
v2000.05 Guide to HDL Coding Styles for Synthesis
1
Coding Styles for if Statements and case
Statements 1

This chapter includes a section about the structure implied by simple
if statements and case statement and a section about more-complex
examples that use a combination of if statements and case
statements.

This chapter contains the following sections:

• What’s New in This Release

• Basic if and case Statements

• Simple case Statement
/ 1-1HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
What’s New in This Release

Version 2000.05 of Guide to HDL Coding Styles for Synthesis
includes solutions to Synopsys Technical Action Requests (STARs)
filed in previous releases. Information about resolved STARs is
available in the Guide to HDL Coding Styles for Synthesis Release
Note in SolvNET.

To see the Guide to HDL Coding Styles for Synthesis Release Note,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNET.

2. If prompted, enter your user name and password. If you do not
have a SOLV-IT! user name and password, you can obtain them
at http://www.synopsys.com/registration.

3. Click Release Notes then open the Guide to HDL Coding Styles
for Synthesis Release Note.

Basic if and case Statements

Examine the following basic if and case statements to understand the
structure they imply and the differences, if any, between the two.

Example 1-1 and Example 1-2 show Verilog and VHDL versions of
four sequential if statements. These designs result in a priority
encoded structure as shown in Figure 1-1.
/ 1-2HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 1-1 Verilog Example of Priority Encoded if Statement
module mult_if(a, b, c, d, sel, z);
input a, b, c, d;
input [3:0] sel;
output z;
reg z;

always @(a or b or c or d or sel)
begin

z = 0;
if (sel[0]) z = a;
if (sel[1]) z = b;
if (sel[2]) z = c;
if (sel[3]) z = d;

end
endmodule

Example 1-2 is the equivalent VHDL example.
/ 1-3HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 1-2 VHDL Example of Priority Encoded if Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity mult_if is
port (a, b, c, d: in std_logic;

sel: in std_logic_vector(3 downto 0);
z: out std_logic);

end mult_if;

architecture one of mult_if is
begin

process (a, b, c, d, sel)
begin

z <= 0;
if (sel(0) = ’1’) then

z <= a;
end if;
if (sel(1) = ’1’) then

z <= b;
end if;
if (sel(2) = ’1’) then

z <= c;
end if;
if (sel(3) = ’1’) then

z <= d;
end if;

end process;
end one;

Figure 1-1 shows the priority encoded, cascaded structure generated
for Example 1-1 and Example 1-2.
/ 1-4HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 1-1 Structure for Priority Encoded if Statement

Note:
The generic SELECT_OP components shown in Figure 1-1 are
used by the VHDL Compiler tool to implement conditional
operations in the HDL (for example, if statements or case
statements). SELECT_OP components behave like one-hot
multiplexers; the control lines are mutually exclusive, and each
SELECT_OP control input allows the data on the corresponding
SELECT_OPdata input to pass to the output of the SELECT_OP.
Do not confuse these SELECT_OP components with one-hot
multiplexers in a technology library. The Design Compiler tool
does not map to one-hot multiplexers in a technology library.

Sequential if statements allow you to structure HDL for late arriving
signals. In Figure 1-1, the inputs to the first SELECT_OPin the chain
(sel[0] and a or 0) have the longest delay to the output z . The inputs
to the last SELECT_OPin the chain (sel[3] and d) have the shortest
delay to the output. This is discussed further in Chapter 2, “Coding if
and case Statements for Late Arriving Signals.”

An if...else if construct in Verilog and an if...elsif in VHDL
are implemented with single SELECT_OP components. Therefore,
they do not result in the cascaded structure shown in Figure 1-1.

SELECT_OP
SELECT_OP

SELECT_OP
SELECT_OP

z
d

sel[3]

c

2

b
a

0 sel[2]
2

sel[1]
2sel[0]

2

/ 1-5HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Single if statements result in a parallel structure. Example 1-3 and
Example 1-4 show the Verilog and VHDL examples that use the single
if statement coding style. Figure 1-2 shows the parallel structure
inferred for these examples.

