
v2000.05 HDL Compiler for Verilog Reference Manual
9
HDL Compiler Directives 9

The Synopsys Verilog HDL Compiler translates a Verilog description
to the internal format Design Compiler uses. Specific aspects of this
process can be controlled by special comments in the Verilog source
code called HDL Compiler directives. Because these directives are
a special case of regular comments, they are ignored by the Verilog
HDL Simulator and do not affect simulation.

This chapter describes HDL Compiler directives and their effect on
translation, in the following sections:

• Verilog Preprocessor Directives

• Notation for HDL Compiler Directives

• translate_off and translate_on Directives

• parallel_case Directive

• full_case Directive
/ 9-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• state_vector Directive

• enum Directive

• template Directive

• Embedding Constraints and Attributes

• Component Implication

Verilog Preprocessor Directives

Verilog preprocessing provides the following features:

• -define option to the analyze command

• dc_shell variables

• The ‘ifdef , ‘else , and ‘endif directives

• The DC Macro

• Extended capabilities for the ‘define directive

Define Option to the analyze Command

An option to the analyze command, -define (or -d , abbreviated),
allows macro definition on the command line.

You can use only one -define per analyze command. But the
argument can be a list of macros, as shown in Example 9-1.

You do not need to use curly brackets to enclose one macro, as shown
in Example 9-2.
/ 9-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-1 analyze Command With List of Defines
analyze -f verilog -d { RIPPLE, SIMPLE } mydesign.v

Example 9-2 analyze Command With One Define
analyze -f verilog -define ONLY_ONE mydesign.v

Note:
The read command does not accept the -d option.

The input to the analyze command continues to be a Verilog file.
The output of the analyze command continues to be a .syn file.

dc_shell Variables

These variables perform the following functions:

hdlin_preserve_vpp_files

By default, this variable is false. When it is false, intermediate
preprocessor files are deleted after use.

Preprocessor files are preserved (not deleted) when this flag is
set to true.

hdlin_vpp_temporary_directory

Indicates where the intermediate preprocessor files are created.
The default is to use the user’s WORK directory.

hdlin_enable_vpp

When set to true (the default), hdlin_enable_vpp allows
interpretation of the ‘ifdef , ‘else , and ‘endif directives.

It also activates ‘define extensions, which allow macros with
arguments.
/ 9-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
‘ifdef, ‘else, and ‘endif Directives

The ‘ifdef , ‘else , and ‘endif directives allow the conditional
inclusion of code.

The macros that are arguments to the ‘ifdef directives can also be
defined in the Verilog source file by use of the ‘define directive. In
that case, there is no change in the invocation of the HDL Compiler
to read in Verilog files. Example 9-3 shows a design that uses the
directives.

Example 9-3 Design Using Preprocessor Directives and ‘define
‘ifdef SELECT_XOR_DESIGN

module selective_design(a,b,c);
input a, b;
output c;
 assign c = a ^ b;
endmodule

‘else

module selective_design(a,b,c);
input a, b;
output c;
 assign c = a | b;
endmodule

‘endif

DC Macro

The special macro DC is always defined, as in the following example:
/ 9-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-4 DC Macro
‘ifdef DC

...

... /* Synthesis-only information */

...
‘else

...

... /* Simulation-only information */

...
‘endif

The Verilog preprocessor directives are not affected by
translate_off and translate_on (described in “translate_off
and translate_on Directives” on page 9-6); that is, the preprocessor
reads whatever is between translate_off and translate_on .

To suspend translation of the source code for synthesis, use the
‘ifdef, ‘else , ‘endif construct, not translate_off and
translate_on .

‘define Verilog Preprocessor Directive

With the dc_shell variable hdlin_enable_vpp set to true, the
‘define directive can specify macros that take arguments. For
example,

‘define BYTE_TO_BITS(arg)((arg) << 3)

The ‘define directive can do more than simple text substitution. It
can also take arguments and substitute their values in its replacement
text.
/ 9-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Notation for HDL Compiler Directives

The special comments that make up HDL Compiler directives begin,
like all other Verilog comments, with the characters // or /*. The
// characters begin a comment that fits on one line (most HDL
Compiler directives do). If you use the /* characters to begin a multiline
comment, you must end the comment with */. You do not need to use
the /* characters at the beginning of each line but only at the beginning
of the first line. If the word following these characters is synopsys (all
lowercase) or an alternative defined in Design Compiler with the
hdlin_pragma_keyword variable, HDL Compiler treats the
remaining comment text as a compiler directive.

