
1

CS6710 Tool Suite

Synopsys
Synthesis

Cadence
SOC

Encounter

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

AutoRouter

Your
Library

Verilog-XL

Verilog-XL

Behavioral
Verilog

Structural
Verilog

Circuit
Layout

LVS

Layout-XL

CSI

Verilog is the Key Tool
Behavioral Verilog is synthesized into
Structural Verilog
Structural Verilog represents net-lists

From Behavioral
From Schematics
From makeMem
High-level (Synthesizer will flatten these)

Verilog-XL is used for testing all designs
Behavioral & Structural & Schematic & High-level

2

Verilog has a Split Personality
Hardware Description Language (HDL)

Reliably & Readably
Create hardware
Document hardware

The wire-list function fits into HDL
Testbench creation language

Create external test environment
Time & Voltage
Files & messages

Are these two tasks
Related?
Compatible?

Verilog as HDL (AHT)
“C-like hardware description language.”

But what does C have to do with hardware?
Marketing hype cast into vital tools

Verilog is ill-suited to its use.
Verbose
Feels to me like I are “tricking it”

Good engineers
Use only a subset of the language.
Keep Learning.
Try before they buy.
Demo today.

3

Synthesis

This lecture is only about
synthesis...

Quick Review
Module name (args…);

begin
input …; // define inputs
output …; // define outputs
wire … ; // internal wires
reg …; // internal regs, possibly output

// the parts of the module body are
// executed concurrently
<continuous assignments>
<always blocks>

endmodule

4

Quick Review
Continuous assignments to wire vars

assign variable = exp;
Result in combinational logic

Procedural assignment to reg vars
Always inside procedural blocks (always
blocks in particular for synthesis)
blocking

variable = exp;
non-blocking

variable <= exp;
Can result in combinational or sequential
logic

Procedural Control Statements
Conditional Statement

if (<expression>) <statement>
if (<expression>) <statement>
else <statement>

“else” is always associated with the closest
previous if that lacks an else.
You can use begin-end blocks to make it more
clear

if (index >0)
if (rega > regb)

result = rega;
else result = regb;

5

Multi-Way Decisions
Standard if-else-if syntax

If (<expression>)
<statement>

else if (<expression>)
<statement>

else if (<expression>)
<statement>

else <statement>

Verilog Description Styles
Verilog supports a variety of description
styles

Structural
explicit structure of the circuit
e.g., each logic gate instantiated and connected
to others

Behavioral
program describes input/output behavior of
circuit
many structural implementations could have
same behavior
e.g., different implementation of one Boolean
function

6

Synthesis: Data Types
Possible Values:

0: logic 0, false
1: logic 1, true
Z: High impedance

Digital Hardware
The domain of Verilog
Either logic (gates)
Or storage (registers & latches)

Verilog has two relevant data types
wire
reg

Synthesis: Data Types
Register declarations

reg a; \\ a scalar register
reg [3:0] b; \\ a 4-bit vector register
output g; \\ an output can be a reg
reg g;
output reg g; \\ Verilog 2001 syntax

Wire declarations
wire d; \\ a scalar wire
wire [3:0] e; \\ a 4-bit vector wire
output f; \\ an output can be a wire

7

Parameters
Used to define constants

parameter size = 16, foo = 8;
wire [size-1:0] bus; \\ defines a 15:0 bus

Synthesis: Assign Statement
The assign statement creates
combinational logic

assign LHS = expression;
LHS can only be wire type
expression can contain either wire or reg type
mixed with operators

wire a,c; reg b;output out;
assign a = b & c;
assign out = ~(a & b); \\ output as wire

wire [15:0] sum, a, b;
wire cin, cout;
assign {cout,sum} = a + b + cin;

