
v2000.05 HDL Compiler for Verilog Reference Manual
7
Resource Sharing 7

Resource sharing is the assignment of similar Verilog operations (for
example, +) to a common netlist cell. Netlist cells are the resources—
they are equivalent to built hardware. Resource sharing reduces the
amount of hardware needed to implement Verilog operations.

Without resource sharing, each Verilog operation is built with separate
circuitry. For example, every + with noncomputable operands causes
a new adder to be built. This repetition of hardware increases the area
of a design.

In contrast, with resource sharing, several Verilog + operations can
be implemented with a single adder, which reduces the amount of
hardware required. Also, different operations, such as + and –, can
be assigned to a single adder or subtracter to further reduce a
design’s circuit area.
/ 7-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
This chapter explains resource sharing, in the following sections:

• Scope and Restrictions

• Resource Sharing Methods

• Resource Sharing Conflicts and Error Messages

• Reports

Scope and Restrictions

Not all operations in your design can be shared. This section
describes how to tell whether operations are candidates for sharing
hardware.

The following operators can be shared with other like operators (such
as * with *) and with the operators shown on the same line.

*
+ –
> >= < <=

Operations can be shared only if they lie in the same always block.
These blocks are usually implemented as synthetic library elements.
See “Synthetic Libraries” on page 10-12 for more information.

Example 7-1 shows several possible sharing operations.
/ 7-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-1 Scope for Resource Sharing
always @(A1 or B1 or C1 or D1 or COND_1)
begin
 if(COND_1)
 Z1 = A1 + B1;
 else
 Z1 = C1 + D1;
end

always @(A2 or B2 or C2 or D2 or COND_2)
begin
 if(COND_2)
 Z2 = A2 + B2;
 else
 Z2 = C2 + D2;
end

Table 7-1 summarizes the possible sharing operations in
Example 7-1. A no indicates that sharing is not allowed because the
operations lie in different always blocks. A yes means sharing is
allowed.

The next two sections describe two types of conflicts, control flow
conflicts and data flow conflicts, where sharing is not allowed.

Table 7-1 Allowed and Disallowed Sharing for Example 7-1

A1 + B1 C1 + D1 A2 + B2 C2 + D2

A1 + B1 yes no no

C1 + D1 yes no no

A2 + B2 no no yes

A2 + B2 no no yes
/ 7-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Control Flow Conflicts

Two operations can be shared only if no execution path exists from
the start of the block to the end of the block that reaches both
operations. For example, if two operations lie in separate branches
of an if or case statement, they are not on the same path (and can
be shared). Example 7-2 illustrates control flow conflicts for if
statements.

Example 7-2 Control Flow Conflicts for if Statements
always begin
 Z1 = A + B;

 if(COND_1)
 Z2 = C + D;

 else begin
 Z2 = E + F;
 if(COND_2)
 Z3 = G + H;
 else
 Z3 = I + J;
 end

 if(! COND_1)
 Z4 = K + L;
 else
 Z4 = M + N;
 end
/ 7-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Table 7-2 summarizes the possible sharing operations in
Example 7-2. A no indicates that sharing is not allowed because of
the flow of control (execution path) through the block. A yes means
sharing is allowed.

Note that the C + D addition cannot be shared with the K + L addition,
even though no set of input values causes both to execute. When
HDL Compiler evaluates the ability to share, it assumes that the
values of expressions that control if statements are unrelated. The
same rule applies to case statements, as shown in Example 7-3.

Table 7-2 Allowed and Disallowed Sharing for Example 7-2

A + B C + D E + F G + H I + J K + L M +N

A + B no no no no no no

C + D no yes yes yes no no

E + F no yes no no no no

G + H no yes no yes no no

I + J no yes no yes no no

K + L no no no no no yes

M + N no no no no no yes
/ 7-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-3 Control Flow Conflicts for case Statement
always begin
 Z1 = A + B;

 case(OP)
2’h0: Z2 = C + D;
2’h1: Z2 = E + F;
2’h2: Z2 = G + H;
2’h3: Z2 = I + J;

 endcase
end

Table 7-3 summarizes the possible sharing operations in
Example 7-3. A no indicates that sharing is not allowed because of
the flow of control (execution path) through the circuit. A yes means
sharing is allowed.

Although operations in separate branches of an if statement can be
shared, operations in separate branches of a ?: (conditional)
construct cannot share the same hardware, even if they are on
separate lines.

Consider the following line of code, where expression_ n
represents any expression.

Table 7-3 Allowed and Disallowed Sharing for Example 7-3

A + B C + D E + F G + H I + J

A + B no no no no

C + D no yes yes yes

E + F no yes yes yes

G + H no yes yes yes

I + J no yes yes yes
/ 7-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
z = expression_1 ? expression_2 : expression_3;

HDL Compiler interprets this code as

temp_1 = expression_1;
temp_2 = expression_2;
temp_3 = expression_3;

z = temp_1 ? temp_2 : temp_3;

HDL Compiler evaluates both expression_2 and expression_3 ,
regardless of the value of the conditional. Therefore, operations in
expression_2 cannot share the same resource as operations in
expression_3 .

If you want operations in separate branches of ?: constructs to share
hardware, rewrite your code with an if statement. You can rewrite
the previous expression as

if (expression_1)
z = expression_2;

else
z = expression_3;

The operations in a ?: construct cannot share hardware with each
other, but they can share hardware with operations in separate
branches of an if statement or a case statement. The code fragment
in Example 7-4 illustrates which operations can be shared when you
use the ?: construct in separate branches of an if statement.