Note:
You cannot use // synopsys in a regular comment. Also, the
compiler displays a syntax error if Verilog code is in a
// synopsys directive.

translate_off and translate_on Directives

When the // synopsys translate_off and // synopsys
translate_on directives are present, HDL Compiler suspends
translation of the source code and restarts translation at a later point.
Use these directives when your Verilog source code contains
commands specific to simulation that HDL Compiler does not accept.

Note:
The Verilog preprocessor directives are not affected by
translate_off and translate_on , and the preprocessor
reads whatever is between them (see “DC Macro” on page 9-4).
/ 9-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
You turn translation off by using

// synopsys translate_off

or

/* synopsys translate_off */

You turn translation back on by using

// synopsys translate_on

or

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled. After that,
you can use the translate_off and translate_on directives
anywhere in the text. These directives must be used in pairs. Each
translate_off must appear before its corresponding
translate_on . Example 9-5 shows a simulation driver protected
by a translate_off directive.
/ 9-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-5 // synopsys translate_on and // synopsys translate_off
Directives

module trivial (a, b, f);
input a,b;
output f;
 assign f = a & b;

 // synopsys translate_off
 initial $monitor (a, b, f);
 // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
 reg [1:0] value_in;
 integer i;

 trivial triv1(value_in[1], value_in[0]);

 initial begin
 for (i = 0; i < 4; i = i + 1)
 #10 value_in = i;
 end
endmodule
/* synopsys translate_on */

parallel_case Directive

The // synopsys parallel_case directive affects the way logic
is generated for the case statement. As presented in “Full Case and
Parallel Case” on page 5-19, a case statement generates the logic
for a priority encoder. Under certain circumstances, you might not
want to build a priority encoder to handle a case statement. You can
use the parallel_case directive to force HDL Compiler to generate
multiplexer logic instead.
/ 9-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The syntax for the parallel_case directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 9-6, the states of a state machine are encoded as one
hot signal. If the case statement were implemented as a priority
encoder, the generated logic would be unnecessarily complex.

Example 9-6 // synopsys parallel_case Directives
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,

state3 = 4’b0100, state4 = 4’b1000;

case (1)//synopsys parallel_case

current_state[0] : next_state = state2;
current_state[1] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = state1;

endcase

Use the parallel_case directive immediately after the case
expression, as shown. This directive makes all case-item evaluations
in parallel. All case items that evaluate to true are executed, not just
the first, which could give you unexpected results.

In general, use parallel_case when you know that only one case
item is executed. If only one case item is executed, the logic generated
from a parallel_case directive performs the same function as the
/ 9-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
circuit when it is simulated. If two case items are executed and you
have used the parallel_case directive, the generated logic is not
the same as the simulated description.

full_case Directive

The // synopsys full_case directive asserts that all possible
clauses of a case statement have been covered and that no default
clause is necessary. This directive has two uses: It avoids the need
for default logic, and it can avoid latch inference from a case
statement by asserting that all necessary conditions are covered by
the given branches of the case statement. As shown in “Full Case
and Parallel Case” on page 5-19, a latch can be inferred whenever a
variable is not assigned a value under all conditions.

The syntax for the full_case directive is

// synopsys full_case

or

/* synopsys full_case */

If the case statement contains a default clause, HDL Compiler
assumes that all conditions are covered. If there is no default clause
and you do not want latches to be created, use the full_case
directive to indicate that all necessary conditions are described in the
case statement.

Example 9-7 shows two uses of full_case . The parallel_case
and full_case directives can be combined in one comment.
/ 9-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-7 // synopsys full_case Directives
reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
 state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case
 0: out = 2;
 1: out = 3;
 2: out = 0;
endcase

case (1) // synopsys parallel_case full_case
 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered.
You can either use a default clause to cover all other conditions or
use the full_case directive (as in Example 9-7) to indicate that
other branch conditions do not occur. If you cover all possible
conditions explicitly, HDL Compiler recognizes the case statement
as full-case, so the full_case directive is not necessary.

The second case statement in Example 9-7 does not cover all 16
possible branch conditions. For example, current_state ==
4’b0101 is not covered. The parallel_case directive is used in
this example because only one of the four case items can evaluate
to true and be executed.

Although you can use the full_case directive to avoid creating
latches, using this directive does not guarantee that latches will not
be built. You still must assign a value to each variable used in the
/ 9-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
case statement in all branches of the case statement. Example 9-8
illustrates a situation in which the full_case directive prevents a
latch from being inferred for variable b but not for variable a.