8

Synthesis: Basic Operators
Bit-Wise Logical

~ (not), & (and), | (or), ^ (xor), ^~ or ~^ (xnor)
Simple Arithmetic Operators

Binary: +, -
Unary: -
Negative numbers stored as 2’s complement

Relational Operators
<, >, <=, >=, ==, !=

Logical Operators
! (not), && (and), || (or)
assign a = (b > ‘b0110) && (c <= 4’d5);
assign a = (b > ‘b0110) && !(c > 4’d5);

Synthesis: Operand Length
When operands are of unequal bit length,
the shorter operator is zero-filled in the
most significant bit position

wire [3:0] sum, a, b; wire cin, cout, d, e, f, g;

assign sum = f & a;
assign sum = f | a;
assign sum = {d, e, f, g} & a;
assign sum = {4{f}} | b;
assign sum = {4{f == g}} & (a + b);
assign sum[0] = g & a[2];
assign sum[2:0] = {3{g}} & a[3:1];

9

Synthesis: More Operators
Concatenation

{a,b} {4{a==b}} { a,b,4’b1001,{4{a==b}} }

Shift (logical shift)
<< left shift
>> right shift

assign a = b >> 2; // shift right 2, division by 4
assign a = b << 1; // shift left 1, multiply by 2

Arithmetic
assign a = b * c; // multiply b times c
assign a = b * ‘d2; // multiply b times constant (=2)
assign a = b / ‘b10; // divide by 2 (constant only)
assign a = b % ‘h3; // b modulo 3 (constant only)

Synthesis: Operand Length
Operator length is set to the longest member
(both RHS & LHS are considered). Be careful.

wire [3:0] sum, a, b; wire cin, cout, d, e, f, g;
wire[4:0]sum1;

assign {cout,sum} = a + b + cin;
assign {cout,sum} = a + b + {4’b0,cin};

assign sum1 = a + b;
assign sum = (a + b) >> 1; // what is wrong?

10

Synthesis: Extra Operators

Funky Conditional
cond_exp ? true_expr : false_expr
wire [3:0] a,b,c; wire d;
assign a = (b == c) ? (c + ‘d1): ‘o5; // good luck

Reduction Logical
Named for impact on your recreational time
Unary operators that perform bit-wise operations on
a single operand, reduce it to one bit
&, ~&, |, ~|, ^, ~^, ^~
assign d = &a || ~^b ^ ^~c;

Synthesis: Assign Statement
The assign statement is sufficient to
create all combinational logic
What about this:

assign a = ~(b & c);
assign c = ~(d & a);

11

Simple Behavioral Module
// Behavioral model of NAND gate
module NAND (out, in1, in2);

output out;
input in1, in2;
assign out = ~(in1 & in2);

endmodule

Simple Structural Module
// Structural Module for NAND gate
module NAND (out, in1, in2);

output out;
input in1, in2;
wire w1;
// call existing modules by name
// module-name ID (signal-list);
AND2 u1(w1, in1, in2);
INV u2(out,w1);

endmodule

12

Simple Structural Module
// Structural Module for NAND gate
module NAND (out, in1, in2);

output out;
input in1, in2;
wire w1;
// call existing modules by name
// module-name ID (signal-list);
// can connect ports by name...
AND2 u1(.Q(w1), .A(in1), .B(in2));
INV u2(.A(w1), .Q(out));

endmodule

Procedural Assignment
Assigns values to register types
They do not have a duration

The register holds the value until the next
procedural assignment to that variable

The occur only within procedural blocks
initial and always
initial is NOT supported for synthesis!