Example 7-4 Code Fragment With ?: Operator and if...else Statement
if (cond_1)

z = cond_2 ? (a + b) : (c + d);
else
 z = cond_3 ? (e + f) : (g + h);
/ 7-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Table 7-4 summarizes which operations can be shared in the previous
code fragment.

To allow resource sharing in separate branches of the ?: operations
in Example 7-4, rewrite the code fragment as shown in Example 7-5.

Example 7-5 Rewritten Code Fragment With if...else Statements
if (cond_1) begin

if (cond_2)
z = (a + b);

else
z = (c + d);

end else begin
if (cond_3)

z = (e + f);
else

z = (g + h);
end

Table 7-4 Allowed and Disallowed Sharing for Example 7-4

a + b c + d e + f g + h

a + b no yes yes

c + d no yes yes

e + f yes yes no

g + h yes yes no
/ 7-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Data Flow Conflicts

Operations cannot be shared if doing so causes a combinational
feedback loop. To understand how sharing can cause a feedback
loop, consider Example 7-6.

Example 7-6 Data Flow Conflict
always @(A or B or C or D or E or F or Z or ADD_B)

begin
if(ADD_B) begin

TEMP_1 = A + B;
Z = TEMP_1 + C;

end
else begin

TEMP_2 = D + E;
Z = TEMP_2 + F;

end
end

When the A + B addition is shared with the TEMP_2 + F addition
on an adder called R1 and the D + E addition is shared with the
TEMP_1 + Caddition on an adder called R2, a feedback loop results.
The variable TEMP_1 connects the output of R1 to the input of R2.
The variable TEMP_2 connects the output of R2 to the input of R1,
resulting in a feedback loop. Figure 7-1 shows the circuit with the
feedback loop highlighted.
/ 7-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 7-1 Feedback Loop for Example 7-6

The circuit in Figure 7-1 is not faulty, because the multiplexing
conditions never allow the entire path to be activated simultaneously.
Still, the HDL Compiler resource sharing mechanism does not allow
combinational feedback paths to be created, because most timing
verifiers cannot handle them properly.

Errors

When HDL Compiler runs in automatic mode, the automatic sharing
algorithm respects sharing restrictions. However, in manual mode or
automatic sharing with manual controls mode, a directive can violate
one of these restrictions. When a violation occurs, HDL Compiler
displays an error message and ignores the directive. See “Resource
Sharing Conflicts and Error Messages” on page 7-44 for more details.

B

F

ADD_B

A

ADD_B

TEMP_1

D

ADD_B

ADD_B

MUXE

C

Z

ADD_B

ADDER
R2

MUX

MUX

ADDER
R1

MUX

MUX

TEMP_2
/ 7-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Resource Sharing Methods

HDL Compiler offers three resource sharing methods:

• Automatic sharing

• Automatic sharing with manual controls

• Manual sharing

Automatic Resource Sharing

Using automatic resource sharing is the simplest way to share
components and reduce the design area. This method is ideal if you
do not know how you want to map the operations in your design onto
hardware resources. In automatic sharing, HDL Compiler identifies
the operations that can be shared. Design Compiler uses this
information to minimize the area of your design, taking your
constraints into consideration. If you want to override the
automaticallydeterminedsharing, useautomatic sharingwithmanual
controls or manual sharing.

When resource sharing is enabled for a design, resources are
allocated automatically the first time you compile that design. After
the first compile, you can manually change the implementation of a
resource with the change_link command.

To enable automatic sharing for all designs, set the dc_shell variable
as shown before you execute the compile command.

dc_shell> hlo_resource_allocation = constraint_driven

The default value for this variable is constraint_driven .
/ 7-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To disable automatic sharing for uncompiled designs and enable
resource sharing only for selected designs, enter the following
commands:

dc_shell> hlo_resource_allocation = none
dc_shell> current_design = MY_DESIGN
dc_shell> set_resource_allocation constraint_driven

Source Code Preparation

You do not need to modify your Verilog source code.

Functional Description

The automatic sharing method minimizes the area of your design
when it tries to meet your timing constraints. It identifies which
operators are eligible to share resources and then evaluates various
sharing configurations according to the area criteria.

Resource Area

Resource sharing reduces the number of resources in your design,
which reduces the resource area. The area of a shared resource is
a function of the types of operations that are shared on the resource
and their bit-widths. The shared resource is made large enough to
handle the largest of the bit-widths and powerful enough to perform
all the operations.

Multiplexer Area

Resource sharing usually adds multiplexers to a design to channel
values from different sources into a common resource input. In some
cases, resource sharing reduces the number of multiplexers in a
design. Example 7-7 shows a case in which shared operations have
the same output targets, which results in fewer multiplexers.
/ 7-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-7 Shared Operations With the Same Output Target
always @(A or B or COND)

begin
if(COND)

Z = A + B;
else

Z = A - B;
end

When the addition and subtraction in Example 7-7 are not shared, a
multiplexer selects whether the output of the adder or that of the
subtracter is fed into Z. When they are shared, Z is fed from a single
adder or subtracter and no multiplexing is necessary. If the inputs to
the operations are different, multiplexers are added on the inputs of
the adder or subtracter. HDL Compiler tends to share operations with
common inputs and outputs to minimize multiplexer area.

Multiplexer area is a function of both the number of multiplexed values
and the bit-widths of the values. Therefore, HDL Compiler tends to
share operations with similar bit-widths.

Example of Shared Resources

Example 7-8 shows a simple Verilog program that adds either A and
B or A and C; the addition depends on whether the condition ADD_B
is true.