Example 9-8 Latches and // synopsys full_case
reg a, b;
reg [1:0] c;
case (c) // synopsys full_case
 0: begin a = 1; b = 0; end
 1: begin a = 0; b = 0; end
 2: begin a = 1; b = 1; end
 3: b = 1; // a is not assigned here
endcase

In general, use full_case when you know that all possible
branches of the case statement have been enumerated, or at least
all branches that can occur. If all branches that can occur are
enumerated, the logic generated from the case statement
performs the same function as the simulated circuit. If a case condition
is not fully enumerated, the generated logic and the simulation are
not the same.

Note:
You do not need the full_case directive if you have a default
branch or you enumerate all possible branches in a case
statement, because HDL Compiler assumes that the case
statement is full_case .
/ 9-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
state_vector Directive

The // synopsys state_vector directive labels a variable in a
Verilog description as the state vector of an equivalent finite state
machine.

The syntax for the state_vector directive is

// synopsys state_vector vector_name

or

/* synopsys state_vector vector_name */

The vector_name variable is the name chosen as a state vector.
This declaration allows Synopsys Design Compiler to extract the
labeled state vector from the Verilog description. Used with the enum
directive, described in the next section, the state_vector directive
allows you to define the state vector of a finite state machine (and its
encodings) from a Verilog description. Example 9-9 shows one way
to use the state_vector directive.

Caution!
Do not define two state_vector directives in one module.
Although Design Compiler does not issue an error message, it
recognizes only the first state_vector directive and ignores the
second.
/ 9-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-9 // synopsys state_vector Example
reg [1:0] state, next_state;
// synopsys state_vector state

always @ (state or in) begin
case (state) // synopsys full_case

0: begin
out = 3;
next_state = 1;
end

1: begin
out = 2;
next_state = 2;
end

2: begin
out = 1;
next_state = 3;
end

3: begin
out = 0
if (in)
next_state = 0;
else

next_state = 3;
endcase

end

always @ (posedge clock)
state = next_state;

Note:
The state_vector directive works only with inferred flip-flops.
You can also define the state vector and its encodings if you read
in a state machine with instantiated flip-flops in HDL format and
use embedded dc_shell scripts.
/ 9-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
enum Directive

The // synopsys enum directive is designed for use with the Verilog
parameter definition statement to specify state machine encodings.
When a variable is marked as a state_vector (see “state_vector
Directive” on page 9-13) and it is declared as an enum, the Synopsys
HDL Compiler uses the enum values and names for the states of an
extracted state machine.

The syntax of the enum directive is

// synopsys enum enum_name

or

/* synopsys enum enum_name */

Example 9-10 shows the declaration of an enumeration of type colors
that is 3 bits wide and has the enumeration literals red, green, blue,
and cyan with the values shown.

Example 9-10 Enumeration of Type Colors
parameter [2:0] // synopsys enum colors
red = 3’b000, green = 3’b001, blue = 3’b010, cyan = 3’b011;

The enumeration must include a size (bit-width) specification.
Example 9-11 shows an invalid enum declaration.

Example 9-11 Invalid enum Declaration
parameter /* synopsys enum colors */
red = 3’b000, green = 1;
// [2:0] required
/ 9-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-12 shows a register, a wire, and an input port with the
declared type of colors. In each of the following declarations, the array
bounds must match those of the enumeration declaration. If you use
different bounds, synthesis might not agree with simulation behavior.

Example 9-12 More enum Type Declarations
reg [2:0] /* synopsys enum colors */ counter;
wire [2:0] /* synopsys enum colors */ peri_bus;
input [2:0] /* synopsys enum colors */ input_port;

Even though you declare a variable to be of type enum, it can still be
assigned a bit value that is not one of the enumeration values in the
definition. Example 9-13 relates to Example 9-12 and shows an
invalid encoding for colors.

Example 9-13 Invalid Bit Value Encoding for Colors
counter = 3’b111;

Because 111 is not in the definition for colors, it is not a valid encoding.
HDL Compiler accepts this encoding, because it is valid Verilog code,
but Design Compiler recognizes this assignment as an invalid
encoding and ignores it.

You can use enumeration literals just like constants, as shown in
Example 9-14.