They are triggered when the flow of
execution reaches them

13

Always Blocks
When is an always block executed?

always
Starts at time 0

always @(a or b or c)
Whenever there is a change on a, b, or c
Used to describe combinational logic

always @(posedge foo)
Whenever foo goes from low to high
Used to describe sequential logic

always @(negedge bar)
Whenever bar goes from high to low

Synthesis: Always Statement
The always statement creates…

always @sensitivity LHS = expression;
@sensitivity controls when
LHS can only be reg type
expression can contain either wire or reg type mixed with
operators

Logic
reg c, b; wire a;

always @(a, b) c = ~(a & b);
always @* c = ~(a & b);

Storage
reg Q; wire clk;

always @(posedge clk) Q <= D;

14

Procedural NAND gate
// Procedural model of NAND gate

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;
// always executes when in1 or in2
// change value
always @(in1 or in2)

begin
out = ~(in1 & in2);

end
endmodule

Procedural NAND gate
// Procedural model of NAND gate

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;
// always executes when in1 or in2
// change value
always @(in1 or in2)

begin
out <= ~(in1 & in2);

end
endmodule Is out combinational?

15

Synthesis: NAND gate
input in1, in2;

reg n1, n2; // is this a flip-flop?
wire n3,n4;

always @(in1 or in2) n1 = ~(in1 & in2);
always @* n2 = ~(in1 & in2);
assign n3 = ~(in1 & in2);
nand u1(n4, in1, in2);

Notice always block for combinational logic
Full sensitivity list, but @* works
Can then use the always goodies
Is this a good coding style?

Procedural Assignments
Assigns values to reg types

Only useable inside a procedural block Usually
synthesizes to a register

But, under the right conditions, can also result in
combinational circuits

Blocking procedural assignment
LHS = timing-control exp a = #10 1;
Must be executed before any assignments that
follow (timing control is optional)
Assignments proceed in order even if no timing is
given

Non-Blocking procedural assignment
LHS <= timing-control exp b <= 2;
Evaluated simultaneously when block starts
Assignment occurs at the end of the
(optional) time-control

16

Procedural Synthesis
Synthesis ignores all that timing stuff
So, what does it mean to have blocking
vs. non-blocking assignment for
synthesis?

begin begin
A=B; A<=B;
B=A; B<=A;

end end

begin begin
A=Y; A<=Y;
B=A; B<=A;

end end

?

?

Synthesized Circuits
begin

A = Y;
B = A;

end

begin
A <= Y;
B <= A;

end
begin

B = A;
A = Y;

end

D Q

clk

D Q

clk

D Q

clk

D Q

clk

A

B

A B
Y

Y

A
B

A

B

17

Synthesized Circuits
D Q

clk

D Q

clk

D Q

clk

D Q

clk

A

B

A B
Y

Y

A
B

A

B

always @(posedge clk)
begin
A = Y;
B = A;

end

always @(posedge clk)
begin
B = A;
A = Y;

end

always @(posedge clk)
begin
A <= Y;
B <= A;

end

always @(posedge clk)
begin
B <= A;
A <= Y

end

clk

clk

Assignments and Synthesis
Note that different circuit structures result
from different types of procedural
assignments

Therefore you can’t mix assignment types in
the same always block
And you can’t use different assignment
types to assign the same register either
Non-blocking is often a better model for
hardware

Real hardware is often concurrent…

18

Comparator Example
Using continuous assignment

Concurrent execution of assignments

Module comp (a, b, Cgt, Clt, Cne);
parameter n = 4;
input [n-1:0] a, b;
output Cgt, Clt, Cne;
assign Cgt = (a > b);
assign Clt = (a < b);
assign Cne = (a != b);

endmodule

Comparator Example
Using procedural assignment

Non-blocking assignment implies concurrent

Module comp (a, b, Cgt, Clt, Cne);
parameter n = 4;
input [n-1:0] a, b;
output Cgt, Clt, Cne;
reg Cgt, Clt, Cne;
always @(a or b)

Cgt <= (a > a);
Clt <= (a < b);
Cne <= (a != b);

endmodule

19

Modeling a Flip Flop
Use an always block to wait for clock
edge

Module dff (clk, d, q);
input clk, d;
output q;
reg q;
always @(posedge clk)

d = q;
endmodule

Synthesis: Always Statement
This is a simple D Flip-Flop

reg Q;
always @(posedge clk) Q <= D;

@(posedge clk) is the sensitivity list
The Q <= D; is the block part
The block part is always “entered” whenever
the sensitivity list becomes true (positive
edge of clk)
The LHS of the <= must be of data type reg
The RHS of the <= may use reg or wire

20

Synthesis: Always Statement
This is an asynchronous clear D Flip-Flop

reg Q;
always @(posedge clk, posedge rst)

if (rst) Q <= ‘b0; else Q <= D;
Notice , instead of or

Verilog 2001…
Positive reset (how does the edge play?)