Example 7-8 Verilog Design With Two + Operators
module resources(A,B,C,ADD_B,Z);
input [4:0] A,B,C;
input ADD_B;
output [4:0] Z;

reg [4:0] Z;
/ 7-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
always @(A or B or C or ADD_B)
begin

if(ADD_B)
Z = B + A;

else
Z = A + C;

end
endmodule

Figure 7-2 shows the schematic for Example 7-8 without resource
sharing. Notice that two adders are built and that the outputs are
multiplexed into Z.
/ 7-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 7-2 Example 7-8 Design Without Resource Sharing

Input Ordering

Automatic sharing picks the best ordering of inputs to the resources
to reduce the number of multiplexers required. In the following case,
automatic sharing permutes B + A to A + B, then multiplexes B and
C, and adds the output to A.

if (ADD_B) then
 Z = B + A
else
 Z = A + C...
/ 7-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 7-3 shows the schematic for Example 7-8 that is produced by
the use of automatic resource sharing. Notice that one adder is built
with Band Cmultiplexed into one input and A fed directly into the other.

Figure 7-3 Example 7-8 Design With Automatic Resource Sharing
/ 7-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Automatic Resource Sharing With Manual Controls

In the automatic sharing with manual controls method, user directives
influence the sharing configuration that HDL Compiler chooses
automatically. You can control which sharing configurations are
created or not created (regardless of their area savings or cost). You
can use this method to solve a specific problem such as a violated
timing constraint.

Manual controls allow you explicitly to

• Force the sharing of specified operations

• Prevent the sharing of specified operations

• Force specified operations to use a particular type of resource
(such as an adder or a subtracter)

To control the sharing configuration, declare resources, and then
specify whether the operations in your source file can be, must be,
or must not be implemented on the resource. You can also indicate
the type of hardware that implements the resource.

When you assign operations to the same resource, they are
implemented on the same hardware. Operations you assign to a
particular resource can also share hardware with other operations.
Such sharing depends on the attributes you specify on the resource.
You can force operations that are assigned to different resources to
share the same hardware. To do this, declare a new resource that
contains the resources you want to merge.
/ 7-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To use automatic resource sharing with manual controls, add the
necessary resource sharing directives to your source files, then set
the dc_shell variable as shown before you execute the compile
command.

dc_shell> hlo_resource_allocation = constraint_driven

The default value for this variable is constraint_driven .

Source Code Preparation

Manual controls are incorporated in your Verilog source. Example 7-9
shows the code from Example 7-8 with the minimum controls you
need in order to assign two operators to a resource. Two backslashes
introduce each manual control statement.

Example 7-9 Sharing With Manual Controls
module TWO_ADDS_6 (A, B, C, Z, ADD_B);

input[3:0] A, B, C;
input ADD_B;
output[3:0] Z;

reg[3:0] Z;
always @(A or B or C or ADD_B)

begin : b1

/* synopsys resource r0 : ops = ”A1 A2”;
*/

if(ADD_B)
Z = A + B;//synopsys label A1

else
Z = A + C;//synopsys label A2

end
endmodule
/ 7-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To modify Example 7-8 for manual sharing, make the following
changes (shown in the manual control statements in Example 7-9):

• Declare an identifier for an individual resource.

synopsys resource r0:

• Place labels on the operations.

if(ADD_B) then
Z = A+B;// synopsys label A1

else
Z = A+C;// synopsys label A2

• Use the ops directive to bind the labeled operations to the
resource they share.

ops = ”A1 A2”;

Resources can be applied only to named blocks, such as

begin : b1

Note:

You cannot define resources in synchronous blocks. To use
resource sharing with manual controls in a clocked design, put
resource sharing directives in combinational blocks and assign
states in synchronous (sequential) blocks.

Example 7-10 shows a resource defined within a synchronous block,
and the resulting error message.
/ 7-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-10 Incorrectly Defining a Resource in a Synchronous Block
module adder (clk, rst, a, b, c);
input clk,rst;
input [5:0] a, b;
output [5:0] c;
reg [5:0] a, b, c;
always @(posedge clk or negedge rst)
begin : b0

/* synopsys resource r1 :
map_to_module = ”add”,
implementation = ”cla_add”, ops = ”op1”;

*/

if (!rst) c = 6’b0;
else c = fctn (a, b);

end
function [5:0] fctn;
input [5:0] a, b;
begin : b1
fctn = a + b; //synopsys label op1
end
endfunction
endmodule
Error: syntax error at or near token ’resource’ (File: /am/
remote/design/bad_res_share.v Line: 11) (VE-0)

The next section describes all the manual controls, along with their
use and syntax.

Functional Description

In the automatic sharing with manual controls method, you add
directives to your source file that influence which operations are
shared and which are not shared. Next, HDL Compiler determines
the exact sharing configuration that minimizes the area of your design
and respects your directives.

The following descriptions explain how to use manual controls.
/ 7-20HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Verilog Resource Declarations and Identifiers

To make resource sharing directives, declare resources and identify
attributes on those resources. You can make a resource declaration
in a module, block, or function. In Verilog, you declare a resource with
a compiler directive. The syntax is

//synopsys resource identifier

The identifier becomes the netlist cell name, unless the resource is
merged with another resource.

Label Directive

Before operations in your source can be associated with resources,
they must have unique labels. Assign a label with the label compiler
directive. The syntax is

// synopsys label identifier

You can insert label directives in the following places: after a
procedure call statement, after function calls, or after infix operations,
as shown.

SWAP (IN_1, OUT_1);//synopsys label PROC_1
Z = ADD (B,C);//synopsys label FUNC_1
Z = A+B; //synopsys label OP_1
/ 7-21HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
You can also insert label directives after the name and left
parenthesis of a task or function call, as shown.

