
v2000.05 HDL Compiler for Verilog Reference Manual
4
Expressions 4

In Verilog, expressions consist of a single operand or multiple
operands separated by operators. Use expressions where a value is
required in Verilog.

This chapter explains how to build and use expressions, using

• Constant-Valued Expressions

• Operators

• Operands

• Expression Bit-Widths
/ 4-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Constant-Valued Expressions

A constant-valued expression is an expression whose operands are
either constants or parameters. HDL Compiler determines the value
of these expressions.

In Example 4-1, size-1 is a constant-valued expression. The
expression (op == ADD)? a + b : a – b is not a constant-
valued expression, because the value depends on the variable op . If
the value of op is 1, b is added to a; otherwise, b is subtracted from a.

Example 4-1 Valid Expressions
// all expressions are constant-valued,
// except in the assign statement.
module add_or_subtract(a, b, op, s);
// performs s = a+b if op is ADD
// performs s = a-b if op is not ADD

parameter size=8;
parameter ADD=1’b1;

input op;
input [size-1:0] a, b;
output [size-1:0] s;
assign s = (op == ADD) ? a+b : a-b;//not a constant-

 //valued expression
endmodule

The operators and operands in an expression influence the way a
design is synthesized. HDL Compiler evaluates constant-valued
expressions and does not synthesize circuitry to compute their value.
If an expression contains constants, they are propagated to reduce
the amount of circuitry required. HDL Compiler does synthesize
circuitry for an expression that contains variables, however.
/ 4-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Operators

Operators identify the operation to be performed on their operands
to produce a new value. Most operators are either unary operators,
which apply to only one operand, or binary operators, which apply to
two operands. Two exceptions are conditional operators, which take
three operands, and concatenation operators, which take any number
of operands.

HDL Compiler supports the types of operations listed in Table 4-1,
which also lists the Verilog language operators HDL Compiler
supports. A description of the operators and their order of precedence
appears in the sections that follow the table.

Table 4-1 Verilog Operators Supported by HDL Compiler

Operator type Operator Description

Arithmetic operators + – * / Arithmetic

% Modules

Relational operators > >= < <= Relational

Equality operators == Logical equality

!= Logical inequality

Logical operators ! Logical NOT

&& Logical AND

|| Logical OR

Bitwise operators ~ Bitwise NOT

& Bitwise AND

| Bitwise OR
/ 4-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
In the following descriptions, the terms variable and variable operand
refer to operands or expressions that are not constant-valued
expressions. This group includes wires and registers, bit-selects and
part-selects of wires and registers, function calls, and expressions
that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The
Verilog arithmetic operators are

• Addition (+)

^ Bitwise XOR

^~ ~^ Bitwise XNOR

Reduction operators & Reduction AND

| Reduction OR

~& Reduction NAND

~| Reduction NOR

^ Reduction XOR

~^ ^~ Reduction XNOR

Shift operators << Shift left

>> Shift right

Conditional operator ? : Conditions

Concatenation operator { } Concatenation

Table 4-1 Verilog Operators Supported by HDL Compiler (continued)

Operator type Operator Description
/ 4-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Subtraction (–)

• Multiplication (*)

• Division (/)

• Modules (%)

You can use the +, –, and * operators with any operand form
(constants or variables). The + and – operators can be used as either
unary or binary operators. HDL Compiler requires that the / and %
operators have constant-valued operands.

Example 4-2 shows three forms of the addition operator. The circuitry
built for each addition operation is different, because of the different
operand types. The first addition requires no logic, the second
synthesizes an incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator
parameter size=8;
wire [3:0] a,b,c,d,e;

assign c = size + 2; //constant + constant
assign d = a + 1; //variable + constant
assign e = a + b; //variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value.
A true comparison evaluates to 1; a false comparison evaluates
to 0. All comparisons assume unsigned quantities. The circuitry
synthesized for relational operators is a bitwise comparator whose
size is based on the sizes of the two operands.
/ 4-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The Verilog relational operators are

• Less than (<)

• Less than or equal to (<=)

• Greater than (>)

• Greater than or equal to (>=)

Example 4-3 shows the use of a relational operator.

Example 4-3 Relational Operator
function [7:0] max(a, b);
input [7:0] a,b;

if (a >= b) max = a;
else max = b;

endfunction

Equality Operators

Equality operators generate a 0 if the expressions being compared
are not equal and a 1 if the expressions are equal. Equality and
inequality comparisons are performed by bit.