Synthesis: Always Statement
reg Q;
always @(posedge clk, posedge rst, posedge set)

if (rst) Q <= ‘b0;
else if (set) Q <= ‘b1;

else Q <= D;

What is this?
What is synthesized?

syn-f06> beh2str foo.v foo_str.v UofU_Digital.db

21

Synthesis: Always Statement
reg Q;
always @(posedge clk, posedge rst, posedge set)

if (rst) Q <= ‘b0;
else if (set) Q <= ‘b1;

else Q <= D;

What is this?
What is synthesized?

Synthesis: Always Statement
reg Q;
always @(posedge clk, posedge rst, posedge set)

if (rst) Q <= ‘b0;
else if (set) Q <= ‘b1;

else Q <= D;

What is this?
What is synthesized?

22

Synthesis: Always Statement
reg Q;
always @(posedge clk)

if (rst) Q <= ‘b0;
else if (set) Q <= ‘b1;

else Q <= D;

What is this?

Synthesis: Always Statement
reg Q;
always @(posedge clk)

if (rst) Q <= ‘b0;
else if (set) Q <= ‘b1;

else Q <= D;

What is this?

Inferred memory devices in process
in routine set line 5 in file

'/home/elb/IC_CAD/syn-f06/set.v'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

23

module foo (clk, rst, set, D, Q);
input clk, rst, set, D;
output Q;
wire N3, n2, n4;

dff Q_reg (.D(N3), .G(clk), .CLR(n2), .Q(Q));
tiehi U6 (.Y(n2));
nor2 U7 (.A(rst), .B(n4), .Y(N3));
nor2 U8 (.A(D), .B(set), .Y(n4));

endmodule

Synthesis: Always Statement
reg P,Q;
reg [3:0] R;
always @(posedge clk)

begin
Q <= D;
P <= Q;
R <= R + ‘h1;

end

What is this?
Will it synthesize? Simulate?

24

Synthesis: Always Statement
module testme (D, P, Q, R, clk);
output [3:0] R;

input D, clk;
output P, Q;
wire N0, N1, N2, N3, n1, n7, n8, n9;

dff Q_reg (.D(D), .G(clk), .CLR(n1), .Q(Q));
dff P_reg (.D(Q), .G(clk), .CLR(n1), .Q(P));
dff R_reg_0_ (.D(N0), .G(clk), .CLR(n1), .Q(R[0]));
dff R_reg_1_ (.D(N1), .G(clk), .CLR(n1), .Q(R[1]));
dff R_reg_2_ (.D(N2), .G(clk), .CLR(n1), .Q(R[2]));
dff R_reg_3_ (.D(N3), .G(clk), .CLR(n1), .Q(R[3]));
tiehi U9 (.Y(n1));
xor2 U10 (.A(R[3]), .B(n7), .Y(N3));
nor2 U11 (.A(n8), .B(n9), .Y(n7));
xor2 U12 (.A(n8), .B(n9), .Y(N2));
invX1 U13 (.A(R[2]), .Y(n9));
nand2 U14 (.A(R[1]), .B(R[0]), .Y(n8));
xor2 U15 (.A(R[1]), .B(R[0]), .Y(N1));
invX1 U16 (.A(R[0]), .Y(N0));

endmodule

Synthesis: Always Statement
This is a simple D Flip-Flop

reg Q;
always @(posedge clk) Q <= D;

So is this
reg Q;
always @(posedge clk) Q = D;

