); DFF ns0_reg (.D(N4), .CLK(clk), .nCLR(n1), .Q(ns0)); INV U12 (.A(clr), .Y(n1)); AOI U13 (.A(n9), .B(n12), .C(n13), .Y(N5)); OAI U14 (.A(n14), .B(n15), .C(n13), .Y(N4)); NAND2 U15 (.A(ns0), .B(n12), .Y(n15)); NAND3 U16 (.A(n10), .B(n9), .C(n11), .Y(n14)); NOR2 U17 (.A(n13), .B(n11), .Y(N1)); NOR2 U19 (.A(ns0), .B(n13), .Y(N0)); INV U20 (.A(insig), .Y(n13)); endmodule</pre>

Synchronous Clear
<pre>nodule see4 (clk, clr, insig, saw4); input clk, clr, insig; output saw4; wire N9, N10, N11, N12, N13, n2, n18, n19, n20, n21, n22, n23, n24, n25,</pre>
NAND2 055 (.A(finsig), .B(h21), .Y(h27)); INV U34 (.A(clr), .Y(h21)); endmodule

	ROM vs. Verilog
name rom 32 character 16 32 6 00 ; 00 ; 28 ; H 25 ; E 22 ; I 27 ; 0 37 ; W 2F ; 0 32 ; R 2C ; I 24 ; D 00 ; 00	<pre>module mywords(addr, char); imput [4:0] addr; output reg [5:0] char; always @(addr) begin case(addr) 'h00 : char = 'h00 ; // 'h01 : char = 'h00 ; // 'h02 : char = 'h25 ; // E 'h04 : char = 'h25 ; // E 'h04 : char = 'h25 ; // E 'h04 : char = 'h27 ; // U 'h05 : char = 'h27 ; // U 'h08 : char = 'h27 ; // W 'h08 : char = 'h27 ; // W 'h08 : char = 'h22 ; // R 'h08 : char = 'h24 ; // D 'h08 : char = 'h00 ; // 'h08 : char = 'h00 ; //</pre>
00 ; 33 ; S 25 ; E 34 ; T 2D ; M 2D ; M 2D ; M 25 ; E 26 ; F 32 ; R 26 ; F 32 ; R 25 ; E 26 ; F 32 ; R 25 ; E 26 ; F 32 ; F 32 ; R 25 ; E	<pre>'hl0 : char = 'h00 ; // 'hl1 : char = 'h00 ; // 'hl2 : char = 'h03 ; // S 'hl3 : char = 'h25 ; // E 'hl4 : char = 'h34 ; // T 'hl5 : char = 'h20 ; // M 'hl6 : char = 'h20 ; // M 'hl7 : char = 'h25 ; // E 'hl8 : char = 'h26 ; // F 'hl8 : char = 'h26 ; // F 'hl8 : char = 'h25 ; // E 'hl8 : char = 'h25 ; // E 'hl10 : char = 'h25 ; // E 'h10 : char = 'h00 ; // 'h110 : char = 'h00 ; // 'h110 : char = 'h00 ; // 'h111 : char = 'h00 ; //</pre>

ROM vs. Verilog	

ROM vs. Verilog 🔤
<pre>assign twist = {8{ nOE0}} & ROW[7: 0] {8{ nOE3}} & ROW[7: 0] {8{ nOE3}} & ROW[32: 8] {8{ nOE24}} & ROW[32: 16] {8{ nOE24}} & ROW[31: 24] {8{ nOE25}} & ROW[39: 32] {8{ nOE40}} & ROW[47: 40] {8{ nOE56}} & ROW[65: 56] {8{ nOE56}} & ROW[65: 56] {8{ nOE56}} & ROW[71: 64] {8{ nOE26}} & ROW[72: 64] {8{ nOE26}} & ROW[72: 96] {8{ nOE56}} & ROW[73: 96] {8{ nOE56}} & ROW[71: 26] {8{ nOE56}} & ROW[71: 26] {8{ nOE56}} & ROW[75: 88] {8{ nOE56}} & ROW[71: 26] {8{ nOE56}} & ROW[</pre>
<pre> {8(moEl20}) & Row[127:120]; assign T = {twist[0],twist[1],twist[2],twist[3],twist[4],twist[5],twist[6],twist[7]}; endmodule // charl0</pre>

ROM vs. Verilog	