The Verilog equality operators are

• Equality (==)

• Inequality (!=)

Example 4-4 shows the equality operator testing for a JMP instruction.
The output signal jump is set to 1 if the two high-order bits of
instruction are equal to the value of parameter JMP; otherwise, jump
is set to 0.
/ 4-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-4 Equality Operator
module is_jump_instruction (instruction, jump);

parameter JMP = 2’h3;

input [7:0] instruction;
output jump;
assign jump = (instruction[7:6] == JMP);

endmodule

Handling Comparisons to X or Z

HDL Compiler always ignores comparisons to an X or a Z. If your
code contains a comparison to an X or a Z, a warning message
displays, indicating that the comparison is always evaluated to false,
which might cause simulation to disagree with synthesis.

Example 4-5 shows code from a file called test2.v. HDL Compiler
always assigns the variable B to the value 1, because the comparison
to X is ignored.

Example 4-5 Comparison to X Ignored
always begin

if (A == 1’bx) //this is line 10
B = 0;

else
B = 1;

end

When HDL Compiler reads this code, it generates the following
warning message:

Warning: Comparisons to a "don’t care" are treated as always
being false in routine test2 line 10 in file ’test2.v’. This
may cause simulation to disagree with synthesis. (HDL-170)
/ 4-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
For an alternative method of handling comparisons to X or Z, use the
translate_off and translate_on directives to comment out the
condition and its first branch (the true clause) so that only the else
branch goes through synthesis.

Logical Operators

Logical operators generate a 1 or a 0, according to whether an
expression evaluates to true (1) or false (0). The Verilog logical
operators are

• Logical NOT (!)

• Logical AND (&&)

• Logical OR (||)

The logical NOToperator produces a value of 1 if its operand is zero
and a value of 0 if its operand is nonzero. The logical AND operator
produces a value of 1 if both operands are nonzero. The logical OR
operator produces a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.
/ 4-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-6 Logical Operators
module is_valid_sub_inst(inst,mode,valid,unimp);

parameterIMMEDIATE=2’b00, DIRECT=2’b01;
parameterSUBA_imm=8’h80, SUBA_dir=8’h90,

SUBB_imm=8’hc0, SUBB_dir=8’hd0;
input [7:0] inst;
input [1:0] mode;
output valid, unimp;

assign valid = (((mode == IMMEDIATE) && (
(inst == SUBA_imm) ||
(inst == SUBB_imm))) ||
((mode == DIRECT) && (

(inst == SUBA_dir) ||
(inst == SUBB_dir))));

assign unimp = !valid;
endmodule

Bitwise Operators

Bitwise operators act on the operand bit by bit. The Verilog bitwise
operators are

• Unary negation (~)

• Binary AND (&)

• Binary OR (|)

• Binary XOR (^)

• Binary XNOR (^~ or ~^)

Example 4-7 shows some bitwise operators.
/ 4-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-7 Bitwise Operators
module full_adder(a, b, cin, s, cout);

input a, b, cin;
output s, cout;

assign s = a ^ b ^ cin;
assign cout = (a&b) | (cin & (a|b));

endmodule

Reduction Operators

Reduction operators take one operand and return a single bit. For
example, the reduction AND operator takes the AND value of all the
bits of the operand and returns a 1-bit result. The Verilog reduction
operators are

• Reduction AND (&)

• Reduction OR (|)

• Reduction NAND (~&)

• Reduction NOR (~|)

• Reduction XOR (^)

• Reduction XNOR (^~ or ~^)

Example 4-8 shows the use of some reduction operators.
/ 4-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-8 Reduction Operators
module check_input (in, parity, all_ones);

input [7:0] in;
output parity, all_ones;

assign parity = ^ in;
assign all_ones = & in;

endmodule

Shift Operators

A shift operator takes two operands and shifts the value of the first
operand right or left by the number of bits given by the second
operand.

The Verilog shift operators are

• Shift left (<<)

• Shift right (>>)

After the shift, vacated bits fill with zeros. Shifting by a constant results
in minor circuitry modification (because only rewiring is required).
Shifting by a variable causes a general shifter to be synthesized.
Example 4-9 shows use of a shift-right operator to perform division
by 4.

Example 4-9 Shift Operator
module divide_by_4(dividend, quotient);

input [7:0] dividend;
output [7:0] quotient;

assign quotient = dividend >> 2; //shift right 2 bits
endmodule
/ 4-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Conditional Operator

The conditional operator (? :) evaluates an expression and returns
a value that is based on the truth of the expression.

Example 4-10 shows how to use the conditional operator. If the
expression (op == ADD) evaluates to true, the value a + b is assigned
to result; otherwise, the value a – b is assigned to result.