= is for blocking assignments
<= is for nonblocking assignments

25

Constants
parameter used to define constants

parameter size = 16, foo = 8;
wire [size-1:0] bus; \\ defines a 15:0 bus
externally modifiable
scope is local to module

localparam not externally modifiable
localparam width = size * foo;

`define macro definition
`define value 7’d53
assign a = (sel == `value) & b;
scope is from here on out

Example: Counter
module counter (clk, clr, load, in, count);

parameter width=8;
input clk, clr, load;
input [width-1 : 0] in;
output [width-1 : 0] count;
reg [width-1 : 0] tmp;

always @(posedge clk or negedge clr)
begin
if (!clr)

tmp = 0;
else if (load)

tmp = in;
else

tmp = tmp + 1;
end
assign count = tmp;
endmodule

26

Synthesis: Modules
module the_top (clk, rst, a, b, sel, result);

input clk, rst;
input [3:0] a,b; input [2:0] sel;
output reg [3:0] result;
wire[3:0] sum, dif, alu;

adder u0(a,b,sum);
subber u1(.subtrahend(a), .subtractor(b), .difference(dif));

assign alu = {4{(sel == ‘b000)}} & sum
| {4{(sel == ‘b001)}} & dif;

always @(posedge clk or posedge rst)
if(rst) result <= ‘h0;
else result <= alu;

endmodule

Synthesis: Modules
// Verilog 1995 syntax
module adder (e,f,g);

parameter SIZE=2;
input [SIZE-1:0] e, f;
output [SIZE-1:0] g;
g = e + f;

endmodule

// Verilog 2001 syntax
module subber #(parameter SIZE = 3)

(input [SIZE-1:0] c,d, output [SIZE-1:0]difference);
difference = c - d;

endmodule

27

Synthesis: Modules
module the_top (clk, rst, a, b, sel, result);

parameter SIZE = 4;
input clk, rst;
input [SIZE-1:0] a,b;
input [2:0] sel;
output reg [SIZE-1:0] result;
wire[SIZE-1:0] sum, dif, alu;

adder #(.SIZE(SIZE)) u0(a,b,sum);
subber #(4) u1(.c(a), .d(b), .difference(dif));

assign alu = {SIZE{sel == ‘b000}} & sum
| {SIZE{sel == ‘b001}} & dif;

always @(posedge clk or posedge rst)
if(rst) result <= ‘h0;
else result <= alu;

endmodule

Multi-Way Decisions
Standard if-else-if syntax

If (<expression>)
<statement>

else if (<expression>)
<statement>

else if (<expression>)
<statement>

else <statement>

28

Priority vs. Parallel Choice (if)
module priority (a, b, c, d, sel, z);

input a,b,c,d;
input [3:0] sel;
output z;
reg z;
always @(a or b or c or d or sel)
begin

z = 0;
if (sel[0]) z = a;
if (sel[1]) z = b;
if (sel[2]) z = c;
if (sel[3]) z = d;

end
endmodule

Priority vs. Parallel Choice
module parallel (a, b, c, d, sel, z);

input a,b,c,d;
input [3:0] sel;
output z;
reg z;
always @(a or b or c or d or sel)
begin

z = 0;
if (sel[3]) z = d;
else if (sel[2]) z = c;
else if (sel[1]) z = b;
else if (sel[0]) z = a;

end
endmodule

29

Priority Encoders

Priority Encoders

30

Case Statements
Multi-way decision on a single expression

case (<expresion>)
<expression>: <statement>
<expression>, <expression>: <statement>
<expression>: <statement>
default: <statement>

endcase

Case Example
reg [1:0] sel;
reg [15:0] in0, in1, in2, in3, out;
case (sel)

