
v2000.05 HDL Compiler for Verilog Reference Manual
2
Description Styles 2

A Verilog circuit description can be one of two types: structural or
functional. A structural description explains the physical makeup of
the circuit, detailing gates and the connections between them. A
functional description, also referred to as an RTL (register transfer
level) description, describes what the circuit does.

This chapter covers the following topics:

• Design Hierarchy

• Structural Descriptions

• Functional Descriptions

• Mixing Structural and Functional Descriptions

• Design Constraints
/ 2-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Register Selection

• Asynchronous Designs

Design Hierarchy

Synopsys HDL Compiler maintains the hierarchical boundaries you
define when you use structural Verilog. These boundaries have two
major effects:

• Each module specified in your HDL description is synthesized
separately and maintained as a distinct design. The constraints
for the design are maintained, and each module can be optimized
separately in Design Compiler.

• Module instantiations within HDL descriptions are maintained
during input. The instance name you assign to user-defined
components is carried through to the gate-level implementation.

Chapter 3, “Structural Descriptions,” discusses modules and module
instantiations.

Note:
HDL Compiler does not automatically maintain (create) the
hierarchy of other, nonstructural Verilog constructs such as
blocks, loops, functions, and tasks. These elements of an HDL
description are translated in the context of their design. After
reading in a Verilog design, you can use the group -hdl_block
command to group the gates in a block, function, or task. For
information on how to use the group command with Verilog
designs, see the Synopsys group man page.
/ 2-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The choice of hierarchical boundaries has a significant effect on the
quality of the synthesized design. Using Design Compiler, you can
optimize a design while preserving these hierarchical boundaries.
However, Design Compiler only partially optimizes logic across
hierarchical modules. Full optimization is possible across those parts
of the design hierarchy that are collapsed in Design Compiler.

Structural Descriptions

The structural elements of a Verilog structural description are generic
logic gates, library-specific components, and user-defined
components connected by wires. In one way, a structural description
can be viewed as a simple netlist composed of nets that connect
instantiations of gates. However, unlike in a netlist, nets in the
structural description can be driven by an arbitrary expression that
describes the value assigned to the net. A statement that drives an
arbitrary expression onto a net is called a continuous assignment.
Continuous assignments are convenient links between pure netlist
descriptions and functional descriptions.

A Verilog structural description can define a range of hierarchical and
gate-level constructs, including module definitions, module
instantiations, and netlist connections. See Chapter 3, “Structural
Descriptions,” for more information.
/ 2-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Functional Descriptions

The functional elements of a Verilog description are function
declarations, task statements, and always blocks. These elements
describe the function of the circuit but do not describe its physical
makeup or layout. The choice of gates and components is left entirely
to Design Compiler.

You can construct functional descriptions with the Verilog functional
constructs described in Chapter 5, “Functional Descriptions.” These
constructs can appear within functions or always blocks. Functions
imply only combinational logic; always blocks can imply either
combinational or sequential logic.

Although many Verilog functional constructs (for example, for loops
and multiple assignments to the same variable) appear sequential in
nature, they describe combinational-logic networks. Other functional
constructs imply sequential-logic networks. Latches and registers are
inferred from these constructs. See Chapter 6, “Register, Multibit,
Multiplexer, and Three-State Inference,” for details.

Mixing Structural and Functional Descriptions

When you use a functional description style in a design, you typically
describe the combinational portions of the design in Verilog functions,
always blocks, and assignments. The complexity of the logic
determines whether you use one or many functions.

Example 2-1 shows how structural and functional description styles
are mixed in a design specification. In Example 2-1, the function
detect_logic determines whether the input bit is a 0 or a 1. After
/ 2-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
making this determination, detect_logic sets ns to the next state of
the machine. An always block infers flip-flops to hold the state
information between clock cycles.

You can specify elements of a design directly as module instantiations
at the structural level. For example, see the three-state buffer t1 in
Example 2-1. (Note that three-states can be inferred. For more
information, refer to “Three-State Inference” on page 6-73.) You can
also use this description style to identify the wires and ports that carry
information from one part of the design to another.