Example 9-14 Enumeration Literals Used as Constants
if (input_port == blue)
 counter = red;

You can also use enumeration with the state_vector directive.
Example 9-15 shows how the state_vector variable is tagged by
use of enumeration.
/ 9-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-15 Finite State Machine With // synopsys enum and // synopsys
state_vector

// This finite-state machine (Mealy type) reads 1 bit
// per cycle and detects 3 or more consecutive 1s.

module enum2_V(signal, clock, detect);
input signal, clock;
output detect;
reg detect;

// Declare the symbolic names for states
parameter [1:0]//synopsys enum state_info
 NO_ONES = 2’h0,
 ONE_ONE = 2’h1,
 TWO_ONES = 2’h2,
 AT_LEAST_THREE_ONES = 2’h3;

// Declare current state and next state variables.
reg [1:0] /* synopsys enum state_info */ cs;
reg [1:0] /* synopsys enum state_info */ ns;

// synopsys state_vector cs

always @ (cs or signal)

 begin
 detect = 0;// default values
 if (signal == 0)
 ns = NO_ONES;
 else
 case (cs) // synopsys full_case
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES,
 AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect = 1;
 end
 endcase
 end
always @ (posedge clock) begin
 cs = ns;
end
endmodule
/ 9-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Enumerated types are designed to be used as whole entities. This
design allows Design Compiler to rebind the encodings of an
enumerated type more easily. You cannot select a bit or a part from
a variable that has been given an enumerated type. If you do, the
overall behavior of your design changes when Design Compiler
changes the original encoding. Example 9-16 shows an unsupported
bit-select.

Example 9-16 Unsupported Bit-Select From Enumerated Type
parameter [2:0] /* synopsys enum states */

s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;

assign high_bit = state[2];// not supported

Because you cannot access individual bits of an enumerated type,
you cannot use component instantiation to hook up single-bit flip-flops
or three-states. Example 9-17 shows an example of this type of
unsupported bit-select.

Example 9-17 Unsupported Bit-Select (With Component Instantiation) From
Enumerated Type

DFF ff0 (next_state[0], clk, state[0]);
DFF ff1 (next_state[1], clk, state[1]);
DFF ff2 (next_state[2], clk, state[2]);

To create flip-flops and three-states for enumvalues, you must imply
them with the posedge construct or the literal z , as shown in
Example 9-18.
/ 9-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-18 Using Inference With Enumerated Types
parameter [2:0] /* synopsys enum states */

s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d0, PROCESSING = 2’d1, IDLE = 2’d2;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;

If you use the constructs shown in Example 9-18, you can change
the enumeration encodings by changing the parameter and reg
declarations, as shown in Example 9-19. You can also allow HDL
Compiler to change the encodings.

Example 9-19 Changing the Enumeration Encoding
parameter [3:0] /* synopsys enum states */

s0 = 4’d0, s1 = 4’d10, s2 = 4’d15, s3 = 4’d5,
s4 = 4’d2, s5 = 4’d4, s6 = 4’d6, s7 = 4’d8;

reg [3:0] /* synopsys enum states */ state, next_state;

parameter [1:0] /* synopsys enum outputs */
DONE = 2’d3, PROCESSING = 2’d1, IDLE = 2’d0;

reg [1:0] /* synopsys enum outputs */ out, triout;

always @ (posedge clk) state = next_state;
assign triout = trienable ? out : ’bz;

If you must select individual bits of an enumerated type, you can
declare a temporary variable of the same size as the enumerated
type. Assign the enumerated type to the variable, then select
individual bits of the temporary variable. Example 9-20 shows how
this is done.
/ 9-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-20 Supported Bit-Select From Enumerated Type
parameter [2:0] /* synopsys enum states */

s0 = 3’d0, s1 = 3’d1, s2 = 3’d2, s3 = 3’d3,
s4 = 3’d4, s5 = 3’d5, s6 = 3’d6, s7 = 3’d7;

reg [2:0] /* synopsys enum states */ state, next_state;
wire [2:0] temporary;

assign temporary = state;
assign high_bit = temporary[2]; //supported

Note:
Selecting individual bits from an enumerated type is not
recommended.

If you declare a port as a reg and as an enumerated type, you must
declare the enumeration when you declare the port. Example 9-21
shows the declaration of the enumeration.

Example 9-21 Enumerated Type Declaration for a Port
module good_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] /* synopsys enum colors */ b;
reg [1:0] b;
.
.
endmodule

Example 9-22 shows the wrong way to declare a port as an
enumerated type, because the enumerated type declaration
appears with the reg declaration instead of with the output port
declaration. This code does not export enumeration information to
Design Compiler.
/ 9-20HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-22 Incorrect Enumerated Type Declaration for a Port
module bad_example (a,b);

parameter [1:0] /* synopsys enum colors */
green = 2’b00, white = 2’b11;

input a;
output [1:0] b;
reg [1:0] /* synopsys enum colors */ b;
.
.
endmodule

template Directive

The // synopsys template directive overrides the setting of the
hdlin_auto_save_templates variable. If you use this directive
and your design contains parameters, the design is archived as a
template. Example 9-23 shows how to use the directive.