2’b00: out = in0;
2’b01: out = in1;
2’b10: out = in2;
2’b11: out = in3;

endcase

31

Another Case Example
// simple counter next-state logic
// one-hot state encoding…

parameter [2:0] s0=3’h1, s1=3’h2, s2=3’h4;
reg[2:0] state, next_state;
always @(input or state)
begin

case (state)
s0: if (input) next_state = s1;

else next_state = s0;
s1: next_state = s2;
s2: next_state = s0;

endcase
end

input

state

next_state

001
010
100

Weird Case Example
Verilog allows you to put a value in the case
slot, and test which variable currently has that
value…

reg [2:0] curr_state, next_state;
parameter s1=3’b001, s2=3’b010, s3=3’b100
case (1)

curr_state[0] : next_state = s2;
curr_state[1] : next_state = s3;
curr_state[2] : next_state = s1;

endcase

32

Latch Inference
Incompletely specified if and case
statements cause the synthesizer to infer
latches

always @(cond)
begin

if (cond) data_out <= data_in;
end

This infers a latch because it doesn’t
specify what to do when cond = 0

Fix by adding an else
In a case, fix by including default:

Full vs. Parallel
Case statements check each case in
sequence
A case statement is full if all possible
outcomes are accounted for
A case statement is parallel if the stated
alternatives are mutually exclusive
These distinctions make a difference in
how cases are translated to circuits…

Similar to the if statements previously
described

33

Case full-par example
// full and parallel = combinational logic
module full-par (slct, a, b, c, d, out);

input [1:0] slct;
input a, b, c, d;
output out;
reg out; // optimized away in this example
always @(slct or a or b or c or d)

case (slct)
2’b11 : out <= a;
2’b10 : out <= b;
2’b01 : out <= c;
default : out <= d; // really 2’b10

endcase
endmodule

Synthesis Result
Note that full-par results in combinational
logic

34

Case notfull-par example
// a latch is synthesized because case is not full
module notfull-par (slct, a, b, c, d, out);

input [1:0] slct;
input a, b, c, d;
output out;
reg out; // NOT optimized away in this example
always @(slct or a or b or c)

case (slct)
2’b11 : out <= a;
2’b10 : out <= b;
2’b01 : out <= c;

endcase
endmodule

Synthesized Circuit
Because it’s not full, a latch is inferred…

35

Case full-notpar example
// because case is not parallel - priority encoding
// but it is still full, so no latch…
// this uses a casez which treats ? as don’t-care
module full-notpar (slct, a, b, c, out);

...
always @(slct or a or b or c)

casez (slct)
2’b1? : out <= a;
2’b?1 : out <= b;
default : out <= c;

endcase
endmodule

Synthesized Circuit
It’s full, so it’s combinational, but it’s
not parallel so it’s a priority circuit instead
of a “check all in parallel” circuit

36

Case notfull-notpar example
// because case is not parallel - priority encoding
// because case is not full - latch is inferred
// uses a casez which treats ? as don’t-care
module full-notpar (slct, a, b, c, out);

...
always @(slct or a or b or c)

casez (slct)
2’b1? : out <= a;
2’b?1 : out <= b;

endcase
endmodule

Synthesized Circuit
Not full and not parallel, infer a latch

37

Verification
CASE matches all (works like ===)
CASEX uses “z”, “x”, “?” as don’t care
CASEZ uses “z”, “?” as don’t care
Beware: Matches first valid case

Synthesis
CASE works like ==
CASEX uses “?” as don’t care
CASEZ uses “?” as don’t care

Get off my Case

Get off my Case

Order Matters

38

Get off my Case
Link

FSM Description
One simple way: break it up like a
schematic

A combinational block for next_state
generation
A combinational block for output generation
A sequential block to store the current state

N
ex

t s
ta

te
Lo

gi
c

St
at

e

in

clk

Next_state
current
State outputs

Lo
gi

c
ou

tp
ut

Mealy only

39

Modeling State Machines
// General view
module FSM (clk, in, out);

input clk, in;
output out;
reg out;
// state variables
reg [1:0] state;
// next state variable
reg [1:0] next_state;
always @posedge(clk) // state register

state = next_state;
always @(state or in); // next-state logic

// compute next state and output logic
// make sure every local variable has an
// assignment in this block

endmodule

N
ex

t s
ta

te
Lo

gi
c

St
at

e

in

clk

Next_state

State

FSM Desciption

40

Verilog Version
module moore (clk, clr, insig, outsig);

input clk, clr, insig;
output outsig;