SWAP (/*synopsys label PROC_1*/IN_1, OUT_1,);

Z = ADD (/*synopsys label FUNC_1*/B,C);

Z = A+ /*synopsys label OP_1*/ B;

The label directive applies to the operator most recently parsed.
The operator to which a label applies is obvious in simple cases such
as

a = b + c; //synopsys label my_oper

In an expression with multiple operators, the rules of precedence and
associativity specified in the language determine the operator to
which a label applies. In the following example, the label applies to
the +, not the –, because the expression in the parentheses is
evaluated first, so the + operator is parsed just before the label.

a = b + (c - d); //synopsys label my_oper

If you want the label to apply to the – operator, rewrite the expression
as shown.

a = b + (c - /* synopsys label my_oper */ d);

To place multiple labels on a single statement, you can break your
statement into multiple lines, as shown.
/ 7-22HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Z = a+ /* synopsys label ADD_1 */
 b+ /* synopsys label ADD_2 */
 c;

Z = ADD (/* synopsys label PROC_1 */
 ADD (/* synopsys label PROC_2 */
 A, B), C);

You can also use the /* synopsys label */ format to insert the label in
the middle of a statement.

Keep labels unique within a function call or task.

Operations Directive

Assigning operations to resources in manual sharing is called binding.
The ops directive binds operations and resources to a resource. It
appears after the resource identifier declaration. The syntax is

/* synopsys resource resource_name :
ops = ”OP_ID RES_ID” ;

*/

OP_ID and RES_ID are part of a list of operator or resource
identifiers, separated by spaces, called the ops list. Example 7-11
shows how to use the ops directive.

Example 7-11 Using the ops Directive
always @(A or B or C or ADD_B)

begin : b1
/* synopsys resource r0 :

ops = ”A1 A2”;
*/

if(ADD_B)
Z = A + B;// synopsys label A1

else
Z = A + C;// synopsys label A2

end
/ 7-23HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
If you use the same resource or operator identifier on more than one
ops list, HDL Compiler generates an error message. One resource
(the parent) can include another (the child) in its ops list, but only if
the child resource (and any of its children) does not include the parent
in its ops list. Example 7-12 shows an invalid ops list cycle with three
resources.

Example 7-12 Invalid ops List Cycle
// synopsys resource r0 : ops = ”A1 r1”;
// synopsys resource r1 : ops = ”A2 r2”;
// synopsys resource r2 : ops = ”A0 r0”;

When you include a resource on the ops list, it is bound to the resource
being declared, called the parent. The operations on the bound
resource are realized on the parent resource, and the parent resource
identifier is used for the name of the netlist cell. Example 7-21 on
page 7-33 shows a resource contained in another resource.

map_to_module Directive

The map_to_module directive forces a resource to be implemented
by a specific type of hardware module. Declare this directive after the
resource declaration. The syntax is

/* synopsys resource resource_name :
map_to_module = ”module_name” ;

*/

module_name is the name of the module. You can set the
implementation of a module with the implementation attribute, as
described in the next section.

To list the module names and implementations in a synthetic library,
use the command
/ 7-24HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
dc_shell> report_synlib synthetic_library

synthetic_library is the name of a Synopsys synthetic library,
such as standard.sldb. See the DesignWare Databook for more
information.

Example 7-13 shows how to use the map_to_module directive.

Example 7-13 Using the map_to_module Directive
always @(A or B or C or ADD_B)

begin : b1
/* synopsys resource r0 :

map_to_module = ”DW01_addsub”,
ops = ”A1 A2”;

*/

HDL Compiler generates an error message if the indicated module
cannot execute all operations bound to the resource. If you do not
use map_to_module or if you do not give a module name, HDL
Compiler selects the module as described in “Automatic Resource
Sharing” on page 7-11.

implementation Attribute

The implementation attribute sets the initial implementation of a
resource. If you use this attribute, it must follow the map_to_module
directive. The syntax is

implementation = ”implementation_name”

implementation_name is the name of one of the implementations
of the corresponding map_to_module module .

To list the module names and implementations in a synthetic library,
use the command
/ 7-25HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
dc_shell> report_synlib synthetic_library

synthetic_library is the name of a Synopsys synthetic library,
such as standard.sldb.

Example 7-14 shows how to use the implementation attribute.

Example 7-14 Using the implementation Attribute
always @(A or B or C or ADD_B)

begin : b1
/* synopsys resource r0 :

map_to_module = ”DW01_addsub”,
implementation = ”rpl”,
ops = ”A1 A2”;

 */

If implementation is not used or an implementation name is not
given, HDL Compiler selects the module’s implementation, as
described in “Automatic Resource Sharing” on page 7-11. HDL
Compiler reports an error if the associated module does not have the
named implementation.

add_ops Directive

HDL Compiler guarantees that all operations in the ops list of a
resource share the same hardware. Whether the hardware cell for a
resource has additional operations bound to it depends on the area
benefit of the additional sharing.

To direct HDL Compiler to evaluate whether to add more operations
to a particular resource, use the add_ops directive. This directive
must follow the declaration of the resource and can be applied only
to a top-level resource. A top-level resource is one that is not included
in another resource’s ops list. The syntax is

/* synopsys resource resource_name :
add_ops = ”true”|”false”;

*/
/ 7-26HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The default value is true. By default, HDL Compiler can merge the
operations of a resource with other operations onto the same
hardware. HDL Compiler merges additional operations if it reduces
the area of your design. Additional operations can also be merged
onto a resource by the addition of individual operations that are not
bound to other resources (called free operations) or by the merging
of two or more resources.

If you set the add_ops directive to false, the resource is assigned its
own hardware, which cannot be used by other operations. In the code
fragment in Example 7-15, resource r0 does not share hardware with
operations other than A1 and A2.