Example 2-1 Mixed Structural and Functional Descriptions
// This finite-state machine (Mealy type) reads one
// bit per clock cycle and detects three or more
// consecutive 1s.

module three_ones(signal, clock, detect, output_enable);
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
 TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION ****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, detect);

// **************I*** ALWAYS BLOCK ********************
// always block infers flip-flops to hold the state of
// the FSM.
always @ (posedge clock) begin
 cs = ns;
end
/ 2-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
// ************* FUNCTIONAL DESCRIPTION ****************
function detect_logic;
 input [1:0] cs;
 input signal;

 begin
 detect_logic = 0; //default value
 if (signal == 0) //bit is zero
 ns = NO_ONES;
 else //bit is one, increment state
 case (cs)
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES, AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect_logic = 1;
 end
 endcase
 end
endfunction

// ************** assign STATEMENT **************
assign ungated_detect = detect_logic(cs, signal);
endmodule

For a structural or functional HDL description to be synthesized, it
must follow the Synopsys synthesis policy, which has three parts:

• Design methodology

• Description style

• Language constructs
/ 2-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Design Methodology

Design methodology refers to the synthesis design process that uses
HDL Compiler, Design Compiler, and Verilog HDL Simulator. This
process is described in Chapter 1, “Introducing HDL Compiler for
Verilog.”

Description Style

Use the HDL design and coding style that makes the best use of the
synthesis process to obtain high-quality results from HDL Compiler
and Design Compiler. See Chapter 8, “Writing Circuit Descriptions,”
for guidelines.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog
constructs that describe your design, determine its architecture, and
give consistently good results.

Synopsys uses HDL constructs that maximize coding flexibility while
producing consistently good results. Although HDL Compiler can
read the entire Verilog language, a few HDL constructs cannot be
synthesized. These constructs are unsupported because they cannot
be realized in logic. For example, you cannot use simulation time as
a trigger, because time is an element of the simulation process and
cannot be realized. “Unsupported Verilog Language Constructs” on
page B-21 lists these constructs.
/ 2-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Design Constraints

You can describe the area and performance constraints for a design
module directly in your Verilog description. HDL Compiler inputs
constraints specified for a design when they are embedded in a
Synopsys-defined HDL Compiler directive. By specifying constraints
with your HDL description,

• You can control the optimization of a design module from within
the Verilog description. Design Compiler attempts to optimize
each module so that all design constraints are met.

• You can use the Verilog description to document important
specification information.

Chapter 9, “HDL Compiler Directives,” covers HDL Compiler
directives in detail.

Register Selection

The clocking scheme and the placement of registers are important
architectural factors. There are two ways to define registers in your
Verilog description. Each method has specific advantages.

• You can directly instantiate registers into a Verilog description,
selecting from any element in your ASIC library.

Clocking schemes can be arbitrarily complex. You can choose
between a flip-flop and a latch-based architecture. The main
disadvantages to this approach are that
/ 2-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
- The Verilog description is specific to a given technology,
because you choose structural elements from that technology
library. However, you can isolate the portion of your design with
directly instantiated registers as a separate component
(module) and then connect it to the rest of the design.

- The description is more difficult to write.

• You can use some Verilog constructs to direct HDL Compiler to
infer registers from the description.

The advantages to this approach directly counter the
disadvantages of the previous approach. With register inference,
the Verilog description is much easier to write and is technology-
independent. This method allows Design Compiler to select the
type of component inferred, based on constraints. Therefore, if a
specific component is necessary, use instantiation. Some types
of registers and latches cannot be inferred.

See “Register Inference” on page 6-2 for a discussion of latch and
register inference.

Asynchronous Designs

You can use HDL Compiler to construct asynchronous designs that
use multiple or gated clocks. However, although these designs are
logically and statistically correct, they may not simulate or operate
correctly, because of race conditions.

“Synthesis Issues” on page 8-36 describes how to write Verilog
descriptions of asynchronous designs.
/ 2-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
/ 2-10HOME CONTENTS INDEX

	Description Styles
	Design Hierarchy
	Structural Descriptions
	Functional Descriptions
	Mixing Structural and Functional Descriptions
	Design Methodology
	Description Style
	Language Constructs

	Design Constraints
	Register Selection
	Asynchronous Designs