Example 9-23 // synopsys template Directive in a Design With a Parameter
module template (a, b, c);
input a, b, c;
// synopsys template
parameter width = 8;
.
.
.
endmodule

See “Module Instantiations” on page 3-16 for more information.
/ 9-21HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Embedding Constraints and Attributes

Constraints and attributes, usually entered at the dc_shell prompt,
can be embedded in your Verilog source code. Prefix the usual
constraint or attribute statement with the Verilog comment characters
// , and delimit the embedded statements with the compiler directives
// synopsys dc_script_begin and // synopsys
dc_script_end . The method is shown in Example 9-24.

Example 9-24 Embedding Constraints and Attributes With // Delimiters
...
// synopsys dc_script_begin
// max_area 0.0
// set_drive -rise 1 port_b
// max_delay 0.0 port_z
// synopsys dc_script_end
...

Constraints and attributes as shown in Example 9-25 can also be
delimited with the characters /* and */ . When you use these
delimiters, the // synopsys dc_script_end comment is not
required or valid, because the attributes or constraints are terminated
by */ .

Example 9-25 Embedding Constraints and Attributes With /* and */
Delimiters

/* synopsys dc_script_begin
 max_area 10.0
 max_delay 0.0 port_z
*/
/ 9-22HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The dc_shell script interprets the statements embedded between the
// synopsys dc_script_begin and the
// synopsys dc_script_end directives. If you want to comment
out part of your dc_shell script, use the convention for comments that
dc_shell uses.

Limitations on the Scope of Constraints and Attributes

The following limitations apply to the use of constraints and attributes
in your design:

• Constraints and attributes declared outside a module apply to all
subsequent modules declared in the file.

• Constraints and attributes declared inside a module apply only to
the enclosing module.

• Any dc_shell scripts embedded in functions apply to the whole
module.

• Include in your dc_shell script only commands that set constraints
and attributes. Do not use action commands such as compile ,
gen , and report .

• The constraints or attributes set in the embedded script go into
effect after the read command is executed. Therefore, variables
that affect the read process itself are not in effect before the read.
Thus, if you set the variable hdlin_no_latches = true in the
embedded script, this variable does not influence latch inference
in the current read.

• dc_shell performs error checking after the read command
finishes. Syntactic and semantic errors in dc_shell strings are
reported at this time.
/ 9-23HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To
include an embedded netlist in your behavioral code, use the
directives // synopsys map_to_module and
// synopsys return_port_name for HDL Compiler to recognize
the netlist as a function being implemented by another module. When
this subprogram is invoked in the behavioral code, HDL Compiler
instantiates the module (see Example 9-26 on page 9-25).

The first directive, // synopsys map_to_module , flags a function
for implementation as a distinct component. The syntax is

// synopsys map_to_module modulename

The second directive, // synopsys return_port_name ,
identifies a return port (functions in Verilog do not have output ports).
To instantiate the function as a component, the return port must have
a name. The syntax is

// synopsys return_port_name portname

Note:
Remember that if you add a map_to_module directive to a
function, the contents of the function are parsed and ignored
whereas the indicated module is instantiated. Ensure that the
functionality of the module instantiated in this way and the function
it replaces are the same; otherwise, pre-synthesis and post-
synthesis simulation do not match.

Example 9-26 illustrates the map_to_module and
return_port_name directives.
/ 9-24HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 9-26 Component Implication
module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;

function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;

/*
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d);
// this function call actually instantiates component (module) mux_module

endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule
/ 9-25HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
/ 9-26HOME CONTENTS INDEX

	HDL Compiler Directives
	Verilog Preprocessor Directives
	Define Option to the analyze Command
	dc_shell Variables
	‘ifdef, ‘else, and ‘endif Directives
	DC Macro
	‘define Verilog Preprocessor Directive

	Notation for HDL Compiler Directives
	translate_off and translate_on Directives
	parallel_case Directive
	full_case Directive
	state_vector Directive
	enum Directive
	template Directive
	Embedding Constraints and Attributes
	Limitations on the Scope of Constraints and Attributes
	Component Implication