Example 7-15 Using the add_ops Directive
always @(A or B or C or ADD_B)

begin : b1
/* synopsys resource r0 :

ops = ”A1 A2”,
add_ops = ”false”;

 */

When add_ops is set to true, the resource can merge with any other
resource that does not disallow sharing. To prevent automatic binding
on a resource, set add_ops to false.

Note, however, that the may_merge_with and dont_merge_with
directives override the add_ops = ”false” and add_ops =
”true” statements, respectively. These directives are discussed in
detail in the following sections.
/ 7-27HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
may_merge_with Directive

The may_merge_with directive overrides add_ops = ”false”
for specific resources. The syntax is

/* synopsys resource resource_name :
may_merge_with = ”{RES_2}” | ”*” ;

*/

RES_2 is a resource identifier, and * indicates all resources. The
may_merge_with directive can be set either before or after RES_2
is declared, but it must be set after resource_name is declared.

Note:
You cannot use operation labels with the may_merge_with
directive. To control the sharing of a labeled operation, put it in a
resource.

In Example 7-16, resource R1 can be shared only with resources R2
and R3.

Example 7-16 Restricting Sharing With the may_merge_with Directive
always @(A or B or C or ADD_B)
begin : b1

/* synopsys resource R1 :
ops = ”A1 A2”,
add_ops = ”false”,
may_merge_with = ”R2 R3”;

*/

In Example 7-17, merging with resources is allowed but merging with
free operations is not.
/ 7-28HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-17 Using the may_merge_with Directive
always @(A or B or C or ADD_B)
 begin : b1
 /* synopsys resource r1 :
 ops = ”A1 A2”,
 add_ops = ”false”,
 may_merge_with =”*”;
 */

dont_merge_with Directive

The dont_merge_with directive overrides add_ops = ”true”
(the default). The syntax is

/* synopsys resource resource_name :
dont_merge_with = ”RES_ID” | ”*” ;

*/

RES_ID is a resource identifier, and * indicates all resources. The
dont_merge_with directive can be set either before or after
RES_ID is declared but must be set after resource_name is
declared.

Note:
Do not use operation labels with the dont_merge_with
directive. To control the sharing of a labeled operation, put it in a
resource.

In Example 7-18, resource R1 is allowed to share all resources except
R2 and R3.
/ 7-29HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-18 Restricting Sharing With the dont_merge_with Directive
always @(A or B or C or ADD_B)
begin : b1

/* synopsys resource R1 :
ops = ”A1 A2”,
add_ops = ”true”,
dont_merge_with = ”R2 R3”;

*/

In Example 7-19, merging with free operations is allowed but merging
with resources is not.

Example 7-19 Using the dont_merge_with Directive
always @(A or B or C or ADD_B)
begin : b1

/* synopsys resource r1 :
ops = ”A1 A2”,
add_ops = ”true”,
dont_merge_with =”*”;

*/

If may_merge_with and dont_merge_with conflict, HDL
Compiler issues an error message. Refer to “User Directive Conflicts”
on page 7-44.

Operations and Resources

When you include a simple identifier in an ops list, HDL Compiler
assumes that you are referring to a resource or a labeled operation
in the current block or function. To refer to operations and resources
declared in other functions that are called by the current block or
function, use hierarchical naming or the label_applies_to
directive. To refer to lower-level operations and resources directly,
name the labels on the function calls that invoke the lower-level
functions.
/ 7-30HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Hierarchical Naming

Hierarchical naming allows you to refer to resources and operations
that are not defined in the current scope. You can use hierarchical
names to share operations that occur in different functions if the
functions are called from a single block. The syntax for a hierarchical
name is

NAME/ NAME

The first NAME identifies a labeled operation in the function or block
in which the name is placed. The next NAME identifies a labeled
operation in the called function. This can continue through an arbitrary
number of function calls. The last NAMEcan refer to either a labeled
operation or a resource.

Example 7-20 shows two + operations from different functions that
are put in the same resource, which causes them to be shared.
/ 7-31HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-20 Hierarchical Naming for Two Levels
always @(A or B or C or COND)
begin : b1

/* synopsys resource r0 :
ops = ”L_1/ADD_1 L_2/ADD_2”;

*/
if(COND)

Z = CALC_1(A,B,C);// synopsys label L_1
else

Z = CALC_2(A,B,C);// synopsys label L_2
end

function [3:0] CALC_1;
input [3:0] A, B, C;
CALC_1 = (A + // synopsys label ADD_1

 B - // synopsys label SUB_1
 C);

endfunction

function [3:0] CALC_2;
input [3:0] A, B, C;
CALC_2 = (A - // synopsys label SUB_2

B + // synopsys label ADD_2
C);

endfunction

Example 7-21 shows a three-level hierarchical name.
/ 7-32HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-21 Hierarchical Naming for Three Levels
always @(A or B or C or COND)
 begin : b1

/* synopsys resource R1 :
 ops = ”L_1/L_2/f1/R0”;

*/
 Z = CALC_1(A,B,C); // synopsys label L_1
 end

function [3:0] CALC_1;
 input [3:0] A, B, C;
 CALC_1 = CALC_2(A,B,C); // synopsys label L_2
endfunction

function [3:0] CALC_2;
 input [3:0] A, B, C;
 begin : f1

/* synopsys resource R0 :
ops = ”ADD_1 SUB_1”;

*/
if (A < B)
 CALC_2 = (B + C);// synopsys label ADD_1
else

 CALC_2 = (B - C); // synopsys label SUB_1
 end
endfunction

In Example 7-21, the function CALC_2has resources within a block.
To refer to these resources, include the name of the block in the path
name to the resource.