Example 4-10 Conditional Operator
module add_or_subtract(a, b, op, result);

parameter ADD=1’b0;
input [7:0] a, b;
input op;
output [7:0] result;

assign result = (op == ADD) ? a+b : a-b;
endmodule

You can nest conditional operators to produce an if...else if
construct. Example 4-11 shows the conditional operators used to
evaluate the value of op successively and perform the correct
operation.
/ 4-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-11 Nested Conditional Operator
module arithmetic(a, b, op, result);

parameterADD=3’h0,SUB=3’h1,AND=3’h2,
OR=3’h3, XOR=3’h4;

input [7:0] a,b;
input [2:0] op;
output [7:0] result;

assign result = ((op == ADD) ? a+b : (
 (op == SUB) ? a-b : (
 (op == AND) ? a&b : (
 (op == OR) ? a|b : (
 (op == XOR) ? a^b : (a))))));

endmodule

Concatenation Operators

Concatenation combines one or more expressions to form a larger
vector. In the Verilog language, you indicate concatenation by listing
all expressions to be concatenated, separated by commas, in curly
braces ({}). Any expression, except an unsized constant, is allowed
in a concatenation. For example, the concatenation
{1’b1,1’b0,1’b0} yields the value 3’b100 .

You can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation
{1’b1,1’b0,1’b0} can also be written as {1’b1,{2{1’b0}}}
to yield 3’b100 . The expression {2{ expr}} within the concatenation
repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a
condition-code register.
/ 4-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-12 Concatenation Operator
output [7:0] ccr;
wire half_carry, interrupt, negative, zero, overflow, carry;
...
assign ccr = { 2’b00, half_carry, interrupt,
 negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

Example 4-13 Concatenation Equivalent
output [7:0] ccr;
...
assign ccr[7] = 1’b0;
assign ccr[6] = 1’b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[1] = overflow;
assign ccr[0] = carry;

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest.
All operators at the same level in the table are evaluated from left to
right, except the conditional operator (?:), which is evaluated from
right to left.
/ 4-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Table 4-2 Operator Precedence

Operator Description

[] Bit-select or part-select

() Parentheses

! ~ Logical and bitwise negation

& | ~& ~| ^ ~^ ^~ Reduction operators

 + – Unary arithmetic

{ } Concatenation

* / % Arithmetic

+ - Arithmetic

<< >> Shift

> >= < <= Relational

== != Logical equality and inequality

& Bitwise AND

^ ^~ ~^ Bitwise XOR and XNOR

| Bitwise OR

&& Logical AND

|| Logical OR

? : Conditional
/ 4-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Operands

You can use the following kinds of operands in an expression:

• Numbers

• Wires and registers

- Bit-selects

- Part-selects

• Function calls

The following sections explain each of these operands.

Numbers

A number is either a constant value or a value specified as a
parameter. The expression size-1 in Example 4-1 on page 4-2
illustrates how you can use both a parameter and a constant in an
expression.

You can define constants as sized or unsized, in binary, octal, decimal,
or hexadecimal bases. The default size of an unsized constant is 32
bits. See “Numbers” on page B-14 for a discussion of the number
format.

Wires and Registers

Variables that represent wires as well as registers are allowed in an
expression. If the variable is a multiple-bit vector and you use only
the name of the variable, the entire vector is used in the expression.
/ 4-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Bit-selects and part-selects allow you to select single or multiple bits,
respectively, from a vector. These are described in the next two
sections.

Wires are described in “Module Statements and Constructs” on page
3-6, and registers are described in “Function Declarations” on page
5-3.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit
vectors of wires. Because only the variable names appear in the
expression, the entire vector of each wire is used in evaluation of
the expression.

Example 4-14 Wire Operands
wire [7:0] a,b,c;
assign c = a & b;

Bit-Selects

A bit-select is the selection of a single bit from a wire , register ,
or parameter vector. The value of the expression in brackets ([])
selects the bit you want from the vector. The selected bit must be
within the declared range of the vector. Example 4-15 shows a simple
example of a bit-select with an expression.

Example 4-15 Bit-Select Operands
wire [7:0] a,b,c;
assign c[0] = a[0] & b[0];

Part-Selects

A part-select is the selection of a group of bits from a wire ,
register , or parameter vector. The part-select expression must
be constant-valued in the Verilog language, unlike the bit-select
/ 4-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
operator. If a variable is declared with ascending or descending
indexes, the part-select (when applied to that variable) must be in the
same order.

You can also write the expression in Example 4-14 on page 4-17 with
part-select operands, as shown in Example 4-16.

Example 4-16 Part-Select Operands
assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and
use the return value from the called function as an operand.
Functions in Verilog return a value consisting of 1 or more bits. The
syntax of a function call is the function name followed by a comma-
separated list of function inputs enclosed in parentheses. Example
4-17 uses the function call legal in an expression.

Example 4-17 Function Call Used as an Operand
assign error = ! legal(in1, in2);

Functions are described in “Function Declarations” on page 5-3.