Example 1-3 Verilog Example for Single if Statement (Not Priority Encoded)
module single_if(a, b, c, d, sel, z);
input a, b, c, d;
input [3:0] sel;
output z;
reg z;

always @(a or b or c or d or sel)
begin

z = 0;
if (sel[3])

z = d;
else if (sel[2])

z = c;
else if (sel[1])

z = b;
else if(sel[0])

z = a;
end
endmodule
/ 1-6HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 1-4 VHDL Example for Single if Statement (Not Priority Encoded)
library IEEE;
use IEEE.std_logic_1164.all;
entity single_if is
port (a, b, c, d: in std_logic;

sel: in std_logic_vector(3 downto 0);
z: out std_logic);

end single_if;

architecture one of single_if is
begin

process(a, b, c, d, sel)
begin

z <= 0;
if (sel(3) = ’1’) then

z <= d;
elsif (sel(2) = ’1’) then

z <= c;
elsif (sel(1) = ’1’) then

z <= b;
elsif (sel(0) = ’1’) then

z <= a;
end if;

end process;
end one;
/ 1-7HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 1-2 Structure Implied by Single if Statement

Now that you have seen some basic if statement examples, examine
the structure implied by a simple case statement.

SELECT_OP

d
c

b

a

0

z

sel[3]

sel[2]
sel[3]

sel[1]
sel[2]
sel[3]

sel[0]

sel[1]
sel[2]
sel[3]

sel[2]
sel[3]

sel[0]
sel[1]
/ 1-8HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Simple case Statement

Example 1-5 and Example 1-6 show, respectively, Verilog and VHDL
examples of a single case statement.

Example 1-5 Verilog for Single case Statement
module case1(a, b, c, d, sel, z);
input a, b, c, d;
input [3:0] sel;
output z;
reg z;
always @(a or b or c or d or sel)
begin

casex (sel)
4’b1xxx: z = d;
4’bx1xx: z = c;
4’bxx1x: z = b;
4’bxxx1: z = a;
default: z = 1’b0;

endcase
end
endmodule

Notice the use of the casex statement in Example 1-5. The casex
statement enables you to take advantage of don’t care conditions, so
you don’t have to specify all possible 0/1 combinations of sel . VHDL,
on the other hand, does not let you take advantage of don’t care
conditions. The VHDL language requires that VHDL Compiler treat
comparisons with don’t care conditions as false. Example 1-6 shows
the equivalent VHDL for Example 1-5. In Example 1-6, all conditions
have to be specified in the branches of the case statement.
/ 1-9HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 1-6 VHDL for Single case Statement
library IEEE;
use IEEE.std_logic_1164.all;
entity case1 is
port (a, b, c, d: in std_logic;

sel: in std_logic_vector(3 downto 0);
z: out std_logic);

end case1;

architecture one of case1 is
begin

process(a,b,c,d,sel)
begin

case sel is
when ”1000”|”1001”|”1010”|”1011”|

”1100”|”1101”|”1110”|”1111” => z <= d;
when ”0100”|”0101”|”0110”|”0111” => z <= c;
when ”0010”|”0011” => z <= b;
when ”0001” => z <= a;
when others => z <= ’0’;

end case;
end process;

end one;

The others branch is required by the language in the case statement
in Example 1-6, because the case statement does not cover all
possible values. The “0000” case is missing, as are combinations of
other std_logic values (the std_logic type is defined to have
nine possible values). The others branch is required to cover
combinations in addition to the 0 and 1 combinations.

The structure implied for the single case statement in Example 1-5
and Example 1-6 is identical to that shown in Figure 1-2 for a single
if statement. A case statement gives the same results as a single if
statement if the selector in the case statement branches is the same
as the selector in the if statement branches.
/ 1-10HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
The preceding VHDL examples cover multiple if statements, single if
statements, and single case statements. These are summarized as
follows:

Multiple if
statement4;
if (cond = cond1) then

statement1;
end if;
if (cond = cond2) then

statement2;
end if;
if (cond = cond3) then

statement3;
end if;

A multiple if statement style has the longest path. Both the data and
the control signals cascade through multiple SELECT_OPconstructs.

Single if
if (cond = cond1) then

statement1;
elsif (cond = cond2) then

statement2;
elsif (cond = cond3) then

statement3;
else

statement4;
end if;

A single if statement is represented by a single SELECT_OP, but the
control signals are priority encoded. The delay through the
SELECT_OP is the same for all the data inputs.
/ 1-11HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Single case
case (cond) is

when cond1 =>
statement1;

when cond2 =>
statement2;

when cond3 =>
statement3;

when others =>
statement4;

end case;

A single case statement is also represented by a single SELECT_OP.
There is no priority encoding for the control signals. The delay through
the SELECT_OPis the same for all the data inputs. A single if and a
single case statement give identical results if the selector is the same
in every branch of the if statement.
/ 1-12HOME CONTENTS

	Coding Styles for if Statements and case Statements
	What’s New in This Release
	Basic if and case Statements
	Simple case Statement