Each time a function is called, the operations in the function are
replicated. To avoid extra hardware, you can refer to operations with
hierarchical names and put them on the same resource.
Example 7-22 shows how you can use ops attribute bindings with
hierarchical names to reduce the number of cells created by function
/ 7-33HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
calls. If resource sharing is not used, each function call (L5 , L6)
creates a cell for each of the lower-level function operations (L1 , L2 ,
and L3), for a total of seven cells.

Example 7-22 Resource Sharing With Hierarchical Naming
module TOP (A, B, ADD, SUB, INC, SWITCH, Z);
input[3:0] A, B;
input ADD, SUB, INC, SWITCH;
output[3:0] Z;

reg[3:0] Z;
always begin : b1

/* synopsys resource R2 :
ops = ”L4 L5/f1/L1 L6/f1/L1 L5/R1 L6/R1”;

*/
if(ADD)

Z = A+B; // synopsys label L4
else if (SWITCH)

Z = sub_inc_dec (A, B, SUB, INC); // synopsys label L5
else

Z = sub_inc_dec (B, A, SUB, INC); // synopsys label L6
end

function [3:0] sub_inc_dec;
input [3:0] A, B;
input SUB, INC;
/* synopsys resource R1 :

ops = ”f1/L2 f1/L3”;
*/
begin : f1

if (SUB)
sub_inc_dec = (A-B); // synopsys label L1

else if (INC)
sub_inc_dec = (A+1’b1); // synopsys label L2

else
sub_inc_dec = (A-1’b1); // synopsys label L3

end
endfunction
endmodule

Example 7-22 has the following hierarchical naming details:

• The ops list for R1 binds the operations labeled L2 and L3 in the
function sub_inc_dec .
/ 7-34HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• The ops list for R2 contains the operation L4, which is at the current
scope.

• The ops list for R2 also contains L5/L1 and L6/L1, which identify
each invocation of the A-B operation in the function
sub_inc_dec .

• Finally, the ops list for R2 uses the names L5/R1 and L6/R1. You
can use R1 as a shorthand notation to refer to all operations bound
to R1. For example, L5/R1 refers to L5/L2 and L5/L3. When you
use resource identifiers in hierarchical names, you avoid having
to enter the labels under that resource.

label_applies_to Directive

As an alternative to using hierarchical naming, you can refer to lower-
level operations and resources directly with the label_applies_to
directive. Insert the label_applies_to directive in the
declarations section of a function definition. Use this directive to name
the label on the function call that invokes the lower-level function. The
syntax is

// synopsys label_applies_to LABEL

LABEL identifies an operation or resource.

When you put a label_applies_to directive in a function
definition, the label on any call to the function is equivalent to the
operation or resource the label names. This is shown in
Example 7-23.
/ 7-35HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-23 Using the label_applies_to Directive
module EX_D_14(A, B, Z);

input [3:0] A, B;
output[3:0] Z;

reg[3:0] Z;
always begin : b1

/* synopsys resource r1 :
ops = ”L2”;

*/
Z = FUNC(A, B); // synopsys label L2

end

function [3:0] FUNC;
input [3:0] A, B;
//synopsys label_applies_to L1
begin
FUNC = (A + B); // synopsys label L1

endfunction
endmodule

In Example 7-23, resource R1 includes the A + B operation in its ops
list by referring only to L2. The label_applies_to directive makes
the L2 label apply to the L1 operation. Without the
label_applies_to directive, the reference in the ops list is
expressed hierarchically as L2/L1.

The label_applies_to directive can be used to make wrapper
functions easier to use. A wrapper function computes its return value
by calling another function. In some cases, the wrapper function
makes a minor modification to the input or output. A simple example
of a wrapper function is one that defines a new name for a function.

Suppose you have a function called FOO. Example 7-24 shows how
you can define a function BAR that is equivalent to FOO.
/ 7-36HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-24 Using the label_applies_to Directive for Wrapper Functions
function [3:0] FOO;
 input [3:0] A, B;
 FOO = A+B;
endfunction

function [3:0] BAR;
 input [3:0] A, B;
 // synopsys label_applies_to REAL
 begin
 BAR = FOO(A,B); // synopsys label REAL
 end
endfunction

Without the label_applies_to directive, FOO and BAR are not
equivalent, because a hierarchical name that goes through the BAR
function needs an additional reference to the REAL label. With the
directive, this extra reference is not needed and FOO and BAR are
equivalent.

Wrappers are often used to sign-extend data or to change data in
some other way. Example 7-25 shows how label_applies_to
connects a string of user-defined function calls to a single Verilog
operator.
/ 7-37HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-25 Using the label_applies_to Directive With User-Defined
Functions

module EX_D_20(A, B, Z);
input [3:0] A, B;
output[3:0] Z;

reg[3:0] Z;

always begin :b1
/* synopsys
 resource R1 : ops = ”L1”;
*/

 Z = FUNC_1(A, B); // synopsys label L1
end
function [3:0] FUNC_1;
 input [3:0] A, B;
 //synopsys label_applies_to L2
 begin
 FUNC_1 = FUNC_2(A,B); // synopsys label L2
 end
endfunction

function [3:0] FUNC_2;
 input [3:0] A, B;
 //synopsys label_applies_to L3
 begin
 FUNC_2 = FUNC_3(A,B); // synopsys label L3
 end
endfunction

function [3:0] FUNC_3;
 input [3:0] A, B;
 //synopsys label_applies_to L4
 begin
 FUNC_3 = A+B; // synopsys label L4
 end
endfunction
endmodule
/ 7-38HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-25 has the following characteristics:

• Function FUNC_1calls FUNC_2, which calls FUNC_3, and so on.