// define state encodings as
parameters
parameter [1:0] s0 = 2'b00,
s1 = 2'b01,s2 = 2'b10, s3 = 2'b11;

// define reg vars for state register
// and next_state logic

reg [1:0] state, next_state;
//define state register (with
//synchronous active-high clear)

always @(posedge clk)
begin

if (clr) state = s0;
else state = next_state;

end

// define combinational logic for
// next_state

always @(insig or state)
begin

case (state)
s0: if (insig) next_state = s1;

else next_state = s0;
s1: if (insig) next_state = s2;

else next_state = s1;
s2: if (insig) next_state = s3;

else next_state = s2;
s3: if (insig) next_state = s1;

else next_state = s0;
endcase

end
// assign outsig as continuous assign
assign outsig =

((state == s1) || (state == s3));
endmodule

Verilog Version
module moore (clk, clr, insig, outsig);

input clk, clr, insig;
output outsig;

// define state encodings as parameters
parameter [1:0] s0 = 2'b00, s1 = 2'b01,
s2 = 2'b10, s3 = 2'b11;

// define reg vars for state register and next_state logic
reg [1:0] state, next_state;

//define state register (with synchronous active-high clear)
always @(posedge clk)
begin

if (clr) state = s0;
else state = next_state;

end

41

Verilog Version Continued...
// define combinational logic for next_state

always @(insig or state)
begin

case (state)
s0: if (insig) next_state = s1;

else next_state = s0;
s1: if (insig) next_state = s2;

else next_state = s1;
s2: if (insig) next_state = s3;

else next_state = s2;
s3: if (insig) next_state = s1;

else next_state = s0;
endcase

end

Verilog Version Continued...
// now set the outsig. This could also be done in an always
// block... but in that case, outsig would have to be
// defined as a reg.
assign outsig = ((state == s1) || (state == s3));
endmodule

42

Unsupported for Synthesis
Delay (Synopsys will ignore #’s)
initial blocks (use explicit resets)
repeat
wait
fork
event
deassign
force
release

More Unsupported Stuff
You cannot assign the same reg variable
in more than one procedural block

// don’t do this…
always @(posedge a)

out = in1;
always @(posedge b)

out = in2;

43

Combinational Always Blocks
Be careful…

always @(sel) always @(sel or in1 or in2)
if (sel == 1) if (sel == 1)

out = in1; out = in1;
else out = in2; else out = in2;

Which one is a good mux?

Sync vs. Async Register Reset
// synchronous reset (active-high reset)

always @(posedge clk)
if (reset) state = s0;
else state = s1;

// async reset (active-low reset)
always @(posedge clk or negedge reset)

if (reset == 0) state = s0;
else state = s1;

44

Finite State Machine

S1S1

S0S0 1

0

S2S2

1

S3S3

1

S4S4

1

1

0

0

0

Four in a Row

0

Textbook FSM

45

Textbook FSM

Polarity?

Always use <= for FF

Comments

Documented FSM

46

Waveform Test Bench

Waveform

Pay attention to first few cycles...

47

FSM

FSM

48

FSM

One-Hot FSM

49

One-Hot FSM Counting

Oops

50

No Asynchronous Sets

That’s better

51

Synchronous Clear
Link

Synchronous Clear

52

Synchronous Clear

Is asynchronous clear really
asynchronous?
What about set-up & hold with respect to
clock edge?

ROM vs. Verilog

53

ROM vs. Verilog

ROM vs. Verilog

54

ROM vs. Verilog

ROM vs. Verilog
Link

55

ROM vs. Verilog

ROM vs. Verilog