Concatenation of Operands

Concatenation is the process of combining several single- or multiple-
bit operands into one large bit vector. The use of the concatenation
operator, a pair of braces ({}), is described in “Concatenation
Operators” on page 4-13.
/ 4-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-18 shows two 4-bit vectors (nibble1 and nibble2) that are
joined to form an 8-bit vector that is assigned to an 8-bit wire vector
(byte).

Example 4-18 Concatenation of Operands
wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};

Expression Bit-Widths

The bit-width of an expression depends on the widths of the operands
and the types of operators in the expression.

Table 4-3 shows the bit-width for each operand and operator. In the
table, i, j, and k are expressions; L (i) is the bit-width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros
for smaller-width operands. The rules for this zero extension depend
on the operand type. These rules appear in Table 4-3.

Verilog classifies expressions (and operands) as either self-
determined or context-determined. A self-determined expression is
one in which the width of the operands is determined solely by the
expression itself. These operand widths are never extended.

Table 4-3 Expression Bit-Widths

Expression Bit length Comments

unsized constant 32 bits Self-determined

sized constant as specified Self-determined

i + j max(L(i),L(j)) Context-determined
/ 4-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
i – j max(L(i),L(j)) Context-determined

i * j max(L(i),L(j)) Context-determined

i / j max(L(i),L(j)) Context-determined

i % j max(L(i),L(j)) Context-determined

i & j max(L(i),L(j)) Context-determined

i | j max(L(i),L(j)) Context-determined

i ^ j max(L(i),L(j)) Context-determined

i ^~ j max(L(i),L(j)) Context-determined

~i L(i) Context-determined

i == j 1 bit Self-determined

i !== j 1 bit Self-determined

i && j 1 bit Self-determined

i || j 1 bit Self-determined

i > j 1 bit Self-determined

i >= j 1 bit Self-determined

i < j 1 bit Self-determined

i <= j 1 bit Self-determined

&i 1 bit Self-determined

|i 1 bit Self-determined

^i 1 bit Self-determined

~&i 1 bit Self-determined

Table 4-3 Expression Bit-Widths (continued)

Expression Bit length Comments
/ 4-20HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 4-19 shows a self-determined expression that is a
concatenation of variables with known widths.

Example 4-19 Self-Determined Expression
output [7:0] result;
wire [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has a width of
4 bits and a value of 4’b1111 . The resulting width of the
concatenation is 8 bits, which is the sum of the width of the operands.
The value of the concatenation is 8’b11111111 .

A context-determined expression is one in which the width of the
expression depends on all the operand widths in the expression. For
example, Verilog defines the resulting width of an addition as the
greater of the widths of its two operands. The addition of two 8-bit

~|i 1 bit Self-determined

~^i 1 bit Self-determined

i >> j L(i) j is self-determined

{i{j}} i*L(j) j is self-determined

i << j L(i) j is self-determined

{i,...,j} L(i)+...+L(j) Self-determined

{i {j,...,k}} i*(L(j)+...+L(k)) Self-determined

i ? j : k Max(L(j),L(k)) i is self-determined

Table 4-3 Expression Bit-Widths (continued)

Expression Bit length Comments
/ 4-21HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
quantities produces an 8-bit value; however, if the result of the addition
is assigned to a 9-bit quantity, the addition produces a 9-bit result.
Because the addition operands are context-determined, they are
zero-extended to the width of the largest quantity in the entire
expression.

Example 4-20 shows some context-determined expressions.

Example 4-20 Context-Determined Expressions
if (((1’b1 << 15) >> 15) == 1’b0)

//This expression is ALWAYS true.

if ((((1’b1 << 15) >> 15) | 20’b0) == 1’b0)
//This expression is NEVER true.

The expression ((1’b1 << 15) >> 15) produces a 1-bit 0 value
(1’b0). The 1 is shifted off the left end of the vector, producing a
value of 0. The right shift has no additional effect. For a shift operator,
the first operand (1’b1) is context-dependent; the second operand
(15) is self-determined.

The expression (((1’b1 << 15) >> 15) | 20’b0) produces
a 20-bit 1 value (20’b1). 20’b1 has a 1 in the least significant bit
position and 0s in the other 19 bit positions. Because the largest
operand in the expression has a width of 20, the first operand of the
shift is zero-extended to a 20-bit value. The left shift of 15 does not
drop the 1 value off the left end; the right shift brings the 1 value back
to the right end, resulting in a 20-bit 1 value (20’b1).
/ 4-22HOME CONTENTS INDEX

	Expressions
	Constant-Valued Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Equality Operators
	Handling Comparisons to X or Z
	Logical Operators
	Bitwise Operators
	Reduction Operators
	Shift Operators
	Conditional Operator
	Concatenation Operators
	Operator Precedence

	Operands
	Numbers
	Wires and Registers
	Bit-Selects
	Part-Selects

	Function Calls
	Concatenation of Operands

	Expression Bit-Widths