• A label_applies_to directive connects each level of the
hierarchy to the next-lower level.

• The L1 identifier in the ops list points at L4. The equivalent
hierarchical name is /L1/L2/L3/L4.

Example 7-26 uses a hierarchical name in a label_applies_to
directive . The name A1/PLUS in the label_applies_to
directive in function MY_ADD means that a reference to a label on a
call to the function MY_ADDis equivalent to the L + R operation in the
function MY_ADD_1.
/ 7-39HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-26 Using the label_applies_to Directive With Hierarchical
Naming

module EX_D_21(A, B, C);
input [3:0] A, B;
output[3:0] C;

reg[3:0] C;

always begin :b1
/* synopsys
 resource R0 : ops = ”A”;
*/

C = MY_ADD(A, B); // synopsys label A
end

function [3:0] MY_ADD;
input [3:0] A, B;
//synopsys label_applies_to A1/PLUS
begin

MY_ADD = MY_ADD_1(A,B); // synopsys label A1
end

endfunction

function [3:0] MY_ADD_1;
input [3:0] L, R;
begin

MY_ADD_1 = L+R; // synopsys label PLUS
end

endfunction
endmodule

Manual Resource Sharing

Use manual sharing when you want to assign Verilog operators to
resources but you do not want HDL Compiler to perform further
sharing optimizations.

In manual sharing, you indicate all resource sharing with manual
controls. As in automatic sharing with manual controls, these controls
consist of
/ 7-40HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Resource declarations that bind operators to resources and map
resources to specific modules

• Compiler directives that label operations

You can bind as many operations to as many resources as you like.
All operations bound to the same resource share the same hardware.
The remaining operations are implemented with separate hardware.

To use the manual sharing method, add resource sharing directives
to your source files and set the dc_shell variable as follows before
you execute the compile command.

dc_shell> hlo_resource_allocation = none

This command disables automatic sharing. The default value for this
variable is constraint_driven .

Source Code Preparation

Manual controls are incorporated in your Verilog source code.

Functional Description

In manual sharing, you are limited to a subset of the manual controls
available for automatic sharing with manual controls. This subset of
controls includes

• label directive

• ops directive

• map_to_module directive

• label_applies_to directive
/ 7-41HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
See “Functional Description” on page 7-12 and “Operations and
Resources” on page 7-30 for descriptions of these controls.

The following manual controls, used in automatic sharing with manual
controls, are ignored in manual sharing:

• add_ops directive

• may_merge_with directive

• dont_merge_with directive

Input Ordering

In automatic sharing mode, HDL Compiler picks the best ordering of
inputs to the cells to reduce the number of multiplexers required. In
the following case, automatic sharing permutes B + A to A + B, then
multiplexes B and C, and adds the output to A. (See Figure 7-3 on
page 7-16.)

if (ADD_B)
Z = B + A;

else
Z = A + C;

end
...

In contrast, manual sharing does not optimize input ordering for
resources. For example, suppose a resource is declared that forces
the additions in the previous example onto the same adder. Under
manual sharing, one input of the adder is fed by a multiplexer that
chooses between A and B. The other input is fed by a multiplexer that
chooses between A and C. This process is shown in Figure 7-4.
/ 7-42HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 7-4 Manual Sharing With Unoptimized Inputs

To optimize input ordering with manual sharing, permute the inputs
in the source code by rewriting B + A as A + B.

Remember that in manual sharing mode, operator instances that are
not explicitly shared on resources are instantiated as new cells.
/ 7-43HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Resource Sharing Conflicts and Error Messages

Note:
Read “Resource Sharing Methods” on page 7-11 before you read
this section.

For resource sharing, operators must be in the same always block.
If they are not, a sharing conflict exists.

Other kinds of sharing conflicts can also prevent a resource from
being shared—for example,

• User directive conflicts

• Module conflicts

• Control flow conflicts

• Data flow conflicts

With manual resource sharing, if the manual controls in your source
create conflicts, they are reported as errors or warnings. In fully
automatic sharing, HDL Compiler resolves these conflicts before the
design is built, so no errors are reported.

User Directive Conflicts

User directive conflicts occur when manual controls that permit
sharing contradict manual controls that prevent sharing. Note the user
directive conflicts for resources R0 and R1 in the following example:

// synopsys resource R0: may_merge_with = ”R1”;
...
// synopsys resource R1: dont_merge_with = ”R0”;
/ 7-44HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
HDL Compiler generates the following error message:

may_merge_with and dont_merge_with conflict
in resource ’R0’. may_merge_with ignored

However, the following directives for R0, R1, and R2 do not generate
an error message:

// synopsys resource R0: may_merge_with = ”R1”;
...
// synopsys resource R1: may_merge_with = ”R2”;
...
// synopsys resource R2: dont_merge_with = ”R0”;

These directives do not conflict, because a may_merge_with
directive does not mean that the resource will merge. The user
directives are all satisfied if

• No sharing is done

• R0 and R1 are merged

• R1 and R2 are merged

The directives do not permit all three to be merged, because of the
dont_merge_with directive on R2.

Module Conflicts

If a hardware module cannot implement all the operations bound to
a resource assigned to it, a module conflict occurs. This conflict
happens for two reasons:

• Inappropriate operations are mapped to a module that has a
map_to_module directive, as shown in Example 7-27.
/ 7-45HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Operators are bound to a resource that cannot be implemented
by a single module.

Example 7-27 Module Conflict
always @(A or B or ADD_B)
begin : b1

/* synopsys
resource R0 :

ops = ”A0”,
map_to_module = ”sub”;

*/
if (ADD_B)

Z = A + B; // synopsys label A0
else

Z = A - B;
end

In Example 7-27, a conflict occurs because the subtracter, sub ,
cannot perform addition. The error message is

Error: Module ’sub’ cannot implement all of the operations
in resource ’R0’

When resources are not mapped but operators are bound to a
resource and no module can implement all the operations on that
resource, the error message is

Error: There is no module which can implement all of the
operations in the resource ’R0’ in routine ADDER_1 line 12
in file ’/home/verilog/adder_1.v’

User-defined functions cannot be shared. If you attempt to share such
functions, HDL Compiler generates an error message. Refer to
“Scope and Restrictions” on page 7-2 for supported Verilog operators.
/ 7-46HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Control Flow Conflicts

As discussed in “Scope and Restrictions” on page 7-2, two operations
can be shared only if no execution path exists from the start of the
block to the end of the block that reaches both operations.
Example 7-28 shows a control flow conflict.

Example 7-28 Control Flow Conflict
always @(A or B or C or D or ADD_B)
begin : b1

/* synopsys
resource R0 :
ops = ”A1 A2”;

*/
if(ADD_B) begin

Y = A + B; // synopsys label A1
Z = C + D; // synopsys label A2

end
else

Z = A + C;
end

In Example 7-28, the + operations labeled A1 and A2 cannot be
shared, because of a control flow conflict. HDL Compiler generates
the following error message:

Error: Operations in resource ’R0’ can not be shared because
they may execute in the same control step in routine control
line 15 in file ’CONTROL.v’

If operations are in the same path in software (which creates a control
flow conflict), they occur at the same time in hardware. Operations
that occur at the same time require separate resources. Only disjoint
operations can share resources.
/ 7-47HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Data Flow Conflicts

Combinational feedback that occurs as a result of resource sharing
is not permitted. Example 7-29 shows a data flow conflict.

Example 7-29 Data Flow Conflict
always @(A or B or C or D or E or F or ADD_B)
begin : b1

/* synopsys
resource R0 : ops = ”K1 M4”;
resource R1 : ops = ”K2 M3”;

*/
if (ADD_B) begin

X = A + B; // synopsys label K1
Y = X + C; // synopsys label K2

end
else begin

X = D + E; // synopsys label M3
Y = X + F; // synopsys label M4

end
end

In Example 7-29, the sharing mandated by resources R0 and R1
creates a feedback loop, as described in “Scope and Restrictions” on
page 7-2. HDL Compiler generates the following error message:

Error: Operations in resource are part of a data flow cycle
in routine data line 15 in file ’DATA.v’
/ 7-48HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Reports

HDL Compiler generates reports that show the resource sharing
configuration for a design. The resource report lists the resource
name, the module, and the operations contained in the resource. You
can generate this report for any resource sharing method. If you use
manual controls, the information in the report makes it easier to
explore design alternatives.

Generating Resource Reports

To display resource reports, read your design, compile it, then use
the report_resources command as shown.

dc_shell> read -f verilog myfile.v
dc_shell> compile
dc_shell> report_resources

Interpreting Resource Reports

Example 7-30 shows the report that is generated for the following
code. Resource sharing is not used.

always @(A or B or C or ADD_B)
 begin
 if(ADD_B)
 Z = B + A;
 else
 Z = A + C;
 end
/ 7-49HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 7-30 Resource Report Without Sharing

Example 7-31 shows the report for the same example after use of
automatic sharing with manual controls.

Example 7-31 Resource Report Using Automatic Sharing With Manual
Controls

Each report has five categories:

Resource

Identifies the cell in the final netlist. Where resources are bound
to other resources, the parent resource name appears. In
Example 7-30, two adders are created and two resource

dc_shell> hlo_resource_allocation = none

dc_shell> read -f verilog example.v

dc_shell> compile
dc_shell> report_resources

Number of resource = 2

Resource
Module
(impl) Parameters

Contained
Resources Contained Operations

r30

r31

DW01_add
(cla)
DW01_add
(cla)

n=4

n=4

add_9

add_11

Number of resource = 1

Resource
Module
(impl) Parameters

Contained
Resources Contained Operations

r23 DW01_add
(cla)

n=4 add_11 add_9
/ 7-50HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
identifiers are shown in the report. Example 7-31, which uses
resource sharing, has only one resource identifier. Both examples
show the lines in the source code where the operations occur.

Module

Gives the name of the hardware module used by the resource.
Example 7-30 has two adders; Example 7-31 has only one. The
implementation name is shown as (impl) in the report and
indicates the implementation that Design Compiler selected for
the module.

Parameters

Identifies the bit-widths of the modules.

Contained Resources

Lists the names of resources bound to the parent resource, if any.

Contained Operations

Lists the operations that are shared on the resource.
/ 7-51HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
/ 7-52HOME CONTENTS INDEX

	Resource Sharing
	Scope and Restrictions
	Control Flow Conflicts
	Data Flow Conflicts
	Errors

	Resource Sharing Methods
	Automatic Resource Sharing
	Source Code Preparation
	Functional Description
	Resource Area
	Multiplexer Area
	Example of Shared Resources
	Input Ordering

	Automatic Resource Sharing With Manual Controls
	Source Code Preparation
	Functional Description
	Operations and Resources

	Manual Resource Sharing
	Source Code Preparation
	Functional Description
	Input Ordering

	Resource Sharing Conflicts and Error Messages
	User Directive Conflicts
	Module Conflicts
	Control Flow Conflicts
	Data Flow Conflicts

	Reports
	Generating Resource Reports
	Interpreting Resource Reports

